A framework for tracer-based metabolism in mammalian cells by NMR

Raquel Saborano, Zuhal Eraslan, Jennie Roberts, Farhat L. Khanim, Patricia F. Lalor, Michelle AC Reed, Ulrich L Günther

Supplementary Information

Supplementary Figure 1: Using 1D and TOCSY spectra for tracer-based metabolism.

1D and TOCSY spectra have previously been used to analyse labelled metabolite extracts from cells¹ by Lane and Fan, who also list the metabolites and pathways probed. The use of TOCSY spectra is somewhat limited by overlap. While this can be reduced by decoupling ¹³C in the incremented dimension, we still find this to be a limiting factor. Here, we show some examples where TOCSY spectra can be used. These include lactic acid, threonine, alanine, glutamic acid and glutamine as well as aspartic acid. Panel a shows the region of the ¹H NOESY spectrum with overlapped doublets from threonine H4 and lactic acid H3. Panels b-f show sections from the ¹H,¹H-TOCSY; 1=lactic acid H3,H2; 2=threonine H4,H3; 3=alanine H3,H2; 4=glutamic acid H2,H4; 5=glutamine H2,H4; 6=glutathione H2,H4; 7=gluta* H2,H3; 8=aspartic acid; 9=UDP H5/H6; * denotes ¹H with attached ¹³C. gluta* is glutathione/glutamine/glutamate.

HSQC data for ¹H-¹³C-HSQC spectrum acquired with 16k increments (red) vs 4k increments (blue) with a 25% non-uniformly incremented schedule (NUS). Panel a shows an overview and panel b shows subspectra for glutamic acid. The resulting spectra are virtually indistinguishable; differences are mainly in the noise. NUS spectra were processed using Hybert's² hmsIST module in nmrPipe³.

Supplementary Figure 3:

Multiplet structures expected from typical metabolites after ¹³C-labeling (derived from ⁴). Typically observed scalar coupling constants for metabolites are 46-48 Hz for $CH_X - CH_X$ couplings and 50–60 Hz for CH_X –COOH couplings.

Supplementary Figure 4: Label incorporation in purines and pyrimidines

Supplementary Table 1: Metabolic pathways amenable to tracer-based analyses

Pathway	Label &	Focus	Measurement
Activity of the full Pentose Phosphate Pathway (PPP) vs glycolysis	Experiment [1,2- ¹³ C]glucose; ¹ H, ¹³ C-HSQC	Lactic acid C3/H3 resonance	The ratio of isolated 3- ¹³ C to 2,3- ¹³ C- moiety in lactic acid indicates how active the full PPP is compared with glycolysis [1].
Oxidative vs non- oxidative PPP	[1,2- ¹³ C]glucose; ¹ H, ¹³ C-HSQC	C1 resonances of riboses	A high ratio of singlet to doublet at C1 is indicative of active oxidative PPP [2].
Glycolysis vs glutaminolysis as inputs to the TCA cycle	[U- ¹³ C]glucose (or [1,2- ¹³ C]glucose) and [U- ¹³ C]glutamine (or [3- ¹³ C]glutamine); ¹ H, ¹³ C-HSQC.	TCA cycle intermediates' resonance intensities	Here, the fractional label incorporations into the NMR- observable TCA cycle intermediates (α -ketoglutarate, citrate, fumarate, succinate and malate) and aspartate in samples prepared with labelled glucose and glutamine may be compared [3].
The PC/PDH (pyruvate carboxylase/pyruvate dehydrogenase) ratio	1. [1,2- ¹³ C]glucose; ¹ H/ ¹³ C-HSQC	1.1 The observed coupling constants at the C2 and C3 of aspartate (& malate)	1.1 PDH gives 1,2- & 3,4- ¹³ C- labelled aspartate. These coupling constants are large eg 58Hz. PC gives 2,3- ¹³ C-labelled aspartate. The resulting coupling constant is smaller eg 35Hz. The observed coupling constant will lie between these two values unless there is excellent resolution in the ¹³ C- dimension and its exact values changes as the PC/PDH ratio changes.
		1.2 The ratio of the doublet to singlet resonances for the C2-Asp-derived carbon of the pyrimidine base rings.	1.2 When pyrimidines are synthesized from aspartate, 2,3- ¹³ C labelling in aspartate is transferred to C5-C6 in the pyrimidine base ring. However, 3,4- ¹³ C labelling in aspartate gives rise to an isolated ¹³ C at C6 as the carbon, C4 of aspartate is lost. Therefore, the ratio of the doublet to singlet resonances at C6 gives an indication of the PC/PDH ratio.
	2. [1,2- ¹³ C]glucose; ¹³ C 1D NMR	2. The ratio of doublet to singlet resonance intensities for the carbonate of malonate.	2. PDH gives $1,2^{-13}$ C- & $3,4^{-13}$ C- oxaloacetate. This decarboxylates under reactive oxidative stress (ROS) to give a 50:50 mixture of $1,2^{-13}$ C-malonate and 1^{-13} C- malonate. Three resonances are seen in a ratio 1:2:1 for the carbonate in the ¹³ C spectrum.

			PC gives 2,3- ¹³ C-oxaloacetate. This decarboxylates under ROS to give 1,2- ¹³ C-malonate and so a doublet is seen for the carbonate in the ¹³ C spectrum [4].
Transamination reactions in nucleotide synthesis	[¹⁵ N]glutamine; ¹ H, ¹⁵ N-HSQC optimized for small ¹ H- ¹⁵ N 2-4J couplings of 10- 5Hz.	Resonances in spectra for coupled ¹ H/ ¹⁵ N pairs in purines and pyrimidines	Nitrogens in purine and pyrimidine bases result from transamination reactions using Gln or Glu either directly or indirectly via incorporation of Gly or Asp [5].
γ-glutamyl cycle metabolites	No label; ¹ H, ¹³ C- HSQC.	The C4 resonances of γ-glutamyl cycle intermediates	The C4s of glutamine, glutamic acid, glutathione and pyroglutamic acid are all well-resolved, permitting the identification of changing ratios in response to variables such as drug treatment $[6]^5$.
Creatine production, one carbon metabolism	[U- ¹³ C, ¹⁵ N]L- serine	C2 resonances of glycine, guanidoacetate (GAA) and creatine. C8 and C14 resonances of AXP	2- ¹³ C guanidoacetate is synthesised from arginine and 2- ¹³ C glycine. The produced 2- ¹³ C guanidoacetate is converted to 2- ¹³ C creatine. 8,14- ¹³ C AXP results from the synthesis of N ¹⁰ -formyl-tetrahydrofolate and N ⁵ ,N ¹⁰ -methenyl-tetrahydrofolate where the transferable carbon is ¹³ C- labelled from one-carbon metabolism.

[1] Glycolysis produces 2,3-¹³C-lactic acid and unlabeled lactic acid. The full PPP, followed by subsequent glycolysis reactions, and the action of lactic acid dehydrogenase produces unlabeled, 3-¹³C and 1,3-¹³C labelled pyruvate and lactic acid molecules as the overall reaction is:

 $3 \times 1,2^{-13}C$ -Glu6P $\rightarrow 3 \times$ unlabelled G3P + 1 x 3- ^{13}C -G3P + 1x 1,3- ^{13}C -G3P +3 x ^{13}C -CO₂ where Glu6P is glucose-6-phosphate and G3P is glyceraldehyde-3-phosphate

Thus, when PPP (the oxidative and non-oxidative branch) is upregulated, the intensity ratio of the resonances of lactic acid C3 vs C2 increases, as previously shown by Conti and coworkers⁶.

[2] In oxidative PPP, the C1 of glucose is lost as carbon dioxide, generating C5-riboses for nucleotide synthesis. As a result, $[1,2^{-13}C]$ glucose produces $[1^{-13}C]$ riboses. A high ratio of singlet to doublet at C1 is a clear indication of oxidative PPP.

Further reversible reactions of non-oxidative PPP can spread an isolated label to the C2, C3 and C5 positions. As reductive PPP yields [1,2-¹³C] and [4,5-¹³C]riboses, the presence of the latter can be taken as proof for reductive PPP, although the overall label distribution is complex considering that many reversible reactions are involved.

[3] For example, in K562, an AML cell-line, fractional label incorporation was approximately five-fold higher from $[3-^{13}C]$ glutamine than from $[1,2-^{13}C]$ glucose suggesting that glutamine is a very important anaplerotic substrate in this cell-line⁵.

[4] These approaches to probing PDH vs PC activity were used in our previous work on AML K562 cells. We observed only the doublet for the malonate carbonate in the ¹³C spectrum of the [1,2-

¹³C]glucose-labelled AML cell extract suggesting high PC activity in this cell-line⁷. Furthermore, we observed a shift from PC to PDH as flux time increased.

In recent spectra using the hsqcphprsp sequence we were able to resolve the PDH and PC products separately (Figure 3e&f).

[5] The following coupled spins can potentially be seen in labelled samples and all were seen with [U-¹⁵N]ATP or [U-¹⁵N]UTP samples: In purines: N1/H2*, N3/H2*, N7/H8, N9/H2*, N9/H8

* adenine only

In pyrimidines: N1/H5*, N1/H6, N3/H5*, N3/H6, N1/H1(of ribose)

* cytosine and uracil only

Source of the atoms in nucleotide bases.

Furthermore, all these resonances were seen in ¹H-¹⁵N spectra of cell extracts from TALL cell-lines cultured in ¹⁵N-glutamine-labelled media except N3/H5 in pyrimidines and N7/H8 in purines.

[6] The γ -glutamyl cycle can be analysed without labeling⁵. This can however not be resolved in 1D spectra. The greater resolution of the 2D spectra was essential for following the changing ratios of the γ -glutamyl cycle intermediates.

References

- 1. Lane, A. N. & Fan, T. W.-M. NMR-based Stable Isotope Resolved Metabolomics in systems biochemistry. *Archives of Biochemistry and Biophysics* **628**, 123–131 (2017).
- Hyberts, S. G., Milbradt, A. G., Wagner, A. B., Arthanari, H. & Wagner, G. Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. *J Biomol NMR* 52, 315–327 (2012).
- Delaglio, F. *et al.* NMRPipe: A multidimensional spectral processing system based on UNIX pipes. *J Biomol NMR* 6, 277–293 (1995).
- Szyperski, T. Biosynthetically Directed Fractional ¹³C-labeling of Proteinogenic Amino Acids. *European Journal of Biochemistry* 232, 433–448 (1995).

- Carrigan, J. B. *et al.* Tracer-Based Metabolic NMR-Based Flux Analysis in a Leukaemia Cell Line. *ChemPlusChem* n/a-n/a (2016). doi:10.1002/cplu.201500549
- Miccheli, A. *et al.* Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells. *Biochimie* 88, 437–448 (2006).
- Reed, M. A. C., Ludwig, C., Bunce, C. M., Khanim, F. L. & Günther, U. L. Malonate as a ROS product is associated with pyruvate carboxylase activity in acute myeloid leukaemia cells. *Cancer & Metabolism* 4, (2016).