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We begin by stating our main assumptions and notation in the next section. Following that, our main analytic results
are all stated without proof for the sake of conciseness. Proofs are provided in the final section, with the results
restated for convenience.

I. ASSUMPTIONS AND NOTATION

Consider a system of N state variables z1, . . . , zN that have a probability density p(z, t) that satisfies the linear
Fokker-Planck equation

∂p(z, t)

∂t
=

N∑
i,j=1

−Fij
∂(zjp)

∂zi
+

1

2

N∑
i,j=1

Dij
∂2p

∂zi∂zj

with a force matrix F and a diffusion matrix D. Assume that all of the eigenvalues of F are distinct with negative real
parts and are denoted λ1, λ2, . . . , λN . These eigenvalues are indexed from smallest to largest in terms of the value of
their real part (i.e., |Re(λ1)| ≤ . . . ≤ |Re(λN )|). The diffusion matrix D is assumed to have all positive eigenvalues.
With these assumptions, the stationary distribution of z is Gaussian and we denote its covariance matrix as Σ.
Our results concern the relationship between the eigenvalues of F and Σ as the system undergoes a codimension-1
bifurcation. In such a bifurcation, typically only one of F’s eigenvalues—or the real part of one complex conjugate
pair of F’s eigenvalues—vanishes at the critical transition.

II. EIGENVALUES OF THE COVARIANCE MATRIX

Lemma 1. Let the columns of a matrix T contain the eigenvectors of F. Let Σ̃ be the covariance of the state variables
if the eigenvectors are used as their coordinate basis. That is, Σ̃ = T−1ΣT−τ . Then the elements of Σ̃ satisfy

Σ̃ij = − D̃ij

λi + λj

where D̃ = T−1DT−τ .

Lemma 2. Suppose that the dominant eigenvalue of F is real and also suppose that |D̃11/(2λ1)|ε ≥ |max(D̃)/(λ2)|
with 0 < ε� 1. Then the dominant eigenvalue of Σ is equal to |D̃11/(2λ1)|+O(ε|Σ̃11|) and all of the other eigenvalues
are O(ε|Σ̃11|).

Lemma 3. Suppose that the dominant eigenvalues of F form a complex conjugate pair. Further suppose that
|D̃12/(2Re(λ1))|ε ≥ |max(D̃)/λ3|, with 0 < ε � 1. Then the sum of the two largest eigenvalues of Σ is
O(|D̃12/Re(λ1)|) and all of the other eigenvalues are O(ε|Σ̃12|).

Theorem 4. Suppose that the magnitude of the real part of a dominant eigenvalue of F is small such that the
assumptions of either Lemmas 2 or 3 are satisfied. Then as this real part approaches zero, if the assumptions of
Lemma 2 are satisfied, the largest eigenvalue of Σ becomes larger absolutely and larger relative to all of the other
eigenvalues of Σ. Alternatively, if the assumptions of Lemma 3 are satisfied, the sum of the largest two eigenvalues
of Σ becomes larger absolutely and relative to all of the other eigenvalues of Σ.
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III. PROOFS

Lemma 1. Let the columns of a matrix T contain the eigenvectors of F. Let Σ̃ be the covariance of the state variables
if the eigenvectors are used as their coordinate basis. That is, Σ̃ = T−1ΣT−τ . Then the elements of Σ̃ satisfy

Σ̃ij = − D̃ij

λi + λj
(1)

where D̃ = T−1DT−τ .

Proof. Kwon and coauthors2 show that the covariance matrix Σ may be written as

Σ = −F−1(D + Q)/2, (2)

where Q is an antisymmetric matrix with zeroes on its diagonal which satisfies

FQ + QFτ = FD−DFτ . (3)

Next, let Q̃ = T−1QT−τ and Λ = T−1FT, the diagonalization of F. Equation (3) repeated in terms of these matrices
is

ΛQ̃ + Q̃Λ = ΛD̃− D̃Λ. (4)

Thus the elements of Q̃ must satisfy

(λi + λj)Q̃ij = (λi − λj)D̃ij . (5)

To use (5) to find elements of Σ̃, note that (2) holds in transformed coordinates as

Σ̃ = −Λ−1(D̃ + Q̃)/2. (6)

Putting (5) and (6) together yields (1).

Lemma 2. Suppose that the dominant eigenvalue of F is real and also suppose that |D̃11/(2λ1)|ε ≥ |max(D̃)/(λ2)|
with 0 < ε� 1. Then the dominant eigenvalue of Σ is equal to |D̃11/(2λ1)|+O(ε|Σ̃11|) and all of the other eigenvalues
are O(ε|Σ̃11|).

Proof. By hypothesis, all of the elements of Σ̃ besides Σ̃11 are at least a factor of 1/ε smaller in magnitude than Σ̃11.
We denote this difference in magnitude by noting that Σ̃ij = O(ε|Σ̃11|) for (i, j) 6= (1, 1). With this notation, we can
write Σ̃ as

Σ̃ =


− D̃11

2λ1
O(ε|Σ̃11|) · · · O(ε|Σ̃11|)

O(ε|Σ̃11|) O(ε|Σ̃11|) · · · O(ε|Σ̃11|)
...

...
. . .

...
O(ε|Σ̃11|) O(ε|Σ̃11|) · · · O(ε|Σ̃11|)

 . (7)

Along with Σ = TΣ̃Tτ , (7) yields

Σ = T1

∣∣∣∣∣D̃11

2λ1

∣∣∣∣∣Tτ
1 +

O(ε|Σ̃11|) · · · O(ε|Σ̃11|)
...

. . .
...

O(ε|Σ̃11|) · · · O(ε|Σ̃11|)

 . (8)

Postmultiplying both sides of (8) by T1 yields

ΣT1 =

∣∣∣∣∣D̃11

2λ1

∣∣∣∣∣T1 +

O(ε|Σ̃11|)
...

O(ε|Σ̃11|)

 . (9)

Clearly, |D̃11/(2λ1)| + O(ε|Σ̃11|) is an eigenvalue of Σ. Because Σ is a covariance matrix, all of its eigenvalues are
non-negative. These eigenvalues must sum to the trace of Σ, which is |D̃11/(2λ1)|+O(ε|Σ̃11|) according to (8). Hence
all of the other eigenvalues must be O(ε|Σ̃11|).
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Lemma 3. Suppose that the dominant eigenvalues of F form a complex conjugate pair. Further suppose that
|D̃12/(2Re(λ1))|ε ≥ |max(D̃)/λ3|, with 0 < ε � 1. Then the sum of the two largest eigenvalues of Σ is
O(|D̃12/Re(λ1)|) and all of the other eigenvalues are O(ε|Σ̃12|).

Proof. Our proof uses the same general approach to the case where λ1 is real. Using (1), we can write Σ̃ as

Σ̃ =


− D̃11

2λ1
− D̃12

2Re(λ1) O(ε|Σ̃12|) · · · O(ε|Σ̃12|)
− D̃12

2Re(λ1) − D̃11

2λ1
O(ε|Σ̃12|) · · · O(ε|Σ̃12|)

O(ε|Σ̃12|) O(ε|Σ̃12|) O(ε|Σ̃12|) · · · O(ε|Σ̃12|)
...

...
...

. . .
...

O(ε|Σ̃12|) O(ε|Σ̃12|) O(ε|Σ̃12|) · · · O(ε|Σ̃12|)

 (10)

which along with Σ = TΣ̃Tτ yields

Σ = (T1,T2)

(
− D̃11

2λ1
− D̃12

2Re(λ1)

− D̃12

2Re(λ1) − D̃11

2λ1

)
(T1,T2)τ +

O(ε|Σ̃12|) · · · O(ε|Σ̃12|)
...

. . .
...

O(ε|Σ̃12|) · · · O(ε|Σ̃12|)

 . (11)

Alternatively Σ may be factorized as

Σ = (Re(T1), Im(T1))Σ(1)(Re(T1), Im(T1))τ +

O(ε|Σ̃12|) · · · O(ε|Σ̃12|)
...

. . .
...

O(ε|Σ̃12|) · · · O(ε|Σ̃12|)

 , (12)

where Σ(1) is a real 2× 2 matrix that satisfies

Σ(1) = T(1)Σ̃(1)(T(1))τ (13)

where

Σ̃(1) =

(
− D̃11

2λ1
− D̃12

2Re(λ1)

− D̃12

2Re(λ1) − D̃11

2λ1

)
(14)

and T(1) is a matrix whose columns are eigenvectors of

F(1) =

(
Re(λ1) Im(λ1)
−Im(λ1) Re(λ1)

)
. (15)

Specifically,

T(1) =

(
1 1
i −i

)
(16)

so that

(T1,T2) = (Re(T1), Im(T1))T(1). (17)

The matrix Σ(1) represents the covariance in a two-dimensional subspace spanned by Re(T1) and Im(T1). Now let
H be  | D̃11

2λ1
|2 + | D̃12

2Re(λ1) |
2 D̃11D̃12

4λ1Re(λ1) + D̃11

λ1

D̃12

4Re(λ1)

D̃11D̃12

4λ1Re(λ1) + D̃11

λ1

D̃12

4Re(λ1) | D̃11

2λ1
|2 + | D̃12

2Re(λ1) |
2

 , (18)

the product of Σ̃(1) with its conjugate transpose. It is straightforward to verify that the eigenvalues of H are

h2
1 =

(
|D̃11|
2|λ1|

+
|D̃12|

2 Re(λ1)

)2

, (19)

h2
2 =

(
|D̃11|
2|λ1|

− |D̃12|
2 Re(λ1)

)2

. (20)
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If |D̃11| > 0, the associated eigenvectors are the columns of

A =

(
D̃11D̃12

2λ1 Re(λ1)n
D̃11D̃12

2λ1 Re(λ1)n
|D̃11|D̃12

2|λ1| Re(λ1)n −
|D̃11|D̃12

2|λ1| Re(λ1)n

)
, (21)

where the normalizing constant n ensures that the eigenvectors have unit norms. The Takagi factorization1 of Σ̃(1) is
then

Σ̃(1) = AP diag(h1, h2) PτAτ (22)

where h1 and h2 are positive and P is a diagonal matrix of phase factors that satisfies

P2 = Āτ Σ̃(1)Ā diag(1/h1, 1/h2). (23)

If |D̃11| = 0, then Σ̃(1) is a real symmetric matrix. It can be decomposed in the form of (22) by letting

A = 1/
√

2

(
−1 −1
1 −1

)
(24)

and

P =

(
i 0
0 1

)
. (25)

Now let M = (Re(T1), Im(T1))T(1)AP diag(
√
h1,
√
h2). Note from (12), (13), and (22) that

Σ = MMτ +

O(ε|Σ̃12|) · · · O(ε|Σ̃12|)
...

. . .
...

O(ε|Σ̃12|) · · · O(ε|Σ̃12|)

 . (26)

To obtain a simple equation for the eigenvalues of Σ, we next decompose M into the product of an orthonormal
matrix V and an upper triangular matrix U. This can be done by applying the Gram-Shmidt process. The resulting
first column of V is simply M1/|M1| where M1 is the first column of M. Let Ṽ2 = M2 − Mτ

1M2

Mτ
1M1

M1. The second

column of V is Ṽ2/|Ṽ2|. The matrix U is thus(
|M1| |M1|M

τ
2M1

Mτ
1M1

0 |Ṽ2|

)
. (27)

Now, since columns of V form an orthonormal basis, the eigenvalues of MMτ = VUUτVτ are identical to those
of UUτ . From (26), we can approximate to within O(ε|Σ̃12|) two eigenvalues of Σ as those of MMτ . The trace of
UUτ turns out to be equal to{

h1 + h2 + (h1 − h2) Re(λ̄1D̃11)

|D̃11||λ1|
Re(Tτ

1T1) + (h2 − h1) Im(λ̄1D̃11)

|D̃11||λ1|
Im(Tτ

1T1), for |D̃11| > 0

h1 + h2, otherwise.
(28)

To further simplify this expression, we note that |Σ̃11| ≤ |Σ̃12|. To see this, note that from (13) and (16) it follows
that |Σ̃11|2− |Σ̃12|2 = [(Σ

(1)
12 )2−Σ

(1)
11 Σ

(1)
22 ]/4 ≤ 0. Then from (19) and (20) we can conclude that h1 +h2 = 2|Σ̃12| and

h1 − h2 = −2|Σ̃11|. Thus the trace of UUτ may also be written as
∣∣∣ D̃12

Re(λ1)

∣∣∣+
∣∣∣ D̃11

λ1

∣∣∣ ( Im(λ̄1D̃11)

|D̃11||λ1|
Im(Tτ

1T1)− Re(λ̄1D̃11)

|D̃11||λ1|
Re(Tτ

1T1)
)
, for |D̃11| > 0

| D̃12

Re(λ1) |, otherwise.
(29)

This expression is always O(|D̃12/Re(λ1)|) because |D̃12/(Re(λ1))| is the largest term: It follows from |Σ̃11| ≤ |Σ̃12|
that |D̃12/ Re(λ1)| ≥ |D̃11/λ1| and the coefficient of |D̃11/λ1| is the difference of two terms that are less than one.
From (26) and the fact that the eigenvectors of Σ must be orthogonal, all of the other eigenvalues of Σ must be
O(ε|Σ̃12|).
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Theorem 4. Suppose that the magnitude of the real part of a dominant eigenvalue of F is small such that the
assumptions of either Lemmas 2 or 3 are satisfied. Then as this real part approaches zero, if the assumptions of
Lemma 2 are satisfied, the largest eigenvalue of Σ becomes larger absolutely and larger relative to all of the other
eigenvalues of Σ. Alternatively, if the assumptions of Lemma 3 are satisfied, the sum of the largest two eigenvalues
of Σ becomes larger absolutely and relative to all of the other eigenvalues of Σ.

Theorem 4 follows straightforwardly from Lemmas 2 and 3.
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