STAT1 signaling shields T cells from NK cell mediated cytotoxicity

Kang et. al.

Supplementary Figures

Supplementary Fig. 1 *Stat1^{-/-}* T cells do not display defective expansion *in vitro*. WT or *Stat1^{-/-}* unfractionated CD4⁺ T cells were stimulated *in vitro* with anti-CD3 (3µg/ml) and anti-CD28 (1µg/ml) for 3 days and cell proliferation analyzed. Representative flow cytometry plots are shown (gated on live CD4⁺ cells) with mean frequencies \pm SEM. Data are pooled from 3 independent experiments, with each point representing the average across technical replicates in each experiment. *p<0.05 by unpaired two-tailed t-test. Refers to Fig. 4.

Gene Ontology (Post-transfer)

b

alpha-beta T cell differentiation (GO:0046632)

antigen processing and presentation of exogenous peptide antigen via MHC class I (GO:0042590) antigen processing and presentation of endogenous peptide antigen via MHC class I (GO:0019885)

type I interferon signaling pathway (GO:0060337) -

regulation of interferon-gamma-mediated signaling pathway (GO:0060334)

positive regulation of T cell mediated cytotoxicity (GO:0001916)

regulation of MyD88-dependent toll-like receptor signaling pathway (GO:0034124)

interferon-gamma-mediated signaling pathway (GO:0060333) -

protection from natural killer cell mediated cytotoxicity (GO:0042270)

Post-transfer

С

CD4 - APC/Cy7

Supplementary Fig. 2 Downregulation of the MHC-I pathway in *Stat1*^{-/-} T cells post-transfer. *Rag1*^{-/-} mice were injected i.p. with 5 X 10⁶ WT or *Stat1*^{-/-} unfractionated CD4⁺ T cells and analyzed 1 week post transfer. (a) Representative flow cytometry plots of CD4⁺ T cells (spleen + lymph nodes) post-transfer, along with their mean frequencies \pm SEM. Each point represents an individual mouse. (b) Selected Gene ontology terms showing differential expression of the MHC class I pathway in *Stat1*^{-/-} T cells post-transfer. (c) Similar downregulation of various genes involved in MHC class I antigen presentation in *Stat1*^{-/-} T cells compared to WT T cells in the post-transfer setting. (d) Gating strategy for sorting T cells for RNA-seq post transfer. **p<0.01 by two-tailed Mann-Whitney test. Refers to Fig. 5.

а

Supplementary Fig. 3 NK cell depletion does not alter *Stat1*^{-/-} T cell differentiation *in vivo*. (a) anti-NK1.1 depleting antibody effectively removes NK cells. Representative flow cytometry plots of splenic NK cells (NKp46⁺ CD49b⁺) in *Rag1*^{-/-} mice injected with control or NK cell depleting antibody at 3 weeks post transfer, as well as their mean frequencies \pm SEM in both *Rag1*^{-/-} and *ll10rb*^{-/-}*Rag1*^{-/-} mice. (b) Colonic T cells (gated on live CD45⁺ TCRβ⁺ CD4⁺ T cells) from *ll10rb*^{-/-}*Rag1*^{-/-} mice at 3 weeks post transfer were analyzed for their differentiation profile by IL-17A and IFNγ staining. Representative plots are shown along with their mean frequencies \pm SEM. Data pooled from 3 independent experiments, with each point representing an individual mouse. **p<0.01, ***p<0.001, ****p<0.001 by two-tailed Mann-Whitney test. Refers to Fig. 6.

cytometric analyses in (a) Fig. 1, (b) Fig. 3a, (c) Fig. 6a,d and (d) Fig. 7.