Supplementary information

Slight changes in the chemical structure of haemanthamine greatly influence the effect of the derivatives on rumen fermentation in vitro

Eva Ramos-Morales^{1*}, Jamie Tibble-Howlings², Laura Lyons³, Patrick J. Murphy², Radek Braganca², Magnus O. Ogbu² and Charles James Newbold¹

Synthesis of compounds 2-10

Compound 2. (3S,4aS,11bS,12R)-3-methoxy-4,4a-dihydro-3H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl acetate

Pyridine (1.34 mL, 16.6 mmol) and DMAP (10 mg) were added to a solution of haemanthamine 1 (1.00 g, 3.32 mmol) dissolved in dichloromethane (20 mL). The mixture was cooled (0 °C) and acetic anhydride (0.94 mL, 9.96 mmol) was added slowly. The resultant mixture was stirred until complete consumption of starting material. The reaction was washed with NaOH solution (1 M, 3 x 30 mL) and brine (3 x 30 mL), dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified using silica gel flash chromatography (1-5% MeOH in chloroform, gradient elution) to give 2 (1.10 g, 3.20 mmol, 97% yield) as a gum. Rf = 0.48 (10% MeOH in DCM); ¹H NMR (400 MHz, CDCl₃): δ 6.89 (1H, s, CH), 6.46 (1H, s, CH), 6.34 (1H, d, J 10.1 Hz, CH), 6.16 (1H, dd, J 4.6, 10.1 Hz, CH), 5.89 (2H, s, CH₂), 4.96 (1H, dd, J 3.4, 7.0 Hz, CH), 4.35 (1H, d, J 16.8 Hz, CH), 3.83-3.86 (1H, m, CH), 3.73 (1H, d, J 16.8), 3.40 (1H, dd, J7.2, 14.5, CH), 3.53 (3H, s, CH₃), 3.13 (1H, dd, J 3.6, 14.5 Hz, CH), 2.05 (1H, dd, J 4.5, 13.6, CH), 1.97 (3H, s, CH₃), 1.92 (1H, dd, J 5.2, 13.6 Hz, CH); ¹³C NMR (125MHz, CDCl₃): δ 170.2, 146.8, 146.6, 134.4, 129.7, 127.8, 126.5, 106.7, 104.1, 101.0, 80.5, 77.2, 72.6, 63.0, 61.3, 60.7, 56.7, 49.3, 28.5, 21.4 ppm; v_{max} 2932, 2821, 1737, 1483, 1240, 1035, 754 cm⁻¹; MS(CI) 344.2 (100%, [M+H⁺]) 687.3 $(10\%, [2M+H^+]);$ HRMS(ES) found 344.1490, C₁₉H₂₂O₅N ([M+H^+]) requires 344.1492.

Compound 3. (3S,4aS,11bS,12R)-3-methoxy-4,4a-dihydro-3H,6H-11b,5ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl butyrate

Pyridine (1.34 mL, 16.6 mmol) and DMAP (10 mg) were added to a solution of haemanthamine **1** (1.00 g, 3.32 mmol) dissolved in dichloromethane (20 mL). The mixture was cooled (0 °C) and *n*-butanoyl chloride (1.03 mL, 9.96 mmol) was added slowly. The resultant mixture was stirred until complete consumption of starting material. The reaction was washed with NaOH solution (1 M, 3 x 30 mL) and brine (3 x 30 mL), dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified using silica gel flash chromatography (1-5% MeOH in chloroform, gradient elution) to give **3** (1.125 g, 3.03 mmol, 92% yield) as a gum. Rf = 0.53 (10% MeOH in DCM); ¹H NMR (400 MHz, CDCl₃): δ 6.88 (1H, s, CH), 6.44 (1H, s, CH), 6.33 (1H, d,

J 10.1 Hz, CH), 6.12 (1H, dd, *J* 5.0, 10.0 Hz, CH), 5.87 (2H, s, CH₂), 4.96 (1H, dd, *J* 3.5, 7.1 Hz, CH), 4.33 (1H, d, *J* 16.9, CH), 3.83-3.79 (1H, m, CH), 3.69 (1H, d, *J* 16.9 Hz, CH), 3.41-3.53 (1H, m, CH), 3.34 (3H, s, CH₃), 3.28 (1H, dd, *J* 3.5, 14.3 Hz, CH), 2.18 (2H, td, *J* 2.7, 7.4 Hz, CH₂), 2.02 (1H, dd, *J* 4.8, 13.6 Hz, CH), 1.92 (1H, td, *J* 4.2, 13.4 Hz, CH), 1.57 (2H, hextet, *J* 7.39 Hz, CH₂), 0.91 (3H, t, *J* 7.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 172.7, 146.7, 146.5, 134.5, 129.6, 127.9, 126.7, 106.7, 104.0, 101.0, 80.2, 72.7, 62.9, 61.3, 60.8, 56.6, 49.3, 36.5, 28.5, 18.4, 13.8 ppm; *v*_{max} 3020, 2935, 2401, 1730, 1483, 1216, 755 cm⁻¹; MS(CI) 372.2 (100%, [M+H⁺]) 743.4 (15%, [2M+H⁺]); HRMS(ES) found 372.1801, C₂₁H₂₆O₅N ([M+H⁺]) requires 372.1805

Compound 4. (3S,4aS,11bS,12R)-3-methoxy-4,4a-dihydro-3H,6H-11b,5ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl pivalate

Triethylamine (1.39 mL, 9.96 mmol) and DMAP (10 mg) were added to a solution of haemanthamine 1 (1.0 g, 3.32 mmol) in dichloromethane (20 mL). The mixture was cooled (0 °C) and pivaloyl chloride (1.22 mL, 9.96 mmol) was added slowly and allowed to stir until complete consumption of the starting material. The sample was then washed subsequently with 1 M NaOH solution (3 x 30 mL) and brine (3 x 30 mL) then dried (MgSO₄) and evaporated under reduced pressure. The product was then purified using flash column chromatography (1-10% MeOH in chloroform, gradient elution) to give 4 (520 mg, 1.35 mmol, 41% yield) as a gum. Rf = 0.61 (10% MeOH in DCM); 1 H NMR (400 MHz, CDCl₃): δ 6.91 (1H, s, CH), 6.47 (1H, s, CH), 6.35 (1H, d, J 10.1 Hz, CH), 6.15 (1H, dd, J 5.0, 10.0 Hz, CH), 5.89 (2H, s, CH₂), 4.92 (1H, dd, J 3.3, 7.1 Hz, CH), 4.36 (1H, d, J 16.9 Hz, CH), 3.80-3.86 (1H, m, CH), 3.72 (1H, d, J 6.9 Hz, CH), 3.38-3.43 (1H, m, CH), 3.36 (3H, s, CH₃), 3.26 (1H, dd, J 3.3, 14.3 Hz, CH), 2.05 (1H, dd, J 4.5, 13.7 Hz, CH), 1.94 (1H, td, J 4.2, 13.5 Hz, CH), 1.14 (9H, s, 3 x CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 177.5, 146.7, 146.5, 134.4, 129.5, 127.9, 126.6, 106.7, 104.0, 101.0, 79.9, 72.8, 62.9, 61.3, 60.9, 56.6, 53.5, 49.3, 28.4, 27.2 ppm; v_{max} 2930, 1725, 1483, 1156 cm⁻¹; MS(CI) 386.2 (100%, [M+H⁺]); HRMS(ES) found 386.1954, C₂₂H₂₈O₅N ([M+H⁺]) requires 386.1962

Compound 5. (3S,4aS,11bS,12R)-3-methoxy-4,4a-dihydro-3H,6H-11b,5ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl hexanoate

Triethylamine (1.39 mL, 9.96 mmol) and DMAP (10 mg) were added to a solution of haemanthamine **1** (1.0 g, 3.32 mmol) in dichloromethane (20 mL). The mixture was cooled (0 °C) and n-hexanoyl chloride (1.39 mL, 9.96 mmol) was added slowly and allowed to stir until complete consumption of the starting material. The sample was then washed subsequently with 1 M NaOH solution (3 x 30 mL) and brine (3 x 30 mL) then dried (MgSO₄) and evaporated under reduced pressure. The product was then purified using flash column chromatography (1-10% MeOH in chloroform, gradient elution) to give **5** (1.146 g, 3.03 mmol, 91% yield) as a gum. Rf = 0.73 (10% MeOH in DCM); ¹H NMR (400 MHz, CDCl₃): δ 6.89 (1H, s, CH), 6.45 (1H, s, CH), 6.33 (1H, d, *J* 10.1 Hz,CH), 6.13 (1H, dd, *J* 5.0, 10.0 Hz, CH), 5.87 (2H, s, CH₂), 4.96 (1H, dd, *J* 3.5, 7.0

Hz, CH), 4.34 (1H, d, *J* 16.8Hz, CH), 3.79-3.84 (1H, m, CH), 3.70 (1H, d, *J* 16.8 Hz, CH), 3.39 (1H, dd, *J* 7.1, 15.4 Hz, CH), 3.34 (3H, s, CH₃), 3.29 (1H, dd, *J* 3.5, 14.4, CH), 2.19 (2H, td, *J* 2.7, 7.4 Hz, CH₂), 2.03 (1H, dd, *J* 4.3, 13.6 Hz, CH), 2.03 (1H, dd, *J* 4.3, 13.6 Hz, CH), 1.93 (1H, td, *J* 4.2, 12.4 Hz, CH), 1.54 (2H, p, *J* 7.44 Hz, CH₂), 1.22-1.33 (4H, m, 2 x CH₂), 0.88 (3H, t, *J* 6.8Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 172.9, 146.8, 146.6, 134.5, 129.6, 128.0, 126.7, 106.7, 104.1, 101.0, 80.3, 72.7, 62.9, 61.4, 60.8, 56.7, 49.3, 34.6, 31.4, 28.5, 24.7, 22.4, 14.0 ppm; v_{max} 2957, 2871, 1736, 1484, 1240, 1091, 755 cm⁻¹; MS(CI) 400.2 (55%, [M+H⁺]); HRMS(ES) found 400.2115, C₂₃H₃₀O₅N ([M+H⁺]) requires 400.2118

Compound 6. (3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-ol

Under a nitrogen atmosphere, palladium on charcoal (10%, 0.1 g) was added to a solution of haemanthamine **1** (5.00 g, 16.6 mmol) dissolved in dry THF (100 mL). After evacuation, the mixture was stirred at rt under a hydrogen atmosphere for 16 hrs following which the reaction was filtered through a celite pad which was washed with excess THF and the filtrate evaporated under reduced pressure. The residue was purified by flash column chromatography (1-5% MeOH in chloroform, graduated elution) to give dihydrohaemanthamine **6** (3.62 g, 11.9 mmol, 72% yield) as a white crystalline solid. Rf = 0.17 ((10% MeOH in DCM); ¹H NMR (400 MHz, CDCl₃): δ 6.69 (1H, s, CH), 6.39 (1H, s, CH), 5.86 (2H, s, CH₂), 4.26 (1H, d, *J* 16.70 Hz,CH), 4.10-4.04 (1H, m, CH), 3.69 (1H, s, CH), 3.64 (1H, d, *J* 16.71 Hz, CH), 3.35-3.19 (7H, m), 2.34-1.75 (6H, m); ¹³C NMR (125 MHz, CDCl₃): δ 146.3, 145.6, 139.2, 125.7, 105.9, 103.3, 100.5, 82.1, 75.4, 62.8, 62.4, 60.6, 55.4, 45.9, 29.9, 26.7, 22.6 ppm; v_{max} 3028, 2924, 1509, 1228, 1045, 822, 724 cm⁻¹; MS(CI) 304.1 (100%, [M+H⁺]), 607.3 (5%, [2M+H⁺]); HRMS(ES) found 304.1540, C₁₇H₂₂O₅N ([M+H⁺]) requires 304.1543

Compound 7. (3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl acetate

Pyridine (1.34 mL, 16.6 mmol) and DMAP (10 mg) were added to a solution of dihydrohaemanthamine **6** (1.00 g, 3.32 mmol) dissolved in dichloromethane (20 mL). The mixture was cooled (0 °C) and acetic anhydride (0.94 mL, 9.96 mmol) was added slowly. The resultant mixture was stirred until complete consumption of starting material. The reaction was washed with NaOH solution (1 M, 3 x 30 mL) and brine (3 x 30 mL), dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified using silica gel flash chromatography (1-5% MeOH in chloroform, gradient elution) to give **7** (354 mg, 1.02 mmol, 49% yield) as a gum. Rf = 0.44 (10% MeOH in DCM); ¹H NMR (400 MHz, CDCl₃): δ 6.76 (1H, s, CH), 6.56 (1H, s, CH), 5.94 (2H, d, *J* 3.0 Hz, CH₂), 4.81 (1H, dd, *J* 3.6, 7.5 Hz, CH), 4.13 (1H, d, *J* 17.0 Hz, CH), 3.66 (1H, s, CH), 3.61 (1H, d, *J* 17.1 Hz, CH), 3.33 (4H, s, 2 x CH₂), 3.23-3.31 (1H, m, CH), 3.20 (2H, s, CH₂), 2.98 (2H, m, CH₂), 2.19-2.33 (1H, m, CH), 1.79-1.93 (4H, m, 2 x CH₂), 1.53 (1H, td, *J* 1.2, 14.4 Hz, CH); ¹³C NMR (125 MHz, CDCl₃): δ 170.1, 146.7, 146.5,

134.4, 129,5, 127.7, 126.6, 106.7, 104.0, 100.9, 80.5, 72.6, 62.9, 61.3, 60.6, 56.6, 49.3, 28.4, 21.3 ppm; v_{max} 3020, 1216, 756 cm⁻¹; MS(CI) 346.2 (100%, [M+H⁺]), 691.3 (5% [2M+H⁺]); HRMS(ES) found 346.1641, C₁₉H₂₄O₅N ([M+H⁺]) requires 346.1649

Compound 8. (3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl butyrate

Pyridine (1.34 mL, 16.6 mmol) and DMAP (10 mg) were added to a solution of dihydrohaemanthamine 6 (1.00 g, 3.32 mmol) dissolved in dichloromethane (20 mL). The mixture was cooled (0 °C) and *n*-butanoyl chloride (1.03 mL, 9.96 mmol) was added slowly. The resultant mixture was stirred until complete consumption of starting material. The reaction was washed with NaOH solution (1 M, 3 x 30 mL) and brine (3 x 30 mL), dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified using silica gel flash chromatography (1-5% MeOH in chloroform, gradient elution) to give 8 (232 mg, 0.62 mmol, 29% yield) as a gum. Rf = 0.49 (10% MeOH in DCM); ¹H NMR (400 MHz, CDCl₃): δ 6.71 (1H, s, CH), 6.40 (1H, s, CH), 5.86 (2H, s, CH₂), 5.00 (1H, dd, J 3.4, 6.9 Hz, CH), 4.28 (1H, d, J 16.9 Hz, CH), 3.70 (1H, s, CH), 3.65 (1H, d, J 16.8 Hz, CH), 3.37 (1H, dd, J 7.1, 14.3 Hz, CH), 3.27 (3H, s, CH₃), 3.12 (1H, dd, J 3.5, 14.5 Hz, CH), 2.27 (3H, t, J 7.3 Hz, CH₃), 1.80-2.10 (5H, m), 1.56-1.68 (3H, m), 1.24 (1H, t, J 7.1 Hz, CH), 0.94 (3H, t, J 7.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃): § 173.0, 146.7, 146.3, 138.4, 126.3, 106.1, 104.0, 100.9, 82.5, 75.3, 62.8, 61.4, $61.0, 55.8, 45.1, 36.6, 30.4, 26.8, 22.6, 18.5, 13.7; v_{max} 3020, 2401, 1216, 757, 669 \text{ cm}^{-1};$ MS(CI) 374.2 (100%, [M+H⁺]), 747.4 (10%, [2M+H⁺]); HRMS(ES) found 374.1958, $C_{21}H_{28}O_5N$ ([M+H⁺]) requires 374.1962.

Compound 9. (3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl pivalate

Pyridine (1.34 mL, 16.6 mmol) and DMAP (10 mg) were added to a solution of dihydrohaemanthamine **6** (1.00 g, 3.32 mmol) dissolved in dichloromethane (20 mL). The mixture was cooled (0 °C) and pivolyl chloride (1.22 mL, 9.96 mmol) was added slowly. The resultant mixture was stirred until complete consumption of starting material. The reaction was washed with NaOH solution (1 M, 3 x 30 mL) and brine (3 x 30 mL), dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified using silica gel flash chromatography (1-5% MeOH in chloroform, gradient elution) to give **9** (554 mg, 1.31 mmol, 61% yield) as a gum. Rf = 0.51 (10% MeOH in DCM); ¹H NMR (400 MHz, CDCl₃): δ 6.73 (1H, s, CH), 6.41 (1H, s, CH), 5.87 (2H, s, CH₂), 4.88 (1H, dd, *J* 3.2, 6.7 Hz, CH), 4.31 (1H, d, *J* 16.8 Hz, CH), 3.73 (1H, s, CH), 3.67 (1H, d, *J* 15.9 Hz, CH), 3.41 (1H, dd, *J* 7.0, 14.5 Hz, CH), 3.29 (3H, s, CH₃), 3.05 (1H, dd, *J* 3.4, 14.5, CH), 2.32-2.29 (1H, m, CH), 1.98-2.13 (4H, m, 2 x CH₂), 1.57 (1H, t, *J* 13.3 Hz, CH), 1.19 (9H, s, 3 x CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 178.1, 146.8, 146.4, 138.6, 126.3, 106.2, 104.1, 100.9, 83.0, 75.3, 62.9, 62.0, 61.0, 55.9, 45.1, 38.7, 30.4, 27.4, 26.8, 22.5 ppm; ν_{max} 3020, 1216, 760 cm⁻¹; MS(CI) 388.2 (100%, [M+H⁺]),

775.4 (15%, [2M+H⁺]); HRMS(ES) found 388.2113, $C_{22}H_{30}O_5N$ ([M+H⁺]) requires 388.2118.

Compound 10. (3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl hexanoate

Pyridine (1.34 mL, 16.6 mmol) and DMAP (10 mg) were added to a solution of dihydrohaemanthamine 6 (1.00 g, 3.32 mmol) dissolved in dichloromethane (20 mL). The mixture was cooled (0 °C) and n-hexanovl chloride (1.39 mL, 9.96 mmol) was added slowly. The resultant mixture was stirred until complete consumption of starting material. The reaction was washed with NaOH solution (1 M, 3 x 30 mL) and brine (3 x 30 mL), dried (MgSO₄) and evaporated under reduced pressure. The crude product was purified using silica gel flash chromatography (1-5% MeOH in chloroform, gradient elution) to give 10 (711 mg, 1.77 mmol, 83% yield) as a gum. Rf = 0.55 (10% MeOH in DCM); ¹H NMR (400 MHz, CDCl₃): δ 6.72 (1H, s, CH), 6.41 (1H, s, CH), 5.87 (2H, s, CH₂), 5.02 (1H, dd, J 3.4, 7.0 Hz, CH), 4.32 (1H, d, J 16.8, CH), 3.69 (2H, d, J 16.6 Hz, CH₂), 3.30-3.40 (2H, m, CH₂), 3.27 (3H, s, CH₃), 3.20 (1H, dd, J 3.4, 8.5 Hz, CH), 2.15-2.30 (4H, m), 1.81-2.15 (4H, m), 1.57-1.65 (4H, m), 1.24-1.36 (6H, m), 0.88 (3H, t, J 6.9 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 173.2, 146.7, 146.3, 138.5, 126.5, 106.1, 104.0, 100.9, 82.6, 75.4, 62.9, 61.6, 61.1, 55.8, 45.2, 34.7, 31.4, 30.5, 26.8, 24.8, 22.6, 22.4, 14.0 ppm; v_{max} 3020, 2933, 1729, 1482, 1216, 757, 699 cm⁻¹; MS(CI) 402.2 (100%, [M+H⁺]); HRMS(ES) found 402.2266, C₂₃H₃₂O₅N ([M+H⁺]) requires 402.2275

	Dose (g/L)						
	0	0.125	0.25	0.5	1	SED	Р
Haemanthamine							
derivatives							
2	1.44 ^d	1.22 ^{cd}	1.09 ^{bc}	0.871 ^b	0.495 ^a	0.123	<.001
3	1.44 ^b	1.58 ^b	1.32 ^b	0.383 ^a	0.270 ^a	0.154	<.001
4	1.44 ^c	1.34 ^c	0.735 ^b	0.277 ^a	0.280 ^a	0.128	<.001
5	1.44 ^b	1.42 ^b	1.25 ^b	0.653 ^a	0.426 ^a	0.130	<.001
Dihydrohaemanthamine							
derivatives							
6	1.44 ^d	1.17 ^c	1.06 ^c	0.810 ^b	0.363 ^a	0.111	<.001
7	1.44c	1.51c	1.39c	0.958b	0.483a	0.123	<.001
8	1.44 ^c	1.38 ^c	0.942 ^b	0.249 ^a	0.249 ^a	0.117	<.001
9	1.44 ^b	1.19 ^b	0.438 ^a	0.137 ^a	0.201 ^a	0.161	<.001
10	1.44 ^c	0.844 ^b	0.299 ^a	0.279 ^a	0.219 ^a	0.151	<.001

Supplementary Table S1. Effect of dihydrohaemanthamine **6** and derivatives of haemanthamine **1** and dihydrohaemanthamine **6**, added at 0.125, 0.250, 0.5 or 1 g/L, on rumen protozoa activity assessed in vitro as the amount of 14C-labelled bacteria broken down by rumen protozoa (% of the initial radioactivity released per hour)

^{a-d} Means with different superscript differ (n=4)

No	R	Name
1	Н	(3S,4aS,11bS,12R)-3-methoxy-4,4a-dihydro-3H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-ol
2	Ac	(3S,4aS,11bS,12R)-3-methoxy-4,4a-dihydro-3H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl acetate
3	COnPr	(3S,4aS,11bS,12R)-3-methoxy-4,4a-dihydro-3H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl butyrate
4	COtBu	(3S,4aS,11bS,12R)-3-methoxy-4,4a-dihydro-3H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl pivalate
5	COC ₅ H ₁₁	(3S,4aS,11bS,12R)-3-methoxy-4,4a-dihydro-3H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin-12-yl hexanoate

No	R	Name
6	Н	(3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin- 12-ol
7	Ac	(3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin- 12-yl acetate
8	COnPr	(3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin- 12-yl butyrate
9	COtBu	(3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin- 12-yl pivalate
10	COC ₅ H ₁₁	(3R,4aS,11bS,12R)-3-methoxy-2,3,4,4a-tetrahydro-1H,6H-11b,5-ethano[1,3]dioxolo[4,5-j]phenanthridin- 12-yl hexanoate

Suplementary Figure S1. Structure of haemanthamine and dihydrohaemanthamine derivatives.

NMR data for compounds 1-10

Filename:	SI proofs	
Directory:	Н:	
Template:	C:\Users\eramos-	
morales\AppData\I	.ocal\Microsoft\Windows\Temporary Internet	
Files\Content.MSO	\7E4C691B.dotm	
Title:		
Subject:		
Author:	Eva	
Keywords:		
Comments:		
Creation Date:	18/01/2019 12:59:00	
Change Number:	3	
Last Saved On:	18/01/2019 12:59:00	
Last Saved By:	Eva Ramos-Morales	
Total Editing Time:	2 Minutes	
Last Printed On:	18/01/2019 15:31:00	
As of Last Complete Pri	nting	
Number of Pages:	17	
Number of Words:	2,504 (approx.)	
Number of Characters: 14,275 (approx.)		