Supporting information

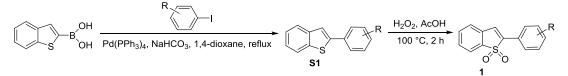
Efficient Synthesis of Chiral 2,3-Dihydro-benzo[b]thiophene 1,1-Dioxides *via* Rh-Catalyzed Hydrogenation

Gongyi Liu,[†] Heng Zhang,[†] Yi Huang,[†] Zhengyu Han,[†] Gang Liu,[†] Yuanhua Liu,[†] Xiu-Qin Dong,^{*†} and Xumu Zhang^{*§,†}

[†] Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.

[§] Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.

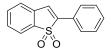
Contents


1.	General remarks	2
2.	General procedure for the synthesis of substrate	2
3.	General procedure for asymmetric hydrogenation	17
4.	General procedure for the high TON experiment	31
5.	General procedure for Job plot	31
6.	General computational calculation (DFT) details	33
7.	Reference	52
8.	NMR spectra	54
9.	HPLC spectra	106

1. General remarks

Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without further purification. Anhydrous solvents were purchased from Sigma-Aldrich, J&K Chemical Technology company, and transferred by syringe. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker ADVANCE III (400 MHz) spectrometer with CDCl₃ as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts are reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl₃ at 7.26 ppm (for ¹H NMR) or 77.0 ppm (for ¹³C NMR). Data are reported as: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz) and signal area integration in natural numbers. ¹³C NMR analyses were run with decoupling. Enantiomeric excess values were determined by Daicel chiral column on an Agilent 1260 Series HPLC instrument. Optical rotations [α]_D were measured on a PERKIN ELMER polarimeter 343 instrucment. Column Chromatography was performed with silica gel (300-400 mesh).

2. General procedure for the synthesis of substrate

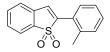

The substrates of aryl-substituted benzothiophene 1,1-dioxides according were synthesized to the method A:

Step $1:^{[1-2]}$ Aromatic iodide (10.00 mmol, 1.0 eq.) was added under argon at r.t. to a solution of Pd(Ph₃P)₄ (58 mg, 0.05 mmol, 0.005 eq.) in dry 1,4-dioxane (50 mL) and stirred for 20 min. After this time saturated NaHCO₃ (aq., 14.0 mL) and commercially available 1-benzothiophene-2-boronic acid (979 mg, 11.0 mmol, 1.1 eq.) were added and the resulting reaction mixture was refluxed overnight. The reaction mixture was then allowed to cool to r.t. and diluted with H₂O (80 mL) and extracted with CH₂Cl₂ (3×60 mL). The combined organic extracts were washed with NaOH (aq. 1 M, 40 mL) and then with brine, dried over $MgSO_4$ and concentrated in vacuo to give a brown crystalline solid that was purified by flash chromatography to give the corresponding product **S1**.

Step 2:^[3] **S1** (1.00 eq.) was suspended in glacial AcOH (concentration ≈ 0.9 M) and H₂O₂ (30% aq. solution, 6.5 eq.) was slowly added. The mixture was heated to 100 °C and, at this temperature, it became a clear solution. Stirring at 100 °C was continued for 3 h and GC-MS analysis showed full conversion. The mixture was allowed to cool to r.t. and partitioned between CH₂Cl₂ and saturated NaHCO₃ (aq. so to bring the pH of the aq. phase to \approx 9), the layers were separated and the aq. phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried over MgSO₄ and concentrated in vacuo to give the crude product that was purified by flash chromatography (silica gel, petroleum ether–EtOAc).

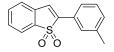
2-phenylbenzo[b]thiophene 1,1-dioxide 1a

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.83 (m, 2H), 7.77 (d, J = 7.6 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.52-7.45 (m, 4H), 7.44-7.40 (m, 1H), 7.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.54, 137.02, 133.76, 131.10, 130.34, 129.91, 129.22, 127.10, 126.52, 125.02, 123.66, 121.48. The characterization data of compound **1a** is in accordance with the reported data in the literature.^[2]


2-(4-methoxyphenyl)benzo[b]thiophene 1,1-dioxide 1b

Yellow crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.79-7.77 (m, 2H), 7.74 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.15 (s, 1H), 7.00-6.97 (m, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.19, 142.23, 136.70, 133.72, 131.53, 129.36, 128.10, 124.66, 121.38, 121.25, 119.54, 114.72, 55.42. The characterization data of compound **1b** is in accordance with the reported data in the literature.^[2]

2-(4-fluorophenyl)benzo[b]thiophene 1,1-dioxide 1c

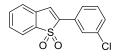

Pale yellow crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.81 (m, 2H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.60-7.56 (m, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.23 (s, 1H), 7.20-7.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.77 (d, *J* = 251.0 Hz), 141.54, 136.76, 133.85, 131.00, 129.97, 128.65 (d, *J* = 9.0 Hz), 125.03, 123.51 (d, *J* = 2.0 Hz), 123.36 (d, *J* = 4.0 Hz), 121.54, 116.52 (d, *J* = 22.0 Hz). The characterization data of compound **1c** is in accordance with the reported data in the literature.^[2]

2-(o-tolyl)benzo[b]thiophene 1,1-dioxide 1d

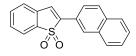
White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.2 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.60-7.56 (m, 1H), 7.53-7.49 (m, 1H), 7.41-7.39 (m, 1H), 7.36-7.27 (m, 3H), 7.04 (s, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.59, 138.06, 136.29, 133.66, 131.06, 130.09, 130.06, 129.47, 128.18, 126.40, 126.19, 125.00, 121.70, 20.67. The characterization data of compound **1d** is in accordance with the reported data in the literature.^[2]

2-(*m*-tolyl)benzo[*b*]thiophene 1,1-dioxide 1e

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.6 Hz, 1H), 7.65-7.62 (m, 2H), 7.58-7.51 (m, 1H), 7.49-7.47 (m, 1H), 7.40-7.34 (m, 2H), 7.27 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.69, 139.02, 137.04, 133.72, 131.22, 129.81, 129.10, 127.00, 124.94, 123.71, 123.50, 121.46, 21.46. The


characterization data of compound **1e** is in accordance with the reported data in the literature.^[2]

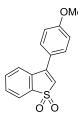
2-(4-(tert-butyl)phenyl)benzo[b]thiophene 1,1-dioxide 1f


White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.75 (m, 3H), 7.59-7.55 (m, 1H), 7.51-7.47 (m, 3H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.25 (s, 1H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.85, 142.60, 136.98, 133.72, 131.37, 129.67, 126.30, 126.26, 124.86, 124.21, 122.64, 121.48, 34.93, 31.09. HRMS calculated for C₁₈H₁₈NaO₂S⁺ [(M+Na)⁺] = 321.0922, found: 321.0919.

2-(3-chlorophenyl)benzo[b]thiophene 1,1-dioxide 1g

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.73 (m, 3H), 7.61-7.57 (m, 1H), 7.57-7.51 (m, 1H), 7.44-7.42 (m, 3H), 7.32 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.24, 136.97, 135.24, 133.89, 130.70, 130.49, 130.37, 130.33, 128.80, 126.46, 125.30, 124.99, 124.66, 121.59. HRMS calculated for C₁₄H₉ClNaO₂S⁺ [(M+Na)⁺] = 298.9907, found: 298.9903.

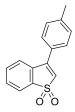
2-(naphthalen-2-yl)benzo[b]thiophene 1,1-dioxide 1h


White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.91-7.80 (m, 6H), 7.68 (s, 1H), 7.54-7.47 (m, 2H), 7.39-7.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.56, 137.08, 133.81, 133.10, 131.24, 129.89, 129.18, 128.97, 127.72, 127.56, 126.96, 126.73, 125.03, 124.24, 123.65, 123.05, 121.52. HRMS calculated for C₁₈H₁₂NaO₂S⁺ [(M+Na)⁺] = 315.0456, found: 315.0450.

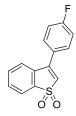
3-phenylbenzo[b]thiophene 1,1-dioxide 1m

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.79 (m, 1H), 7.60-7.48 (m, 8H), 6.65 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.95, 138.08, 133.29, 131.90, 130.99, 130.59, 130.47, 129.16, 127.95, 125.60, 124.28, 121.62. The characterization data of compound **1m** is in accordance with the reported data in the literature.^[2]

3-(4-methoxyphenyl)benzo[b]thiophene 1,1-dioxide 1n


White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.79 (m, 1H), 7.59-7.53 (m, 3H), 7.50-7.47 (m, 2H), 7.05-7.03 (m, 2H), 6.58 (s, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.35, 145.60, 138.24, 133.17, 132.06, 130.44, 129.47, 124.25, 124.22, 123.14, 121.50, 114.55, 55.43. The characterization data of compound **1n** is in accordance with the reported data in the literature.^[2]

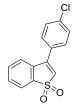
3-(*m*-tolyl)benzo[*b*]thiophene 1,1-dioxide **10**


White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.79 (m, 1H), 7.59-7.55 (m, 2H), 7.53-7.49 (m, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 3H), 6.63 (s, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.12, 139.07, 138.10, 133.26, 132.01, 131.23, 130.94, 130.53, 129.01, 128.51, 125.39, 125.03, 124.34, 121.57, 21.45. The characterization data of compound **10** is in accordance with the reported data in the literature.^[2]

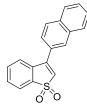
3-(*p*-tolyl)benzo[*b*]thiophene 1,1-dioxide **1p**

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.79 (m, 1H), 7.58-7.56 (m, 2H), 7.53-7.50 (m, 1H), 7.42 (d, J = 7.6 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.62 (s, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.98, 140.86, 138.16, 133.22, 132.03, 130.49, 129.82, 128.06, 127.88, 124.96, 124.29, 121.54, 21.44. The characterization data of compound **1p** is in accordance with the reported data in the literature.^[2]

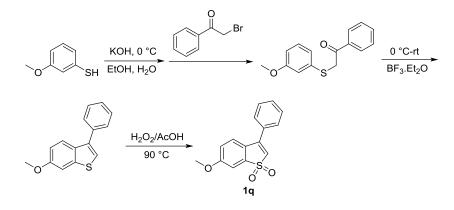
3-(4-fluorophenyl)benzo[b]thiophene 1,1-dioxide 1r


White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.80 (m, 1H), 7.60–7.58 (m, 2H), 7.54-7.46 (m, 2H), 7.47-7.46 (m, 1H), 7.25–7.21 (m, 2H), 6.64 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.91 (d, *J* = 250.0 Hz), 144.91, 138.07, 133.35, 131.74, 130.72, 129.98 (d, *J*= 8.0 Hz), 127.03 (d, *J* = 3.0 Hz), 125.77, 124.06, 121.71, 116.44 (d, *J* = 21.0 Hz). The characterization data of compound **1r** is in accordance with the reported data in the literature.^[2]

3-(3-chlorophenyl)benzo[b]thiophene 1,1-dioxide 1s


White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.81-7.80 (m, 1H), 7.61-7.59 (m, 2H), 7.52-7.40 (m, 5H), 6.68 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 144.51, 137.93, 135.23, 133.44, 132.72, 131.39, 130.83, 130.55, 130.53, 127.97, 126.53, 126.12, 124.03, 121.79. HRMS calculated for C₁₄H₉ClNaO₂S⁺ [(M+Na)⁺] = 298.9907, found: 298.9903.

3-(4-chlorophenyl)benzo[b]thiophene 1,1-dioxide 1t


White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.82-7.80 (m, 1H), 7.60-7.58 (m, 2H), 7.53-7.44 (m, 5H), 6.66 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 144.79, 138.02, 136.68, 133.38, 131.53, 130.78, 129.52, 129.40, 129.28, 126.04, 124.02, 121.76. HRMS calculated for C₁₄H₉ClNaO₂S⁺ [(M+Na)⁺] = 298.9908, found: 298.9903.

3-(naphthalen-2-yl)benzo[b]thiophene 1,1-dioxide 1u

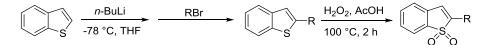
White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.03 (s, 1H), 7.98 (d, J = 4.2 Hz, 1H), 7.93-7.91 (m, 2H), 7.85-7.81 (m, 1H), 7.61-7.55 (m, 6H), 6.74 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 145.97, 138.16, 133.93, 133.30, 132.96, 131.99, 130.60, 129.03, 128.39, 128.34, 127.87, 127.56, 127.11, 125.82, 124.81, 124.37, 121.62. HRMS calculated for C₁₈H₁₂NaO₂S⁺ [(M+Na)⁺] = 315.0455, found: 315.0450.

The synthesis of substrate 6-methoxy-3-phenylbenzo[*b*]thiophene 1,1-dioxide according to the method B:

Step 1:^[4] Methoxybenzenethiol (1.12 g, 8.0 mmol) was added to a round-bottom flask charged with a freshly prepared solution containing 6 mL ethanol, 14 mL water, and KOH (0.51 g, 9.0 mmol). The solution was cooled in an ice-water bath, and a solution of 2-bromo-1-phenylethan-1-one (1.59 g, 8.0 mmol) in 10 mL ethyl acetate was slowly added. The reaction mixture was monitored by TLC until completion. The solvents were evaporated under reduced pressure, and the residue mixture was partitioned between water and ethyl acetate. The combined organic phase was washed Na₂SO₄ brine, dried with and by to give 2-((4-methoxyphenyl)thio)-1-phenylethan-1-one, which was used in the next step without further purification.

Step 2:^[5] BF₃·OEt₂ (70 mL) was slowly added to a flask charged with 2-((4-methoxyphenyl)thio)-1-phenylethan-1-one (2.0 g) under argon atmosphere in an ice bath. The reaction mixture was stirred until starting material was consumed as monitored by TLC. The reaction mixture was poured into saturated NaHCO₃/ice-water, stirred 30 min, and extracted with dichloromethane. The crude product was purified by silica gel chromatography (5% dichloromethane in petroleum ether). The combined fractions from the column were concentrated and recrystallized in ethanol to give pale yellow solid (0.5 g).

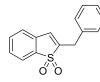
Step 3: 5-methoxy-3-phenylbenzo[*b*]thiophene (1.00 eq.) was suspended in glacial AcOH (concentration ≈ 0.9 M) and H₂O₂ (30% aq. solution, 6.5 eq.) was


slowly added. The mixture was heated to 90 °C and, at this temperature, it became a clear solution. Stirring at 90 °C was continued for 3 h and GC-MS analysis showed full conversion. The mixture was allowed to cool to r.t. and partitioned between CH₂Cl₂ and saturated NaHCO₃ (aq. so to bring the pH of the aq. phase to \approx 9), the layers were separated and the aq. phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried over MgSO₄ and concentrated in vacuo to give the crude product that was purified by flash chromatography (silica gel, petroleum ether–EtOAc).

6-methoxy-3-phenylbenzo[b]thiophene 1,1-dioxide 1q

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.52 (s, 5H), 7.39 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 1.2 Hz, 1H), 7.04-7.01 (m, 1H), 6.54 (s, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 161.93, 146.24, 140.00, 131.32, 130.40, 129.10, 127.89, 125.42, 123.93, 123.82, 118.48, 107.51, 56.05. HRMS calculated for C₁₅H₁₂NaO₃S⁺ [(M+Na)⁺] = 295.0402, found: 295.0399.

The substrates of 2-alkyl-substituted benzothiophene 1,1-dioxides 1i-l according were synthesized to the method C:



Step 1:^[6] To a cold (-78 °C) solution of benzo[*b*]thiophene (2.00 mL, 17.1 mmol, 1.00 eq.) in THF (40 mL) was added *n*-BuLi (1.6 M in hexane, 21.4 mL, 34.3 mmol, 2.00 eq.) dropwise via dropping funnel (over 30 min) under Ar. The dropping funnel was rinsed twice with 5 mL Et₂O. Stirring was continued at -78 °C for 45 min and then the mixture was allowed to slowly warm to r.t. and stirred at this temperature for another 45 min (at r.t. the reaction mixture turned from colorless to yellow). After

this time the reaction mixture was cooled again to -78 °C and bromoalkanes (51.4 mmol, 3.00 eq.) was slowly added *via* dropping funnel. The mixture was stirred for 30 min at -78 °C (formation of a lump of white solid was observed) and then the temperature was slowly raised to 0 °C (vigorous gas evolution and formation of a white suspension). After 20 min of stirring at r.t., an aqueous solution of NaOH (66 mmol in 15 mL of H₂O) was added, the layers were separated and the organic phase was washed with water (10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo* to give a colorless oil that was purified by flash chromatography (silica gel, petroleum ether) to give 2-alkyl benzo[*b*]thiophene as white crystalline solid.

Step 2: 2-alkyl benzo[*b*]thiophene (1.00 eq.) was suspended in glacial AcOH (concentration ≈ 0.9 M) and H₂O₂ (30% aq. solution, 6.5 eq.) was slowly added. The mixture was heated to 100 °C and, at this temperature, it became a clear solution. Stirring at 100 °C was continued for 3 h and after this time GC-MS analysis showed full conversion. The mixture was allowed to cool to r.t. and partitioned between CH₂Cl₂ and NaHCO₃ (aq. sat. so to bring the pH of the aq. phase to \approx 9), the layers were separated and the aq. phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried over MgSO₄ and concentrated in vacuo to give the crude product that was purified by flash chromatography (silica gel, petroleum ether–ethyl acetate).

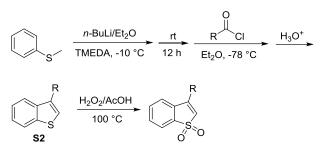
2-benzylbenzo[b]thiophene 1,1-dioxide 1i

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.49-7.31 (m, 7H), 7.19 (d, *J* = 8.0 Hz, 1H), 6.41-6.40 (m, 1H), 3.85 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.21, 136.84, 134.99, 133.63, 131.42, 129.45, 129.41, 128.95, 127.37, 126.31, 124.52, 121.55, 29.61. The characterization data of compound **1i** is in accordance with the reported data in the literature.^[2]

2-ethylbenzo[b]thiophene 1,1-dioxide 1j

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 1H), 7.54-7.50 (m, 1H), 7.45-7.41 (m, 1H), 7.29 (d, J = 7.6 Hz, 1H), 6.76-6.75 (m, 1H), 2.65-2.59 (m, 2H), 1.35 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.71, 136.77, 133.57, 131.61, 129.30, 124.31, 124.27, 121.43, 17.14, 11.14. The characterization data of compound **1j** is in accordance with the reported data in the literature.^[2]

2-propylbenzo[b]thiophene 1,1-dioxide 1k



White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 1H), 7.53-7.49 (m, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 6.76-6.75 (m, 1H), 2.58-2.53 (m, 2H), 1.81-1.74 (m, 2H), 1.05 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.00, 136.57, 133.51, 131.55, 129.25, 125.07, 124.28, 121.27, 25.82, 20.21, 13.61. The characterization data of compound **1k** is in accordance with the reported data in the literature.^[2]

2-butylbenzo[b]thiophene 1,1-dioxide 11

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.2 Hz, 1H), 7.50 (td, J = 7.6 Hz, 1.2Hz, 1H), 7.42 (m, J = 7.6 Hz, 0.8 Hz, 1H), 7.27 (d, J = 5.2 Hz 1H), 6.75 (d, J = 0.8 Hz, 1H), 2.59-2.55 (m, 2H), 1.76-1.68 (m, 2H), 1.50-1.41 (m, 2H), 0.96 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.38, 136.65, 133.54, 131.63, 129.27, 124.89, 124.26, 121.38, 28.83, 23.56, 22.25, 13.67. HRMS calculated for C₁₂H₁₄NaO₂S⁺ [(M+Na)⁺] = 245.0608, found: 245.0606. The synthesis of substrates 3-alkyl-substituted benzothiophene 1,1-dioxides 1v-x according to the method D:

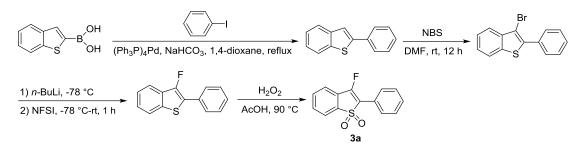
Step 1:^[7] To a vigorously stirred solution of methyl(phenyl)sulfane (2.48 g, 20.0 mmol), anhydrous TMEDA (2.28 g, 22.0 mmol), and anhydrous Et₂O (50 mL) cooled to -10 °C, 2.4 M solution of *n*-BuLi in hexane (60 mL) is gradually added under N₂, and stirring is continued at the room temperature for 12 h. The mixture is then cooled to -78 °C and a solution of the acyl chloride (19.0 mmol) in anhydrous Et₂O (10 mL) is gradually (30 min) added under N₂. The resultant mixture is stirred at -78 °C for 1 h, then allowed to warm to room temperature, stirred for 16 h, and poured into H₂O (50 mL). The pH is adjusted to 4-5 by addition of 10% aqueous HCl. The organic layer is separated, and the aqueous layer extracted with Et₂O (2×50 mL). The organic phases are combined, dried by Na₂SO₄, and concentrated. The crude product was purified by silica gel chromatography to obtain **S2**.

Step 2: S2 (1.00 eq.) was suspended in glacial AcOH (concentration ≈ 0.9 M) and H₂O₂ (30% aq. solution, 6.5 eq.) was slowly added. The mixture was heated to 100 °C and, at this temperature, it became a clear solution. Stirring at 100 °C was continued for 3 h and after this time GC-MS analysis showed full conversion. The mixture was allowed to cool to r.t. and partitioned between CH₂Cl₂ and NaHCO₃ (aq. sat. so to bring the pH of the aq. phase to \approx 9), the layers were separated and the aq. phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried over MgSO₄ and concentrated in vacuo to give the crude product that was purified by flash chromatography (silica gel, petroleum ether–EtOAc).

3-methylbenzo[*b*]thiophene 1,1-dioxide 1v

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.71 (m, 1H), 7.62-7.58 (m, 1H), 7.56-752 (m, 1H), 7.41 (d, J = 7.6 Hz, 1H), 6.48-6.47 (m, 1H), 2.28 (d, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.83, 137.48, 133.45, 133.07, 130.41, 125.71, 122.23, 120.90, 13.84. The characterization data of compound **1v** is in accordance with the reported data in the literature.^[2]

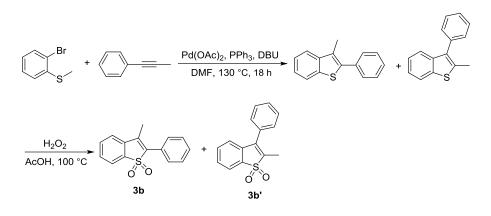
3-ethylbenzo[b]thiophene 1,1-dioxide 1w


White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.72-7.70 (m, 1H), 7.60-7.52 (m, 2H), 7.43-7.41 (m, 1H), 6.45-6.44 (m, 1H), 2.67-2.61 (m, 2H), 1.31 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 148.72, 137.77, 133.39, 132.71, 130.43, 124.04, 122.07, 121.00, 21.15, 10.95. HRMS calculated for C₁₀H₁₀NaO₂S⁺ [(M+Na)⁺] = 217.0294, found: 217.0293.

3-propylbenzo[*b*]thiophene 1,1-dioxide **1x**

White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.72-7.70 (m, 1H), 7.60-7.51 (m, 2H), 7.43-7.41 (m, 1H), 6.44-6.43 (m, 1H), 2.60-2.56 (m, 2H), 1.75-1.70 (m, 2H), 1.07 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.04, 137.72, 133.36, 132.76, 130.40, 124.61, 122.19, 121.03, 29.79, 20.12, 13.82. HRMS calculated for C₁₁H₁₂NaO₂S⁺ [(M+Na)⁺] = 231.0458, found: 231.0450.

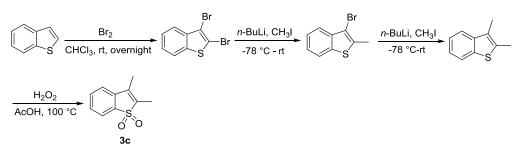
The synthesis of substrate 3-fluoro-2-phenylbenzo[b]thiophene 1,1-dioxide 3a according to the method E:


Step 1: The 2-phenylbenzo[*b*]thiophene was synthesized through the procedure according to the method A.

Step 2:^[8] 2-phenylbenzo[*b*]thiophene (1.00 g, 4.76 mmol, 1.00 eq.), *N*-bromosuccinimide (933 mg, 5.24 mmol, 1.10 eq.), and DMF (10 mL) were combined in a 50 mL round-bottom flask and allowed to stir at room temperature for 12 h. Purification of the crude reaction mixture by filtration through a silica gel plug, eluting with ether, followed by recrystallization of the resulting solid from MeOH, provided 3-bromo-2-phenylbenzo[*b*]thiophene as a pale yellow solid.

Step 3:^[8] 3-bromo-2-phenylbenzo[*b*]thiophene (578 mg, 2 mmol, 1.0 eq.), *n*-BuLi (2.5 M in hexanes, 0.9 mL, 2.2 mmol, 1.10 eq.), NFSI (758 mg, 2.4 mmol, 1.20 eq.), and THF (15 mL) were combined and allowed to stir at room temperature for 1 h. The 3-fluoro-2-phenylbenzo[*b*]thiophene was purified by flash chromatography (340 mg, 74% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.78-7.74 (m, 4H), 7.47-7.34 (m, 5H). The characterization data of compound is in accordance with the reported data in the literature. ^[8]

Step 4: The substrate **3a** was synthesized through oxidation reaction in the method A: White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91-7.89 (m, 2H), 7.83-7.81 (m, 1H), 7.69-7.66 (m, 1H), 7.63-7.59 (m, 2H), 7.53-7.43 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 155.96 (J = 290.0 Hz), 137.50 (J = 3.0 Hz), 133.72, 131.15, 129.96 (J = 2.0 Hz), 129.20, 127.54 (J = 5.0 Hz), 126.86 (J = 28.0 Hz), 124.47 (J = 4.0 Hz), 121.18 (J = 3.0 Hz), 120.81 (J = 6.0 Hz), 120.53. HRMS calculated for C₁₄H₉FNaO₂S⁺ [(M+Na)⁺] = 283.0197, found:281.0199.

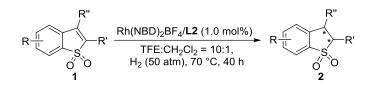

The synthesis of substrate 3-methyl-2-phenylbenzo[b]thiophene 1,1-dioxide 3b:

Step 1:^[9] An oven-dried 50 mL screw-capped vial was charged with (2-bromophenyl)(methyl)sulfane (1.217 g, 6.0 mmol), prop-1-yn-1-ylbenzene (1.043 g, 9.0 mmol), Pd(OAc)₂ (133.89 mg, 0.6 mmol), PPh₃ (480 mg, 1.8 mmol), DBU (2.736 g, 18 mmol), and DMF (18 mL) under a gentle stream of nitrogen. The vessel was then sealed and heated at 130 °C for 18 h. The mixture was cooled to rt and filtered through a short pad of silica gel, eluting with EtOAc.

Step 2: The substrate **3b** was synthesized through oxidation reaction according to the method A: The mixtures of compounds **3b** and **3b'** were recrystallized several times in ethanol to get pure compound **3b**. White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.78 (d, *J* = 7.4 Hz, 1H), 7.66-7.60 (m, 3H), 7.55-7.46 (m, 5H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 137.42, 136.01, 135.38, 133.56, 133.37, 129.91, 129.75, 129.36, 128.97, 127.03, 122.26, 121.04, 12.01. HRMS calculated for C₁₅H₁₃O₂S⁺ [(M+H)⁺] = 257.0635, found: 257.0630.

The synthesis of substrate 2,3-dimethylbenzo[b]thiophene 1,1-dioxide 3c:

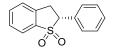
Step 1:^[10] To a stirred solution of of 2,3-benzo[*b*]thiophene (1.01 g, 7.5 mmol, 1.0 eq.) in 20 mL CHCl₃, bromine (0.8 mL, 15 mmol, 2.0 eq.) in 20 mL CHCl₃ was added dropwise at room temperature over 1 h. After stirring for 18 h in the dark, solid


NaHCO₃ was added to neutralize the hydrobromic acid until gas evolution ceased. The organic phase was washed with water and 10% aqueous Na₂S₂O₃ solution, extracted with CHCl₃, and dried over MgSO₄. After evaporation of the solvent, crystallization from methanol gave 2,3-dibromobenzo[*b*]thiophene (2.03 g, 91% yield) as a white solid.

Step 2:^[10] 2,3-dibromobenzo[*b*]thiophene (2.03 g, 7.0 mmol, 1.0 eq.) was dissolved in 10 mL dry degassed THF under argon. The solution was cooled to -78°C before *n*-BuLi (4.8 mL, 7.7 mmol, 1.6 M in hexane, 1.1 eq.) was added, and the mixture was stirred for 30 min before iodomethane (0.5 mL, 7.9 mmol, 1.1 eq.) was added. The mixture was allowed to warm to room temperature, washed with water, extracted with ethyl acetate and dried over MgSO₄. A short column chromatography (silica, petroleum ether 100%) gave the product as white solid.

Step 3:^[11] 3-Bromo-2-methylbenzothiophene (1.0 g, 4.4 mmol) was dissolved in THF (25 mL). 3 mL *n*-BuLi (1.6 M in hexane, 4.8 mmol) was added slowly with stirring at -78 °C. Reaction mixture was stirred for 30 min and then methyl iodide (4.8 mmol) was added. After stirring for 1h, the mixture was warmed to room temperature and stirred for 2 h at room temperature. After completion of reaction, H₂O was added. The mixture was extracted with CH₂Cl₂ (2 x 25 mL), dried over MgSO₄, filtered and the solvents were removed. The residue was purified by chromatography on silica gel to give 2 ,3-dimethylbenzo[*b*]thiophene (642 mg, 90 % yield).

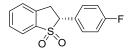
Step 4: The substrate **3c** according was synthesized through oxidation reaction according to the method A: White crystalline solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.72 (d, *J* = 7.4 Hz, 1H), 7.58-7.54 (m, 1H), 7.48-7.44 (m, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 2.14 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 135.90, 134.09, 133.91, 133.47, 129.12, 121.50, 120.90, 10.92, 6.83. HRMS calculated for C₁₀H₁₁O₂S⁺ [(M+H)⁺] = 195.0476, found: 195.0474.


3. General procedure for asymmetric hydrogenation

A stock solution was made by mixing $Rh(NBD)_2BF_4$ with *N*-methylated ZhaoPhos L2 in a 1:1.1 molar ratio in CH_2Cl_2 at room temperature for 40 min in a argon-filled glovebox. An aliquot of the catalyst solution (0.1 mL, 0.001 mmol) was transferred by syringe into the vials charged with different substrates (0.1 mmol for each) in anhydrous CF_3CH_2OH (1.0 mL). The vials were subsequently transferred into an autoclave into which hydrogen gas was then charged. The reaction was then stirred under H_2 (50 atm) at 70°C for 40 h. After completed, the hydrogen gas was released slowly and carefully. The solution was concentrated and passed through a short column of silica gel (eluant: EA) to remove the metal complex. The ee values of all compounds were determined by HPLC analysis on a chiral stationary phase.

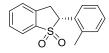
The absolute configurations of products 2a, 2n and 2v were determined by comparison of analytical data with the literatures (optical rotation data). ^[2] The absolute configuration of others was assigned by analogy.

(R)-2-phenyl-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2a

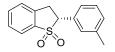


Colorless crystalline solid; >99% conv., 98% yield, 24.0 mg, >99% ee; $[\alpha]_D^{20} =$ -75.0 (c = 0.5, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 54.6 min (major), 74.7 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80 (d, *J* = 8.0 Hz, 1H), 7.64-7.60 (m, 1H), 7.53-7.50 (m, 1H), 7.49-7.42 (m, 6H), 4.68 (t, *J* = 8.4 Hz, 1H), 3.65 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 138.30, 136.30, 133.42, 129.99, 129.39, 129.31, 129.05, 128.97, 127.01, 122.32, 67.33, 32.78. The characterization data of compound **2a** is in accordance with the reported data in the literature.^[2]

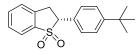
(*R*)-2-(4-methoxyphenyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide **2b**


Colorless crystalline solid; >99% conv., 98% yield, 26.8 mg, 97% ee; $[\alpha]_D^{20} =$ -57.8 (c = 0.6, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 36.6 min (minor), 54.5 min (major). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.79 (d, *J* = 7.7 Hz, 1H), 7.63-7.59 (m, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.41-7.38 (m, 2H), 6.98-6.94 (m, 2H), 4.63 (t, *J* = 8.5 Hz, 1H), 3.83 (s, 3H), 3.61-3.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.39, 138.25, 136.36, 133.34, 130.50, 128.99, 126.97, 122.33, 121.57, 114.40, 66.82, 55.30, 32.82. The characterization data of compound **2b** is in accordance with the reported data in the literature.^[2]

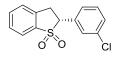
(*R*)-2-(4-fluorophenyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide 2c


Colorless crystalline solid; >99% conv., 99% yield, 25.9 mg, 97% ee; $[\alpha]_D^{20} =$ -57.9 (c = 0.62, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 47.9 min (minor), 55.2 min (major). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80 (d, *J* = 7.7 Hz, 1H), 7.65-7.61 (m, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.48-7.44 (m, 3H), 7.16-7.11 (m, 2H), 4.68-4.64 (m, 1H), 3.69-3.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.35 (d, *J* = 248.0 Hz), 138.10, 136.06, 133.51, 131.12 (d, *J* = 8.0 Hz), 129.16, 127.01, 125.76 (d, *J* = 3.0 Hz), 122.36, 116.07 (d, *J* = 21.0 Hz), 66.54, 32.97. The characterization data of compound **2c** is in accordance with the reported data in the literature.^[2]

(*R*)-2-(*o*-tolyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide 2d


Colorless crystalline solid; >99% conv., 98% yield, 25.3 mg, 97% ee; $[\alpha]_D^{20}$ = -191.8 (c = 0.44, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 30.0 min (minor), 35.0 min (major). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.78 (d, *J* = 7.7 Hz, 1H), 7.64-7.60 (m, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 7.3 Hz, 1H), 7.30-7.22 (m, 3H), 5.06 (t, *J* = 7.9 Hz, 1H), 3.65 (d, *J* = 7.5 Hz, 2H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 138.54, 138.32, 136.69, 133.40, 130.92, 129.04, 129.00, 128.85, 127.84, 126.91, 126.47, 122.29, 62.93, 33.10, 20.24. The characterization data of compound **2d** is in accordance with the reported data in the literature.^[2]

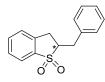
(*R*)-2-(*m*-tolyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide 2e


Colorless crystalline solid; >99% conv., 98% yield, 25.3 mg, 97% ee; $[\alpha]_D^{20}$ = -71.7 (c = 0.67, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 40.4 min (major), 56.9 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80 (d, *J* = 7.7 Hz, 1H), 7.63-7.59 (m, 1H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.28-7.23 (m, 3H), 4.65 (t, *J* = 8.5 Hz, 1H), 3.64 (d, *J* = 8.1 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 138.67, 138.31, 136.33, 133.37, 130.19, 130.04, 129.75, 128.99, 128.82, 126.99, 126.24, 122.28, 67.29, 32.65, 21.41. The characterization data of compound **2e** is in accordance with the reported data in the literature.^[2]

(*R*)-2-(4-(tert-butyl)phenyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide 2f

Colorless crystalline solid; >99% conv., 98% yield, 29.4 mg, 96% ee; $[\alpha]_D^{20} =$ -26.7 (c = 0.80, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 29.1 min (minor), 31.1 min (major). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.79 (d, *J* = 7.6 Hz, 1H), 7.62-7.58 (m, 1H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.47-7.39 (m, 5H), 4.66 (t, *J* = 8.5 Hz, 1H), 3.62 (d, *J* = 8.4 Hz, 2H), 1.33 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 152.42, 138.35, 136.42, 133.34, 129.01, 128.98, 127.00, 126.74, 125.96, 122.30, 67.09, 34.66, 32.78, 31.20. HRMS calculated for C₁₈H₂₀NaO₂S⁺ [(M+Na)⁺] = 323.1078, found: 323.1076.

(R)-2-(3-chlorophenyl)-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2g


Colorless crystalline solid; >99% conv., 98% yield, 27.2 mg, 98% ee; $[\alpha]_D^{20} =$ -58.8 (c = 0.53, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 42.3 min (major), 48.3 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80 (d, *J* = 7.7 Hz, 1H), 7.65-7.61 (m, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.46-7.44 (m, 2H), 7.42-7.36 (m, 3H), 4.64 (t, *J* = 8.0 Hz, 1H), 3.69-3.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 138.04, 135.89, 134.83, 133.60, 132.03, 130.17, 129.59, 129.39, 129.21, 127.56, 127.04, 122.32, 66.67, 32.70. HRMS calculated for C₁₄H₁₁CINaO₂S⁺ [(M+Na)⁺] = 301.0059, found: 301.0060.

(*R*)-2-(naphthalen-2-yl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide **2h**

Colorless crystalline solid; >99% conv., 98% yield, 28.8 mg, 95% ee; $[\alpha]_D^{20} =$ -79.1 (c = 0.67, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralcel OD-H column, hexane: isopropanol = 85:15; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 35.4 min (major), 52.5 min (minor). ¹H NMR (400 MHz,

CDCl₃) δ (ppm) 7.94-7.81 (m, 5H), 7.64 (t, J = 7.1 Hz, 1H), 7.58-7.47 (m, 5H), 4.85 (t, J = 8.4 Hz, 1H), 3.82-3.69 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 138.33, 136.29, 133.57, 133.47, 133.13, 129.23, 129.08, 128.78, 128.08, 127.71, 127.41, 127.04, 126.79, 126.54, 126.03, 122.33, 67.45, 32.78. HRMS calculated for C₁₈H₁₄NaO₂S⁺ [(M+Na)⁺] = 317.0610, found: 317.0606.

(+)-2-benzyl-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2i

Colorless crystalline solid; >99% conv., 98% yield, 25.3 mg, 83% ee; $[\alpha]_D^{20} =$ +27.2 (c = 0.66, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 53.8 min (major), 68.0 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 7.7 Hz, 1H), 7.57-7.53 (m, 1H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.38-7.35 (m, 2H), 7.31-7.27 (m, 4H), 3.77-3.69 (m, 1H), 3.54 (dd, *J* = 14.0, 4.7 Hz 1H), 3.22 (dd, *J* = 16.3, 7.5 Hz 1H), 3.05 (dd, *J* = 16.3, 8.1 Hz, 1H), 2.90 (dd, *J* = 14.0, 10.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 138.85, 136.53, 136.31, 133.41, 128.98, 128.93, 128.79, 127.17, 127.10, 121.93, 62.37, 33.15, 31.83. The characterization data of compound **2i** is in accordance with the reported data in the literature.^[2]

(+)-2-ethyl-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2j

White solid; >99% conv., 99% yield, 19.4 mg, 88% ee; $[\alpha]_D^{20} = +20.0$ (c =0.58, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 28.9 min (major), 65.0 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.74 (d, *J* = 7.7 Hz, 1H), 7.55 (td, *J* = 7.5, 1.0 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.34

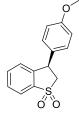
(d, J = 7.7 Hz, 1H), 3.45-3.35 (m, 2H), 3.00-2.93 (m, 1H), 2.23-2.12 (m, 1H), 1.85-1.74 (m, 1H), 1.19 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 139.17, 136.41, 133.26, 128.69, 126.98, 121.79, 62.94, 32.19, 21.08, 11.60. The characterization data of compound **2j** is in accordance with the reported data in the literature.^[2]

(+)-2-propyl-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2k

White solid; >99% conv., 98% yield, 20.6 mg, 92% ee; $[\alpha]_D^{20} = +19.2$ (c =0.5, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 27.2 min (major), 50.6 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz, 1H), 7.58-7.54 (m, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.34 (d, *J* = 7.7 Hz, 1H), 3.51-3.38 (m, 2H), 3.02–2.96 (m, 1H), 2.17-2.08 (m, 1H), 1.78–1.71 (m, 1H), 1.64-1.60 (m, 2H), 1.04 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 139.10, 136.46, 133.22, 128.64, 126.97, 121.74, 61.24, 32.37, 29.48, 20.27, 13.88. The characterization data of compound **2k** is in accordance with the reported data in the literature.^[2]

(+)-2-butyl-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2l

White solid; >99% conv., 98% yield, 22.0 mg, 91% ee; $[\alpha]_D^{20} = +20.8$ (c =0.72, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 30.2 min (major), 47.7 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.74 (d, *J* = 7.7 Hz, 1H), 7.57-7.52 (m, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 7.7 Hz, 1H), 3.46-3.38 (m, 2H), 3.02–2.94 (m, 1H), 2.16-2.10 (m, 1H), 1.76-1.71 (m, 1H), 1.61-1.51 (m, 2H), 1.45-1.39 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, 200 MH

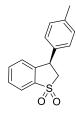

CDCl₃) δ (ppm) 139.14, 136.47, 133.23, 128.66, 126.97, 121.79, 61.57, 32.44, 29.07, 27.20, 22.54, 13.78. HRMS calculated for C₁₂H₁₆NaO₂S⁺ [(M+Na)⁺] = 247.0766, found: 247.0763.

(*R*)-3-phenyl-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide **2m**

Colorless crystalline solid; >99% conv., 99% yield, 24.2 mg, >99% ee; $[\alpha]_D^{20} =$ +9.4 (c = 0.5, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 58.9 min (major), t_R = 39.6 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.82-7.80 (m, 1H), 7.57-7.50 (m, 2H), 7.41-7.32 (m, 3H), 7.26-7.24 (m, 2H), 7.10 (d, *J* = 7.4 Hz, 1H), 4.79 (t, *J* = 7.8 Hz, 1H), 3.93 (dd, *J* = 13.5, 8.0 Hz, 1H), 3.51 (dd, *J* = 13.5, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 141.00, 139.70, 139.02, 133.71, 129.29, 129.11, 128.21, 128.10, 127.21, 121.15, 58.93, 43.96. The characterization data of compound **2m** is in accordance with the reported data in the literature.^[2]

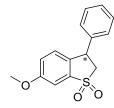
(*R*)-3-(4-methoxyphenyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide **2n**

Colorless crystalline solid; >99% conv., 99% yield, 27.2 mg, >99% ee; $[\alpha]_D^{20}$ = +6.7 (c = 0.7, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 82.7 min (major), t_R = 55.4 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.81-7.78 (m, 1H), 7.56-7.48 (m, 2H), 7.17-7.14 (m, 2H), 7.11-7.10

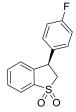

(m, 1H), 6.92-6.88 (m, 2H), 4.75 (t, J = 7.9 Hz, 1H), 3.89 (dd, J = 13.5, 7.9 Hz, 1H), 3.82 (s, 3H), 3.46 (dd, J = 13.5, 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.28, 141.39, 138.97, 133.66, 131.59, 129.28, 129.01, 127.14, 121.08, 114.58, 59.06, 55.31, 43.22. The characterization data of compound **2n** is in accordance with the reported data in the literature.^[2]

(*R*)-3-(*m*-tolyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide **20**

Colorless crystalline solid; >99% conv., 99% yield, 25.6 mg, >99% ee; $[\alpha]_D^{20}$ = +6.26 (c = 0.33 CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 41.4 min (major), t_R = 28.0 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.81-7.79 (m, 1H), 7.56-7.49 (m, 2H), 7.28-7.25 (m, 1H), 7.15 (d, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 7.04-7.02 (m, 2H), 4.75 (t, *J* = 7.9 Hz, 1H), 3.91 (dd, *J* = 13.5, 8.0 Hz, 1H), 3.50 (dd, *J* = 13.5, 7.9 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 141.13, 139.61, 139.11, 138.99, 133.69, 129.14, 129.04, 128.84, 127.23, 125.27, 121.10, 58.94, 43.90, 21.38. The characterization data of compound **20** is in accordance with the reported data in the literature.^[2]

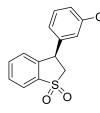

(*R*)-3-(*p*-tolyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide **2p**

Colorless crystalline solid; >99% conv., 99% yield, 25.6 mg, >99% ee; $[\alpha]_D^{20} =$ +8.5 (c = 0.75, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV

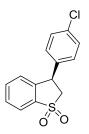

detection at 220 nm; $t_R = 40.3 \text{ min} (\text{major})$, $t_R = 33.9 \text{ min} (\text{minor})$. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80-7.78 (m, 1H), 7.56-7.48 (m, 2H), 7.19 (d, J = 7.9 Hz, 2H), 7.13-7.09 (m, 3H), 4.75 (t, J = 7.9 Hz, 1H), 3.90 (dd, J = 13.5, 7.9 Hz, 1H), 3.48 (dd, J = 13.5, 7.9 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 141.27, 139.01, 137.93, 136.64, 133.66, 129.93, 129.02, 128.07, 127.17, 121.11, 59.02, 43.60, 21.07. The characterization data of compound **2p** is in accordance with the reported data in the literature.^[2]

(-)-6-methoxy-3-phenyl-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2q

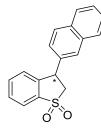
Colorless crystalline solid; >99% conv., 99% yield, 27.1 mg, >99% ee; $[\alpha]_D^{20} =$ -10.56 (c =3.00, CH₃OH); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 36.8 min (minor), t_R = 39.5 min (major). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.39-7.30 (m, 3H), 7.24-7.22 (m, 3H), 7.08 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.98 (d, *J* = 8.6 Hz, 1H), 4.72 (t, *J* = 7.7 Hz, 1H), 3.93 (dd, *J* = 13.5, 8.0 Hz, 1H), 3.87 (s, 3H), 3.50 (dd, *J* = 13.5, 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.31, 140.11, 139.98, 132.74, 129.23, 128.13, 128.07, 128.00, 122.24, 103.37, 59.60, 55.83, 43.22. HRMS calculated for C₁₅H₁₄NaO₃S⁺ [(M+Na)⁺] = 297.0558, found: 297.0555.


(*R*)-3-(4-fluorophenyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide 2r

Colorless crystalline solid; >99% conv., 99% yield, 26.0 mg, >99% ee; $[\alpha]_D^{20} =$


+7.7 (c = 0.7, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 43.8 min (minor), t_R = 63.9 min (major). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.82-7.80 (m, 1H), 7.59-7.51 (m, 2H), 7.24-7.20 (m, 2H), 7.11-7.05 (m, 3H), 4.79 (t, J = 7.7 Hz, 1H), 3.92 (dd, J = 13.5, 8.0 Hz, 1H), 3.46 (dd, J = 13.5, 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 162.35 (d, J = 246.0 Hz), 140.71, 139.03, 135.60 (d, J = 3.0 Hz), 133.81, 129.84 (d, J = 8.0 Hz), 129.27, 127.11, 121.24, 116.25 (d, J = 21.0 Hz), 58.88, 43.23. The characterization data of compound **2r** is in accordance with the reported data in the literature.^[2]

(R)-3-(3-chlorophenyl)-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2s


Colorless crystalline solid; >99% conv., 99% yield, 27.5 mg, >99% ee; $[\alpha]_D^{20}$ = +2.03 (c = 0.59, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 35.5 min (minor), t_R = 61.5 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.83-7.80 (m, 1H), 7.60-7.52 (m, 2H), 7.34-7.30 (m, 2H), 7.25 (d, *J* = 0.8 Hz, 1H), 7.15-7.11 (m, 2H), 4.77 (t, *J* = 7.8 Hz, 1H), 3.92 (dd, *J* = 13.5, 8.1 Hz, 1H), 3.48 (dd, *J* = 13.5, 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 141.81, 140.08, 139.09, 135.13, 133.90, 130.63, 129.43, 128.40, 128.37, 127.15, 126.39, 121.34, 58.62, 43.59. HRMS calculated for C₁₄H₁₁ClNaO₂S⁺ [(M+Na) ⁺] = 301.0063, found: 301.0060.

(*R*)-3-(4-chlorophenyl)-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide 2t

Colorless crystalline solid; >99% conv., 98% yield, 27.2 mg, 94% ee; $[\alpha]_D^{20}$ = +1.60 (c = 0.56, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 54.8 min (minor), t_R = 59.5 min (major). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.81-7.79 (m, 1H), 7.58-7.50 (m, 2H), 7.37-7.33 (m, 2H), 7.20-7.17 (m, 2H), 7.10-7.08 (m, 1H), 4.77 (t, *J* = 7.7 Hz, 1H), 3.91 (dd, *J* = 13.5, 8.1 Hz, 1H), 3.45 (dd, *J* = 13.5, 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 140.37, 139.04, 138.33, 134.06, 133.84, 129.54, 129.48, 129.34, 127.10, 121.28, 58.69, 43.33. HRMS calculated for C₁₄H₁₁ClNaO₂S⁺ [(M+Na)⁺] = 301.0062, found: 301.0060.

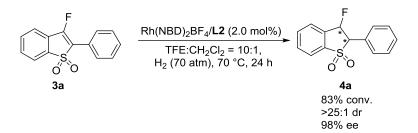
(-)-3-(naphthalen-2-yl)-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2u

Colorless crystalline solid; >99% conv., 99% yield, 29.1 mg, >99% ee; $[\alpha]_D^{20} =$ -49.64 (c = 0.56, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 37.5 min (minor), t_R = 56.2 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.87-7.82 (m, 4H), 7.77 (d, *J* = 1.3 Hz, 1H), 7.55-7.51 (m, 4H), 7.27-7.25 (m, 1H), 7.12-7.10 (m, 1H), 4.96 (t, *J* = 7.9 Hz, 1H), 3.98 (dd, *J* = 13.6, 8.0 Hz, 1H), 3.61 (dd, *J* = 13.6, 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 140.89, 139.12, 136.85, 133.75, 133.31, 132.83, 129.48, 129.19, 127.75, 127.73, 127.70, 127.31, 126.75, 126.51, 125.16, 121.21, 58.75, 44.14. HRMS calculated for C₁₈H₁₄NaO₂S⁺ [(M+Na)⁺] = 317.0609, found: 317.0606.

(*R*)-3-methyl-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide 2v

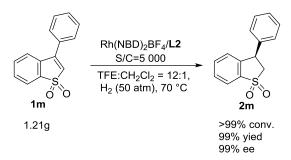
Colorless crystalline solid; >99% conv., 97% yield, 17.7 mg, 97% ee; $[\alpha]_D^{20}$ = +30.7 (c = 0.41, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 26.1 min (major), 27.7 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.73 (d, *J*= 7.8 Hz, 1H), 7.64-7.60 (m, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 3.74-3.65 (m, 2H), 3.17-3.10 (m, 1H), 1.54 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 142.34, 138.63, 133.64, 128.79, 125.52, 121.28, 57.90, 32.57, 19.83. The characterization data of compound **2v** is in accordance with the reported data in the literature.^[2]

(*R*)-3-ethyl-2,3-dihydrobenzo[*b*]thiophene 1,1-dioxide 2w



Colorless crystalline solid; >99% conv., 98% yield, 19.0 mg, 98% ee; $[\alpha]_D^{20}$ = +81.73 (c = 0.46, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 0.3 mL/min; UV detection at 220 nm; t_R = 83.0 min (major), t_R = 87.2 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.72 (d, *J* = 7.8 Hz, 1H), 7.62-7.58 (m, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.43-7.41 (m, 1H), 3.62 (dd, *J* = 13.0, 7.8 Hz, 1H), 3.56-3.50 (m, 1H), 3.20 (dd, *J* = 13.0, 5.3 Hz, 1H), 2.08-2.05 (m, 1H), 1.76-1.74 (m, 1H), 1.04 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 141.17, 138.99, 133.45, 128.89, 125.99, 121.41, 55.47, 39.40, 27.32, 11.55. HRMS calculated for C₁₀H₁₂NaO₂S⁺ [(M+Na)⁺] = 219.0450, found: 219.0450.

(R)-3-propyl-2,3-dihydrobenzo[b]thiophene 1,1-dioxide 2x



Colorless crystalline solid; >99% conv., 98% yield, 20.6 mg, 96% ee; $[\alpha]_D^{20}$ = +36.87 (c = 1.33, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 0.3 mL/min; UV detection at 220 nm; t_R = 69.1 min (major), t_R = 73.2 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.72 (d, *J* = 7.8 Hz, 1H), 7.62-7.58 (m, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.42 (d, *J* = 7.8 Hz, 1H), 3.64-3.56 (m, 2H), 3.22-3.17 (m, 1H), 2.03-1.95 (m, 1H), 1.71-1.63 (m, 1H), 1.50-1.41 (m, 2H), 1.00 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 141.48, 138.85, 133.45, 128.86, 125.98, 121.42, 55.88, 37.80, 36.67, 20.57, 13.85. HRMS calculated for C₁₁H₁₄NaO₂S⁺ [(M+Na)⁺] = 233.0609, found: 233.0606.

Colorless crystalline solid; 83% conv., >25:1 dr, 98% ee; $[\alpha]_D^{20} = +56.00$ (c = 0.35, CHCl₃); The dr value was analyzed by ¹H NMR spectroscopy; The enantiomeric excess was determined by HPLC on Chiralcel OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 35.0 min (major), t_R = 71.3 min (minor). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.93 (d, *J* = 7.5 Hz, 1H), 7.79-7.73 (m, 3H), 7.58-7.55 (m, 2H), 7.50-7.43 (m, 3H), 6.11 (dd, *J* = 53.3, 5.1Hz, 1H), 4.70 (dd, *J* = 24.0, 5.1Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 139.80 (d, *J* = 3.0 Hz), 134.00 (d, *J* = 3.0 Hz), 133.60 (d, *J* = 18.0 Hz), 132.43 (d, *J* = 3.0 Hz), 131.78 (d, *J* = 3.0 Hz), 129.75, 128.72, 128.15, 126.32, 122.45, 87.11 (d, *J* = 190.0 Hz), 69.87 (d, *J* = 20.0 Hz). HRMS calculated for C₁₄H₁₁FNaO₂S⁺ [(M+Na)⁺] = 285.0356, found: 285.0355.

4. General procedure for the high TON experiment

A stock solution was made by mixing $[Rh(NBD)_2]BF_4$ with *N*-methylated ZhaoPhos **L2** in a 1:1.1 molar ratio in CH₂Cl₂ at room temperature for 40 min in a nitrogen-filled glovebox. An aliquot of the catalyst solution (0.001 mmol) was transferred by syringe into a hydrogenated vial charged with **1m** (5.0 mmol, 1.21 g) in anhydrous CF₃CH₂OH :CH₂Cl₂ = 12:1 (8 mL). The cup was subsequently transferred into an autoclave into which hydrogen gas was charged. The reaction was then stirred under H₂ (50 atm) at 70 °C for 120 h. After completed, the hydrogen gas was released slowly and carefully. The product **2m** was obtained by a column of silica gel (petroleum ether–EtOAc).

5. General procedure for Job plot

In order to inspect the possible catalytic model, the experiments for the investigation of the nonlinear effect and ¹H NMR titration were conducted. The asymmetric hydrogenation of substrate **1m** was performed in the presence of ligand **L2** with different ee values (Table S1). As shown in Figure S1, no nonlinear effect was observed in this Rh-catalyzed asymmetric hydrogenation, which displayed that it should be no catalyst self-aggregation or ligand-substrate agglomeration in this catalytic system.

Table S1. Nonlinear effect for Rh/ligand L2-catalyzed asymmetric hydrogenation of 1m.

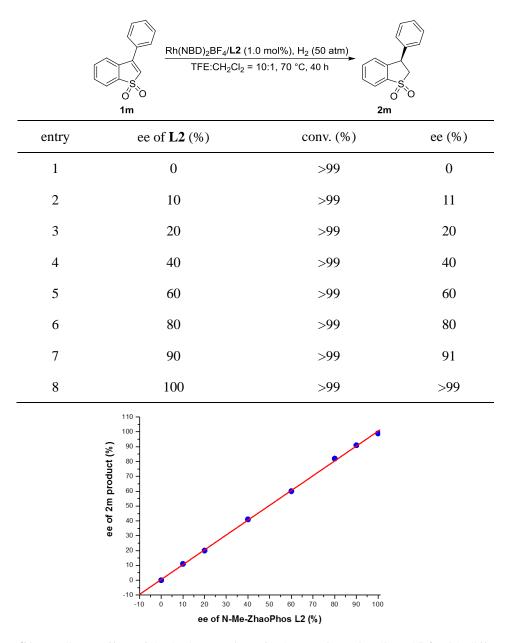


Figure S1. Nonlinear effect of the hydrogenation of substrate 1m using ligand L2 with different ee values

A series of ¹H NMR titration experiments were conducted in chloroform-d, which was dried with potassium carbonate and degassed. The total concentration of the host (**1m**) and the guest (ligand **L2**) was 0.02 M. The proportion of the concentration of the host *vs* the total concentration varied, the chemical shifts of the proton on the 2-position of **1m** were recorded (Table S2). A Job plot was drawn (Figure S2) and the curve suggests a 1:1 binding pattern between ligand **L2** and substrate **1m**.

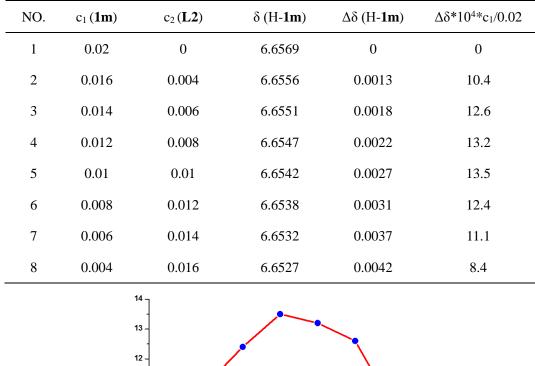
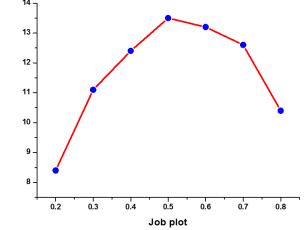
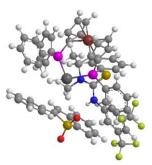


Table S2. Data for Job plot.




Figure S2. Job plot of ligand L2 and 1m, x = c (1m)/[c (ligand L2)+c (1m)], $y = \Delta \delta * 10^4 * c (1m)/[c (ligand L2)+c (1m)]$

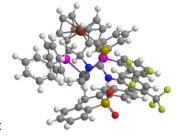
(ligand L2)+c (1m)]

6. General computational calculation (DFT) details

DFT calculations were performed using the M06-L method ^[12] with the Gaussian09 program ^[13]. The 6-31G(d) basis set was used for the C, H, N, O, F, S and P, and the SDD basis set was used for the Rh and Fe. Solvent effect and Grimme's dispersion correction ^[14] were applied during geometry optimization. The parameter of int=ultrafine was used. Mixture of 2,2,2-trifluoroethanol and dichloromethane (10:1) was employed as the solvents. The solvent effects were considered using SMD continuum solvation model ^[15]. Frequency calculations at the same level of theory

have been performed to identify all of the stationary points as minima (zero imaginary frequencies) and to provide free energies at 298.15 K.

Rh(III)HH-**1a**-pro-(*S*) **I**:


Thermal correction to (0.852493					
Sum of electronic and thermal Free Energies= -4887.807460						
Fe	2.42478900	-3.29284100	-0.46493600			
S	-2.37544200	-3.34083100	1.17685000			
Ν	-0.71879400	-1.31952700	1.79913300			
Ν	-2.84536300	-0.67979800	1.31749800			
F	-5.53705100	2.33804900	-1.45188100			
F	-7.11988100	1.02373800	-2.14819800			
F	-7.44382800	2.27296300	-0.41196400			
F	-7.53634000	-2.55549300	2.91741500			
F	-6.88382000	-3.89657400	1.35078400			
F	-8.58921800	-2.59159300	1.01899300			
С	0.49554100	-2.16166100	1.69788600			
С	-1.96880800	-1.73402200	1.44467700			
С	-4.20819800	-0.69686200	0.99626000			
С	-6.01663600	0.41187800	-0.16062100			
С	-6.44170900	-1.59913200	1.06322200			
С	-6.52050300	1.51364800	-1.03853800			
С	-7.36751300	-2.65649400	1.57946100			
С	0.63905200	-2.91215700	0.39735600			
С	0.84556500	-4.32081000	0.29792900			

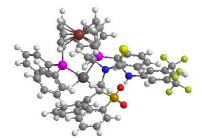
С	1.03949300	-4.66873900	-1.06493700
С	0.95086200	-3.48158800	-1.83797300
С	0.70964300	-2.37537300	-0.95188800
С	3.86182600	-1.92386400	-0.05943900
С	3.87529600	-2.99731700	0.90439300
С	4.10787400	-4.21708600	0.20999500
С	4.22294800	-3.92460000	-1.17938700
С	4.05692800	-2.52205500	-1.35910400
Н	-2.41516600	0.22941900	1.15669800
Н	1.27855200	-5.65653700	-1.44347000
Н	1.10386200	-3.40545700	-2.90916100
Н	3.73179300	-2.88663700	1.97430900
Н	4.12963000	-5.20360100	0.65991200
Н	4.35020100	-4.65010100	-1.97539800
Н	4.08551600	-1.99608600	-2.30744600
С	0.66496000	-3.03749400	2.93133700
Н	0.62358300	-2.42492700	3.83874600
Н	-0.12802700	-3.78963600	2.98464200
Н	1.63526000	-3.54645400	2.91432600
Н	1.30941900	-1.41783000	1.72053400
С	-0.52604700	-0.07928200	2.53926400
Н	-0.26182000	0.76795900	1.88518300
Н	-1.43404600	0.19049800	3.08481800
Н	0.27906100	-0.21997800	3.26849700
Н	0.89349300	-5.00495400	1.13822000
Р	0.61641600	-0.64642400	-1.49618600
Р	3.73328200	-0.15979700	0.34140500
С	1.35413100	-0.69326200	-3.18369900
С	0.62698900	-1.21344700	-4.26466200
С	2.64680200	-0.20996400 35	-3.41988300

С	1.18611100	-1.26096200	-5.53827300
Н	-0.38600500	-1.58429300	-4.11045700
С	3.20771100	-0.25775400	-4.69418600
Н	3.23028300	0.20886400	-2.60070500
С	2.47773500	-0.78390600	-5.75680900
Н	0.60702700	-1.66949300	-6.36375500
Н	4.21494900	0.12347300	-4.85125500
Н	2.91058800	-0.81687500	-6.75435100
С	5.16731900	0.58636400	-0.50949100
С	6.26758700	-0.20425100	-0.87307400
С	5.20855700	1.96636700	-0.75317900
С	7.38033000	0.37724400	-1.47479300
Н	6.25920600	-1.27702200	-0.69087600
С	6.32392800	2.54110200	-1.35350000
Н	4.36304900	2.59221000	-0.47231900
С	7.40974200	1.74775000	-1.71928700
Н	8.22456500	-0.24845700	-1.75549700
Н	6.34030500	3.61255000	-1.54015400
Н	8.27772000	2.19784900	-2.19612000
С	-1.15345000	-0.44162700	-1.92756200
С	-1.58592000	0.78373900	-2.45360800
С	-2.04946600	-1.51595100	-1.87726000
С	-2.88283400	0.91907000	-2.94106500
Н	-0.89458800	1.62841900	-2.50635800
С	-3.35259400	-1.36958900	-2.34754100
Н	-1.73167300	-2.47376600	-1.47038900
С	-3.76707400	-0.15777200	-2.89282400
Н	-3.20679000	1.86923200	-3.36096200
Н	-4.04326800	-2.20969000	-2.28503300
Н	-4.78366100	-0.04487100 36	-3.26565800

С	4.14329500	-0.16577100	2.12460400
С	3.26277800	0.33739800	3.08745500
С	5.34934400	-0.75145800	2.53742600
С	3.56349000	0.22073300	4.44362600
Н	2.34815100	0.84912200	2.78556600
С	5.65681100	-0.84370000	3.88963000
Н	6.04689200	-1.14504900	1.79810700
С	4.75709800	-0.37082000	4.84558000
Н	2.86279400	0.60541200	5.18204100
Н	6.59780400	-1.29381400	4.19779600
Н	4.99309000	-0.45710400	5.90395200
Rh	1.81463300	0.89782600	-0.03977500
Н	2.70665000	1.94566700	0.79395800
Н	2.50620200	1.53102100	-1.24652500
С	-1.36644600	3.96053900	-0.96667000
С	0.00094100	4.02747500	-1.26446500
С	0.20926400	3.63843000	1.07740200
С	0.85375900	3.86545900	-0.09614900
S	-1.56893800	3.59952200	0.75950800
0	-2.24412600	4.67971700	1.48276600
0	-2.09541600	2.23140400	0.92856700
С	-6.91262900	-0.57412500	0.25298500
Н	-7.95482200	-0.53976100	-0.05156300
С	-4.68154200	0.35988700	0.20729400
Н	-3.98804600	1.12193200	-0.13993200
С	-5.10269000	-1.66630300	1.44874300
Н	-4.76129900	-2.46991100	2.09137200
С	-2.35746400	4.12064100	-1.91398500
Н	-3.41111000	4.06708500	-1.64841000
С	-1.95277500	4.35173500 ³⁷	-3.23396100

Н	-2.70409700	4.48968400	-4.00768400
С	-0.59783100	4.39861000	-3.56267400
Н	-0.30362600	4.56817100	-4.59552400
С	0.38852400	4.24051200	-2.58677900
Н	1.44421000	4.28679900	-2.84754400
С	0.71816700	3.51264800	2.42902300
С	-0.10486900	3.07790800	3.48283300
С	2.06260500	3.82574200	2.70801800
С	0.40440200	2.94791900	4.77020600
Н	-1.14788600	2.82750600	3.29571000
С	2.56337400	3.69848600	3.99482400
Н	2.71135100	4.17878300	1.90835600
С	1.73685700	3.25915700	5.03132000
Н	-0.24614700	2.60567200	5.57188700
Н	3.60462900	3.94352500	4.19275300
Н	2.13302200	3.16235000	6.04000400
Н	1.93361300	3.97413600	-0.16895000

Rh(III)HH-**1a**-pro-(*R*) **II**:


Thermal correction to Gibbs Free Energy=).860058
Sum of electronic and thermal Free Energies=			-4887.800670
Fe	2.07779300	-2.57936200	-2.16863700
S	-2.83940600	-3.14830900	-1.01451700
Ν	-1.13541300	-2.07720900	0.77621900
Ν	-3.19818000	-1.13528100	0.75469500
F	-5.68749000	3.08071500	0.28774400

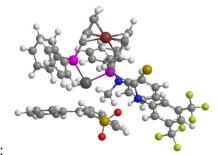
F	-6.90541500	2.48062600	-1.40461200
F	-7.77036500	2.52611500	0.57910700
F	-8.43638700	-2.87969700	1.07338600
F	-7.30997300	-3.77804300	-0.54437300
F	-8.82764600	-2.28138000	-0.97161900
С	0.06670200	-2.71555400	0.19022600
С	-2.37741400	-2.10292800	0.21495100
С	-4.54295000	-0.87847000	0.46690100
С	-6.24880700	0.78964100	0.09237700
С	-6.81460200	-1.53673700	0.01200300
С	-6.64625700	2.21942000	-0.10075700
С	-7.84304900	-2.61790500	-0.11404900
С	0.27130400	-2.47971400	-1.28663600
С	0.28305500	-3.52856000	-2.25715900
С	0.60495200	-2.99071200	-3.52862500
С	0.79698700	-1.59371500	-3.37674300
С	0.60831000	-1.24699700	-1.99148800
С	3.57886400	-2.02752700	-0.95149900
С	3.36396200	-3.45047700	-0.87863700
С	3.54552000	-3.99680900	-2.17904100
С	3.87133800	-2.93287800	-3.06801900
С	3.88696000	-1.71711100	-2.32750300
Н	-2.69937000	-0.31938400	1.11045300
Н	0.74588900	-3.55396400	-4.44454800
Н	1.10744200	-0.90951700	-4.15856600
Н	3.10121700	-4.00298000	0.01660900
Н	3.40501000	-5.03750800	-2.44975100
Н	4.02324300	-3.01890100	-4.13835300
Н	4.09452100	-0.73193000	-2.73100500
С	0.12667000	-4.18785100	0.58030500

Н	0.09754500	-4.29558600	1.67005500
Н	-0.72616200	-4.72850400	0.15839300
Н	1.04922600	-4.65465800	0.22145600
Н	0.88936300	-2.19407500	0.70930900
С	-0.95421100	-1.67479000	2.16499100
Н	-0.49889300	-0.68339100	2.24901200
Н	-1.91254000	-1.66119200	2.68774500
Н	-0.30304300	-2.39987800	2.66786500
Н	0.11346000	-4.57682500	-2.03803600
Р	0.77824100	0.47415700	-1.41141000
Р	3.53161300	-0.87636400	0.44835800
С	1.82550300	1.28160300	-2.69365600
С	1.27720200	1.62283300	-3.94032000
С	3.17265900	1.58416600	-2.45969000
С	2.05388500	2.24225500	-4.91463000
Н	0.23089100	1.40784800	-4.15060900
С	3.95164300	2.20466200	-3.43317100
Н	3.63891100	1.32894400	-1.50950600
С	3.39249900	2.53834900	-4.66354600
Н	1.60685000	2.49786100	-5.87280700
Н	4.99525500	2.42842300	-3.22063800
Н	3.99569200	3.03041500	-5.42336500
С	5.17997700	-0.07932800	0.34803300
С	6.22927500	-0.72036000	-0.32819400
С	5.43310700	1.14888900	0.97505400
С	7.49331800	-0.14005100	-0.38007200
Н	6.06246000	-1.67462400	-0.82345800
С	6.69800800	1.72622800	0.91901200
Н	4.64161900	1.66220600	1.51686300
С	7.72994400	1.08544300 40	0.23767600

Н	8.29381500	-0.64991900	-0.91134100
Н	6.87216500	2.68216200	1.40770100
Н	8.71663900	1.54057100	0.18793200
С	-0.86900200	1.15440900	-1.81883700
С	-1.02733900	2.53683300	-1.96783800
С	-1.97521400	0.31890400	-1.99549900
С	-2.28108800	3.07798700	-2.23415700
Н	-0.16170300	3.19194000	-1.89993600
С	-3.22526100	0.86178500	-2.28287000
Н	-1.86629300	-0.76211400	-1.93292200
С	-3.38745000	2.24209600	-2.38130400
Н	-2.38938200	4.15651900	-2.33812800
Н	-4.07585400	0.19651200	-2.42719100
Н	-4.36967000	2.66354400	-2.58687000
С	3.61570400	-2.00285600	1.88582300
С	2.65636400	-1.93483200	2.90108000
С	4.64065200	-2.95508800	1.97711600
С	2.70108900	-2.81544600	3.97943200
Н	1.86952700	-1.18100100	2.86116000
С	4.69103500	-3.82597400	3.05975700
Н	5.39972300	-3.01737500	1.19743000
С	3.71779700	-3.76262100	4.05800900
Н	1.94176700	-2.75385900	4.75678400
Н	5.49250300	-4.55845200	3.12337200
Н	3.75782900	-4.45037000	4.89974200
Rh	1.83493300	0.74917400	0.80345600
Н	2.88618700	0.66674500	2.00927600
Н	2.83078900	1.69601600	0.17387400
С	-0.39214800	1.50837700	3.52036300
С	0.99821200	1.56872000 41	3.60044100

С	0.71897100	2.67372100	1.44159800
С	1.62517600	2.23353200	2.44297100
S	-0.96848700	2.32081900	2.05376200
0	-1.69719100	1.37446700	1.18973200
0	-1.65536400	3.56647700	2.41623300
С	-7.20328600	-0.20573000	-0.10643000
Н	-8.23063900	0.05170100	-0.35076900
С	-4.93156500	0.46347800	0.38457400
Н	-4.18750900	1.24556600	0.51594100
С	-5.49773900	-1.88384300	0.30344400
Н	-5.21458100	-2.92581300	0.39753900
С	-1.18193500	0.89026900	4.47790100
Н	-2.26538200	0.85724700	4.38181600
С	-0.53218700	0.30954600	5.56611400
Н	-1.11559000	-0.18422400	6.33897300
С	0.86116500	0.36341400	5.67283600
Н	1.35016700	-0.09534900	6.52894600
С	1.63532700	0.98610300	4.69668600
Н	2.72150600	1.00404000	4.77262000
С	0.95562700	3.86819400	0.60089500
С	-0.08926500	4.66602800	0.11029400
С	2.27349200	4.24706000	0.28447000
С	0.17488400	5.78602700	-0.67372100
Н	-1.12191700	4.41452800	0.32956600
С	2.53312100	5.35725000	-0.50724100
Н	3.11461600	3.66080100	0.65363000
С	1.48252300	6.13483400	-0.99451400
Н	-0.65784900	6.38244900	-1.04133800
Н	3.56359000	5.61440300	-0.74322000
Н	1.68491800	7.00366100 42	-1.61667900

Rh(III)HH-**1m**-pro-(*S*) **III**:


Thermal correction to	gy= 0.	.856984	
Sum of electronic and thermal Free Energies=			-4887.806304
Fe	-1.54599200	-3.56938500	0.59663800
S	3.29097800	-2.88152200	-0.63516500
Ν	1.41556100	-1.19075800	-1.58445300
Ν	3.44443700	-0.24485500	-1.17125200
F	5.83109800	3.23665800	1.41969400
F	6.75696800	1.74299800	2.68931100
F	7.95208900	2.79611800	1.22042400
F	8.78870900	-1.09874500	-2.44351600
F	7.73892900	-2.84753100	-1.71084100
F	9.17042300	-1.82013600	-0.43753900
С	0.32259700	-2.18110800	-1.43675700
С	2.69477100	-1.40134300	-1.15900200
С	4.78582500	-0.10197600	-0.79454200
С	6.42820900	1.17204600	0.43340100
С	7.10588400	-0.74740400	-0.83014900
С	6.74126700	2.24403800	1.42845600
С	8.19563200	-1.63248200	-1.35094800
С	0.18995600	-2.80460800	-0.06899100
С	0.33369200	-4.20457700	0.17832500
С	0.02886700	-4.47678600	1.53579000
С	-0.30978600	-3.25058600	2.16308000

С	-0.22358000	-2.19310600	1.18798200
С	-3.16194400	-2.62996800	-0.14458400
С	-2.78217100	-3.72872000	-0.99280200
С	-2.82965200	-4.92438500	-0.22349600
С	-3.23868400	-4.58735900	1.09883400
С	-3.44065000	-3.17977700	1.16064100
Н	2.89397100	0.60163300	-1.03102400
Н	-0.00607900	-5.45642900	1.99954100
Н	-0.64103400	-3.13361300	3.18890500
Н	-2.49975800	-3.64900400	-2.03679300
Н	-2.54875900	-5.91093600	-0.57574800
Н	-3.32649900	-5.27331600	1.93420700
Н	-3.74897500	-2.62141800	2.03776400
С	0.39030900	-3.20977800	-2.56087900
Н	0.33295600	-2.71584100	-3.53680800
Н	1.33113400	-3.76662100	-2.50938000
Н	-0.43807500	-3.92133800	-2.49680300
Н	-0.58094400	-1.56657600	-1.59359800
С	1.10243500	-0.14938400	-2.55791700
Н	0.49470800	0.65440100	-2.12568500
Н	2.01589500	0.28662100	-2.96492700
Н	0.53942800	-0.59217600	-3.38867400
Н	0.59459300	-4.94176100	-0.57265700
Р	-0.61844600	-0.46894800	1.61214400
Р	-3.34255800	-0.89687800	-0.65293600
С	-1.63160800	-0.61205300	3.13954300
С	-1.01201600	-0.88599800	4.36849500
С	-3.02268100	-0.45895300	3.11417700
С	-1.76732300	-1.01164000	5.53051000
Н	0.06973900	-1.00162500 44	4.41814200

С	-3.77956900	-0.58379700	4.27652000
Н	-3.53638200	-0.24602900	2.17805500
С	-3.15249000	-0.86028100	5.48850400
Н	-1.26836100	-1.22537100	6.47319100
Н	-4.85969100	-0.45930900	4.22726300
Н	-3.73989500	-0.95271900	6.39937100
С	-5.05170700	-0.54719100	-0.09591700
С	-6.00103200	-1.58134600	-0.07141800
С	-5.44285500	0.73774700	0.29758400
С	-7.30976600	-1.32530600	0.32379100
Н	-5.71708300	-2.59538000	-0.34752900
С	-6.75213100	0.98944400	0.69828000
Н	-4.72249200	1.55289900	0.29880800
С	-7.68844300	-0.04078800	0.71041000
Н	-8.03352800	-2.13712800	0.33677300
Н	-7.03396200	1.99459300	1.00571800
Н	-8.71073500	0.15371200	1.02737100
С	0.95218700	0.17586700	2.28274500
С	0.94139100	1.37113200	3.01538100
С	2.16208500	-0.49260700	2.07986200
С	2.12742200	1.90441200	3.50727600
Н	-0.00226400	1.87258200	3.23041300
С	3.34702100	0.04014900	2.58429800
Н	2.18659100	-1.43570700	1.53418200
С	3.33581000	1.24452300	3.28372600
Н	2.10693700	2.83391500	4.07249300
Н	4.28456500	-0.49176300	2.42493400
Н	4.26452100	1.66282300	3.66587700
С	-3.40213200	-1.02078200	-2.47827400
С	-2.55702600	-0.23322900 45	-3.26902900

С	-4.28043200	-1.91517100	-3.10598800
С	-2.57313400	-0.34586100	-4.65725900
Н	-1.88444200	0.48903300	-2.80460600
С	-4.30427200	-2.01851200	-4.49240800
Н	-4.94670600	-2.53789200	-2.51046000
С	-3.44672800	-1.23959000	-5.26989600
Н	-1.90410400	0.27158900	-5.25376600
Н	-4.99386000	-2.71265300	-4.96725800
Н	-3.46441400	-1.32843600	-6.35381900
Rh	-1.82541200	0.83678200	-0.05643700
Н	-2.95372500	1.36260200	-1.07714700
Н	-2.79832900	1.21803600	1.04594500
С	0.28684300	3.24546900	-1.78136100
С	-1.10983500	3.24177200	-1.82074000
С	-0.77801900	2.66267200	0.50000700
С	-1.73857800	3.05006900	-0.47857800
Н	-0.89755900	2.93286600	1.54592400
С	-2.95328900	3.83265200	-0.11472300
С	-4.16432400	3.71824200	-0.81028800
С	-2.85790300	4.77896800	0.91417700
С	-5.25011700	4.52252800	-0.48463400
Н	-4.27404200	2.96058700	-1.58633500
С	-3.94748300	5.58133600	1.24301800
Н	-1.91452900	4.90809700	1.44242700
С	-5.14601700	5.45571700	0.54624000
Н	-6.18522700	4.40686900	-1.02862500
Н	-3.85314300	6.31000900	2.04505900
Н	-5.99839200	6.07950200	0.80609000
S	0.86777400	2.98270800	-0.12548600
0	1.77238900	1.82235100 46	-0.12028000

0	1.35013200	4.21788700	0.50383900
С	7.43660500	0.30818700	0.01708100
Н	8.46175200	0.45331500	0.34683700
С	5.11289200	0.98006600	0.02641400
Н	4.32659000	1.64881300	0.36936800
С	5.79422500	-0.95865600	-1.24317700
Н	5.55250400	-1.78198900	-1.90587300
С	1.08078100	3.38250200	-2.91009700
Н	2.16654800	3.36868800	-2.83838900
С	0.43696600	3.52732800	-4.13711300
Н	1.02467400	3.63528600	-5.04504900
С	-0.95873700	3.53649600	-4.20393500
Н	-1.44864800	3.64861900	-5.16816400
С	-1.73799600	3.39981500	-3.05745700
Н	-2.82258700	3.39984200	-3.13563300

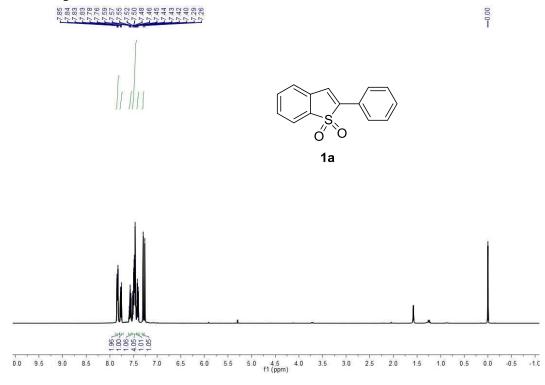
Rh(III)HH- 1m -pro-(<i>R</i>)) IV :	•	
Thermal correction to Gibbs Free Energy= 0.855831			
Sum of electronic and thermal Free Energies=		-4887.790620	
Fe	1.63346300	3.29458000	1.49130300
S	-3.15750800	3.29098400	-0.19192500
Ν	-1.26996100	1.84388300	-1.45788900
Ν	-3.29064200	0.82758800	-1.29871500
F	-5.52707900	-3.30789400	0.12406900
F	-6.99279100	-2.43980500	1.47105700

F	-7.58264100	-3.02817600	-0.52537500
F	-8.74962000	1.89518300	-2.17613400
F	-7.63826600	3.38835800	-1.06275100
F	-8.98742600	2.03369900	-0.02920200
С	-0.15492800	2.70773200	-1.00214900
С	-2.55579100	1.95624600	-1.01370900
С	-4.63324400	0.55742400	-1.01117700
С	-6.25102400	-1.09447600	-0.31224400
С	-6.96512600	1.13115300	-0.83884600
С	-6.57912000	-2.46837100	0.18212800
С	-8.07775100	2.11649400	-1.02282100
С	-0.07366900	2.89755800	0.49142400
С	-0.17167500	4.16220300	1.14715400
С	0.02145500	3.98056600	2.54091200
С	0.24253400	2.59803700	2.77617300
С	0.20172700	1.90215300	1.51766600
С	3.27823100	2.53456500	0.61061400
С	3.05063800	3.89267900	0.18380400
С	3.07178900	4.73043800	1.33309900
С	3.30396200	3.91311800	2.47653500
С	3.42095300	2.56089700	2.04639800
Н	-2.73234000	-0.01918000	-1.40647200
Н	0.06177800	4.76566100	3.28814800
Н	0.47961200	2.14991400	3.73477900
Н	2.88744300	4.21378400	-0.83935100
Н	2.88633600	5.79898700	1.33747000
Н	3.32500800	4.24947800	3.50742700
Н	3.58628200	1.70136300	2.68762200
С	-0.11467100	4.01039000	-1.78959900
Н	-0.07851000	3.80375400 48	-2.86499000

H -1.00522400 4.61190300 -1.58394600 H 0.77468700 4.59427000 -1.52921900 H 0.73699300 2.12562700 -1.28996000 C -0.96300100 1.04068800 -2.63620600 H -0.57491200 0.04398700 -2.38322000 H -0.57491200 0.04398700 -3.23777300 H -0.21430700 1.56699100 -3.23777300 H -0.32897800 5.11146400 0.64669500 P 0.45497800 0.10132800 -0.48064900 C 1.38210600 -0.33945300 2.88878700 C 1.38210600 -0.34842500 4.13517900 C 1.43220800 -0.66888400 5.29671600 H -0.32383900 -0.10562300 4.19863800 C 3.43943500 -0.99894800 4.00827700 H 3.27419800 -0.6608500 6.25185100 H 4.49571500 -1.25424300 3.94311200 H 4.49571500 -1.				
H0.736993002.12562700-1.28996000C-0.963001001.04068800-2.63620600H-0.574912000.04398700-2.38322000H-1.856816000.90886800-3.25028900H-0.214307001.56699100-3.23777300H-0.328978005.111464000.64669500P0.454978000.101328001.35499100C1.38210600-0.339453002.88878700C0.73599800-0.38425004.13517900C2.74025400-0.677073002.84689000C1.43220800-0.668884005.29671600H-0.32383900-0.105623004.19863800C3.43943500-0.998948004.00827700H3.27419800-0.666085006.25185100H0.91119600-0.666085006.25185100H3.32754200-1.25328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.580949000.85723800C7.49625000-1.580949000.69577700H7.936170001.183421001.54689700	Н	-1.00522400	4.61190300	-1.58394600
C -0.96300100 1.04068800 -2.63620600 H -0.57491200 0.04398700 2.38322000 H -1.85681600 0.90886800 -3.25028900 H -0.21430700 1.56699100 -3.2377300 H -0.32897800 5.11146400 0.64669500 P 0.45497800 0.10132800 1.35499100 P 3.40545000 1.09208600 -0.48064900 C 1.38210600 -0.33945300 2.88878700 C 0.73599800 -0.48442500 4.13517900 C 1.43220800 -0.66888400 5.29671600 H -0.32383900 -0.10562300 4.19863800 C 3.43943500 -0.99894800 4.00827700 H 3.27419800 -0.68153400 1.89847900 C 2.78639600 -0.99521500 5.23765600 H 0.91119600 -1.25424300 3.94311200 H 3.32754200 -1.25032800 6.14630200 C 5.01396700 0.3568	Н	0.77468700	4.59427000	-1.52921900
H-0.574912000.04398700-2.38322000H-1.856816000.90886800-3.25028900H-0.214307001.56699100-3.23777300H-0.328978005.111464000.64669500P0.454978000.101328001.35499100P3.405450001.09208600-0.48064900C1.38210600-0.339453002.88878700C0.73599800-0.348425004.13517900C2.74025400-0.677073002.84689000C1.43220800-0.668884005.29671600H-0.32383900-0.105623004.19863800C3.43943500-0.998948004.00827700H3.27419800-0.661534001.89847900C2.78639600-0.995215005.23765600H0.91119600-0.666085006.25185100H4.49571500-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C5.32083600-0.97010000-0.32607200C5.5340600-1.517195000.01665200H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	Н	0.73699300	2.12562700	-1.28996000
H-1.856816000.90886800-3.25028900H-0.214307001.56699100-3.23777300H-0.328978005.111464000.64669500P0.454978000.101328001.35499100P3.405450001.09208600-0.48064900C1.38210600-0.339453002.88878700C0.73599800-0.348425004.13517900C2.74025400-0.677073002.84689000C1.43220800-0.668884005.29671600H-0.32383900-0.105623004.19863800C3.43943500-0.998948004.00827700H3.27419800-0.681534001.89847900C2.78639600-0.995215005.23765600H0.91119600-0.666085006.25185100H3.32754200-1.250328006.14630200C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01652200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700	С	-0.96300100	1.04068800	-2.63620600
H-0.214307001.56699100-3.23777300H-0.328978005.111464000.64669500P0.454978000.101328001.35499100P3.405450001.09208600-0.48064900C1.38210600-0.339453002.88878700C0.73599800-0.348425004.13517900C2.74025400-0.677073002.84689000C1.43220800-0.668884005.29671600H-0.32383900-0.105623004.19863800C3.43943500-0.998948004.00827700H3.27419800-0.681534001.89847900C2.78639600-0.995215005.23765600H0.91119600-1.666085006.25185100H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.32083600-0.97010000-0.32607200C5.230283600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700	Н	-0.57491200	0.04398700	-2.38322000
H-0.328978005.111464000.64669500P0.454978000.101328001.35499100P3.405450001.09208600-0.48064900C1.38210600-0.339453002.88878700C0.73599800-0.348425004.13517900C2.74025400-0.677073002.84689000C1.43220800-0.668884005.29671600H-0.32383900-0.105623004.19863800C3.43943500-0.998948004.00827700H3.27419800-0.6681534001.89847900C2.78639600-0.995215005.23765600H0.91119600-0.666085006.25185100H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.580949000.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	Н	-1.85681600	0.90886800	-3.25028900
P 0.45497800 0.10132800 1.35499100 P 3.40545000 1.09208600 -0.48064900 C 1.38210600 -0.33945300 2.88878700 C 0.73599800 -0.34842500 4.13517900 C 2.74025400 -0.67707300 2.84689000 C 1.43220800 -0.66888400 5.29671600 H -0.32383900 -0.10562300 4.19863800 C 3.43943500 -0.99894800 4.00827700 H 3.27419800 -0.66608500 6.25185100 H 0.91119600 -0.66608500 6.25185100 H 4.49571500 -1.25032800 6.14630200 C 5.01396700 0.35689600 0.00434800 C 5.97382200 1.12713800 0.67725800 C 5.32083600 -0.9701000 -0.32607200 C 5.32083600 -0.9713000 0.03461600 C 5.232083600 -0.9710000 0.32607200 C 7.20516100 0.57434700<	Н	-0.21430700	1.56699100	-3.23777300
P 3.40545000 1.09208600 -0.48064900 C 1.38210600 -0.33945300 2.88878700 C 0.73599800 -0.34842500 4.13517900 C 2.74025400 -0.67707300 2.84689000 C 1.43220800 -0.66888400 5.29671600 H -0.32383900 -0.10562300 4.19863800 C 3.43943500 -0.99894800 4.00827700 H 3.27419800 -0.68153400 1.89847900 C 2.78639600 -0.99521500 5.23765600 H 0.91119600 -0.66608500 6.25185100 H 4.49571500 -1.25424300 3.94311200 H 3.32754200 -1.25032800 6.14630200 C 5.97382200 1.12713800 0.67725800 C 5.32083600 -0.97010000 -0.32607200 C 5.76205000 2.16057700 0.94361600 C 5.5340600 -1.51719500 0.01665200 H 4.59253700 -1.580949	Н	-0.32897800	5.11146400	0.64669500
C 1.38210600 -0.33945300 2.88878700 C 0.73599800 -0.34842500 4.13517900 C 2.74025400 -0.67707300 2.84689000 C 1.43220800 -0.66888400 5.29671600 H -0.32383900 -0.10562300 4.19863800 C 3.43943500 -0.99894800 4.00827700 H 3.27419800 -0.668153400 1.89847900 C 2.78639600 -0.99521500 5.23765600 H 0.91119600 -0.66608500 6.25185100 H 4.49571500 -1.25424300 3.94311200 H 3.32754200 -1.25032800 6.14630200 C 5.97382200 1.12713800 0.67725800 C 5.32083600 -0.97010000 -0.32607200 C 5.32083600 -0.97010000 -0.32607200 C 5.32083600 -1.51719500 0.01665200 H 5.76205000 2.16057700 0.94361600 C 6.55340600 -1.517	Р	0.45497800	0.10132800	1.35499100
C0.73599800-0.348425004.13517900C2.74025400-0.677073002.84689000C1.43220800-0.668884005.29671600H-0.32383900-0.105623004.19863800C3.43943500-0.998948004.00827700H3.27419800-0.681534001.89847900C2.78639600-0.995215005.23765600H0.91119600-0.666085006.25185100H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C5.32083600-0.97010000-0.32607200C5.72542001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	Р	3.40545000	1.09208600	-0.48064900
C2.74025400-0.677073002.84689000C1.43220800-0.668884005.29671600H-0.32383900-0.105623004.19863800C3.43943500-0.998948004.00827700H3.27419800-0.681534001.89847900C2.78639600-0.995215005.23765600H0.91119600-0.666085006.25185100H4.49571500-1.254243003.94311200H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	С	1.38210600	-0.33945300	2.88878700
C 1.43220800 -0.66888400 5.29671600 H -0.32383900 -0.10562300 4.19863800 C 3.43943500 -0.99894800 4.00827700 H 3.27419800 -0.668153400 1.89847900 C 2.78639600 -0.99521500 5.23765600 H 0.91119600 -0.66608500 6.25185100 H 4.49571500 -1.25424300 3.94311200 H 3.32754200 -1.25032800 6.14630200 C 5.01396700 0.35689600 0.00434800 C 5.32083600 -0.97010000 -0.32607200 C 5.32083600 -0.97010000 -0.32607200 C 5.32083600 -0.97010000 -0.32607200 C 5.32083600 -0.97010000 -0.32607200 C 7.20516100 0.57434700 1.01975000 H 5.76205000 2.16057700 0.94361600 C 6.55340600 -1.51719500 0.01665200 H 4.59253700 -1.58	С	0.73599800	-0.34842500	4.13517900
H-0.32383900-0.105623004.19863800C3.43943500-0.998948004.00827700H3.27419800-0.681534001.89847900C2.78639600-0.995215005.23765600H0.91119600-0.666085006.25185100H4.49571500-1.254243003.94311200H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312001.54689700	С	2.74025400	-0.67707300	2.84689000
C3.43943500-0.998948004.00827700H3.27419800-0.681534001.89847900C2.78639600-0.995215005.23765600H0.91119600-0.666085006.25185100H4.49571500-1.254243003.94311200H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	С	1.43220800	-0.66888400	5.29671600
H3.27419800-0.681534001.89847900C2.78639600-0.995215005.23765600H0.91119600-0.666085006.25185100H4.49571500-1.254243003.94311200H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800H7.936170001.183421001.54689700	Н	-0.32383900	-0.10562300	4.19863800
C2.78639600-0.995215005.23765600H0.91119600-0.666085006.25185100H4.49571500-1.254243003.94311200H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	С	3.43943500	-0.99894800	4.00827700
H0.91119600-0.666085006.25185100H4.49571500-1.254243003.94311200H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	Н	3.27419800	-0.68153400	1.89847900
H4.49571500-1.254243003.94311200H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	С	2.78639600	-0.99521500	5.23765600
H3.32754200-1.250328006.14630200C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	Н	0.91119600	-0.66608500	6.25185100
C5.013967000.356896000.00434800C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	Н	4.49571500	-1.25424300	3.94311200
C5.973822001.127138000.67725800C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	Н	3.32754200	-1.25032800	6.14630200
C5.32083600-0.97010000-0.32607200C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	С	5.01396700	0.35689600	0.00434800
C7.205161000.574347001.01975000H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	С	5.97382200	1.12713800	0.67725800
H5.762050002.160577000.94361600C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	С	5.32083600	-0.97010000	-0.32607200
C6.55340600-1.517195000.01665200H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	С	7.20516100	0.57434700	1.01975000
H4.59253700-1.58094900-0.85723800C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	Н	5.76205000	2.16057700	0.94361600
C7.49625000-0.748312000.69577700H7.936170001.183421001.54689700	С	6.55340600	-1.51719500	0.01665200
H 7.93617000 1.18342100 1.54689700	Н	4.59253700	-1.58094900	-0.85723800
	С	7.49625000	-0.74831200	0.69577700
	Н	7.93617000		1.54689700

Н	6.77192000	-2.55082300	-0.24419300
Н	8.45569800	-1.17975300	0.97294100
С	-1.21322300	-0.51382700	1.81211000
С	-1.37145600	-1.84907700	2.19962800
С	-2.32360300	0.33547900	1.84058200
С	-2.61496600	-2.32240200	2.60653200
Н	-0.50979700	-2.51876800	2.20923000
С	-3.56949600	-0.14236400	2.24182600
Н	-2.22243400	1.38355800	1.56616100
С	-3.71941100	-1.47177600	2.62741000
Н	-2.72068900	-3.36069300	2.91687100
Н	-4.42396500	0.53392000	2.25177100
Н	-4.69137400	-1.84508500	2.94394400
С	3.70200600	1.89327900	-2.10025200
С	2.85849800	1.65829400	-3.19006300
С	4.76918100	2.79088100	-2.24323500
С	3.05913100	2.32448300	-4.39720300
Н	2.04736000	0.93566000	-3.10250600
С	4.97916300	3.44177400	-3.45380600
Н	5.43577500	2.98580000	-1.40312000
С	4.11975500	3.21613000	-4.52961900
Н	2.38872500	2.13735400	-5.23339900
Н	5.81461700	4.13077400	-3.55608500
Н	4.28242100	3.73326100	-5.47272600
Rh	1.76048700	-0.47984300	-0.65681600
Н	2.78645400	-0.76269000	-1.84369900
Н	2.70199900	-1.33921300	0.17829500
С	-0.58809400	-3.89395000	-0.31794800
С	0.79686000	-3.91995500	-0.09537300
С	0.75162400	-2.34867500 ⁵⁰	-1.88807200
		50	

С	1.54908900	-3.25300500	-1.18367400
Н	0.96411100	-2.04599000	-2.91061200
С	2.88446100	-3.66302600	-1.62191900
С	3.57463000	-4.72556100	-1.00837800
С	3.48318800	-3.06175900	-2.75077700
С	4.82534700	-5.12745800	-1.46341900
Н	3.12274200	-5.28332900	-0.19753600
С	4.72759700	-3.46523400	-3.20419700
Н	2.97425300	-2.25753500	-3.27523800
С	5.41385700	-4.49288600	-2.55250700
Н	5.33263900	-5.95153100	-0.96796000
Н	5.16579700	-2.97732500	-4.07135800
Н	6.39376800	-4.80559100	-2.90618000
S	-0.96205900	-2.77402600	-1.64097000
0	-1.44194900	-3.43808300	-2.85813400
0	-1.78790600	-1.68451700	-1.09323800
С	-7.27615600	-0.15674400	-0.41162100
Н	-8.29969200	-0.42583500	-0.16164600
С	-4.94055900	-0.74812200	-0.61046400
Н	-4.14091700	-1.47858500	-0.50969000
С	-5.65792300	1.49661100	-1.14871100
Н	-5.43693700	2.50025300	-1.49119500
С	-1.50636900	-4.54107400	0.48690900
Н	-2.57306200	-4.48966500	0.27736800
С	-1.01561000	-5.23939100	1.59162600
Н	-1.70200700	-5.78519800	2.23427500
С	0.34247500	-5.18837100	1.90491200
Н	0.70344500	-5.66920200	2.81035900
С	1.25227100	-4.52607500	1.08012900
Н	2.29429600	-4.45918700 51	1.37884700

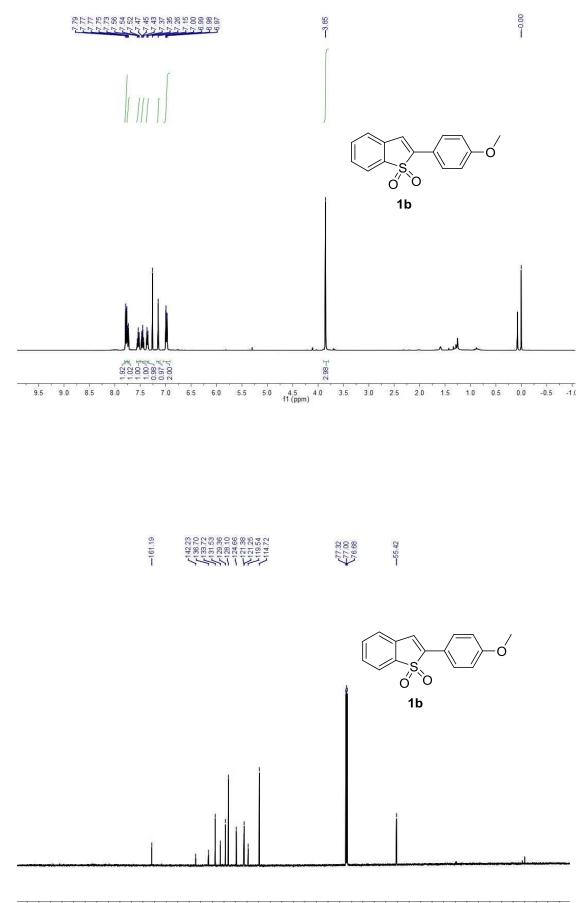

7. Reference

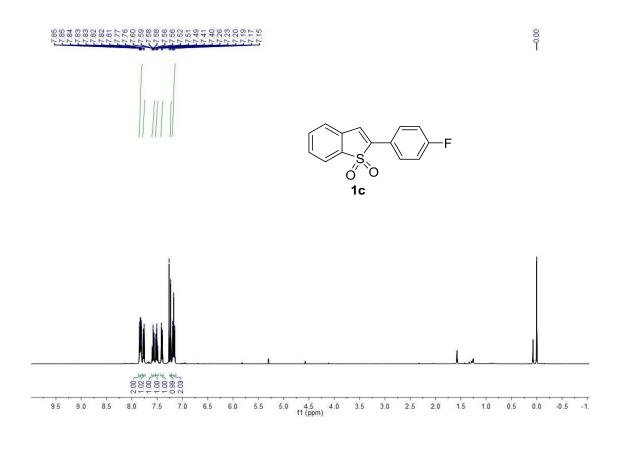
- (1) Kuhn, M.; Falk, F. C.; Paradies, J. Org. Lett. 2011, 13, 4100.
- (2) Tosatti, P.; Pfaltz, A. Angew. Chem. Int. Ed. 2017, 56, 4579.
- (3) Antonow, D.; Marrafa, T.; Dawood, I.; Ahmed, T.; Haque, M. R.; Thurston, D. E.; Zinzalla, G. *Chem. Commun.*, **2010**, *46*, 2289.
- (4) Xiong, R.; Patel, H. K.; Gutgesell, L. M.; Zhao, J.; Delgado-Rivera, L.; Pham, T. N. D.; Zhao, H.; Carlson, K.; Martin, T.; Katzenellenbogen, J. A.; Moore, T. W.; Tonetti, D. A.; Thatcher, G. R. J. *J. Med. Chem.* 2016, *59*, 219.
- (5) Kim, S.; Yang, J.; Dininno, F. Tetrahedron Lett. 1999, 40, 2909.
- (6) Urban, S.; Beiring, B.; Ortega, N.; Paul, D.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 15241.
- (7) Cabiddu, S.; Cancellu, D.; Floris, G.; Gelli, G.; Melis, S. Synthesis 1988, 888.
- (8) Milner, P. J.; Yang, Y.; Buchwald, S. L. Organometallics 2015, 34, 4775.
- (9) Masuya, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2016, 18, 4312.
- (10) Fredrich, S.; A.; Bonasera, V.; Valderrey, Hecht, S. J. Am. Chem. Soc. 2018, 140, 6432.
- (11) Jeong, Y.-C.; Park, D. G.; Kim, E.; Yang, S. I.; Ahn, K.-H. *Macromolecules* 2006, 39, 3106.
- (12) Zhao, Y.; Truhlar, D. G. J. Chem. Phys., 2006, 125, 194101.
- (13) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;

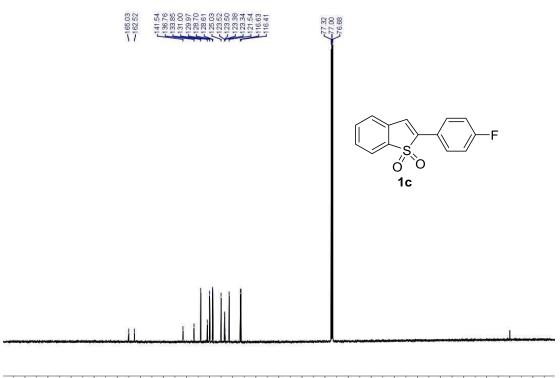
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, 2013.

- (14) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
- (15) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.

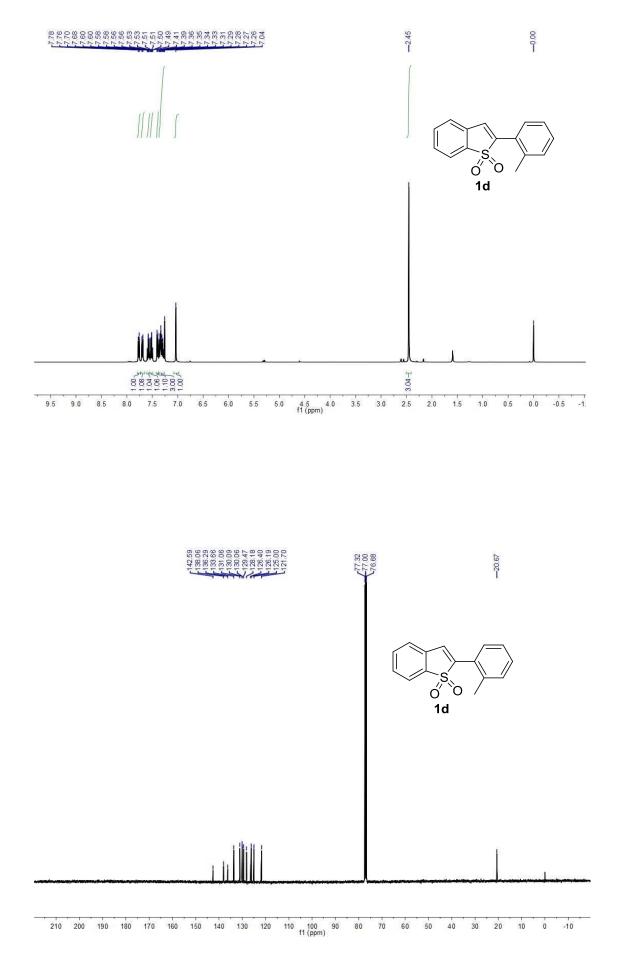
8. NMR spectra

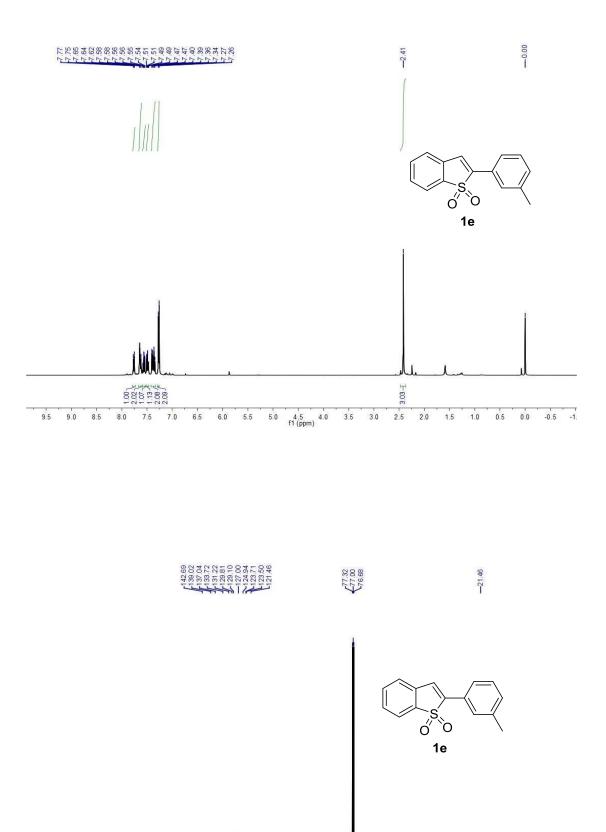


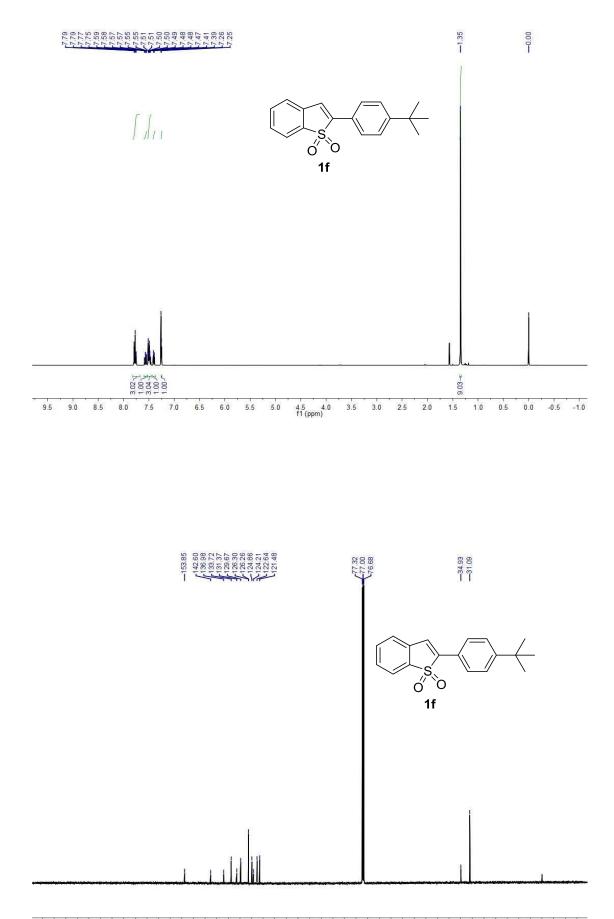

₹77.32 ₹77.00 76.68

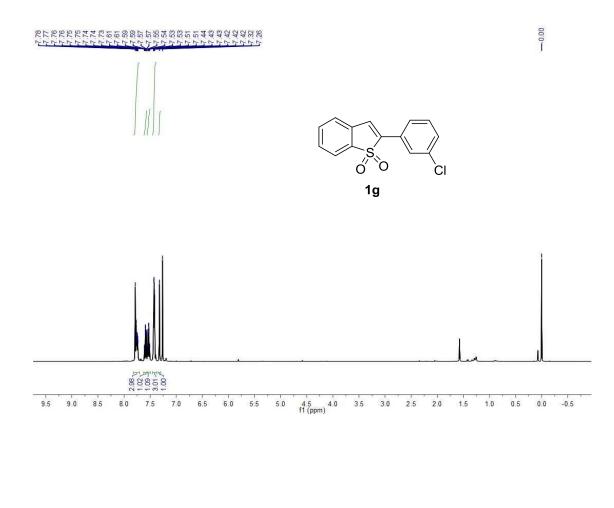


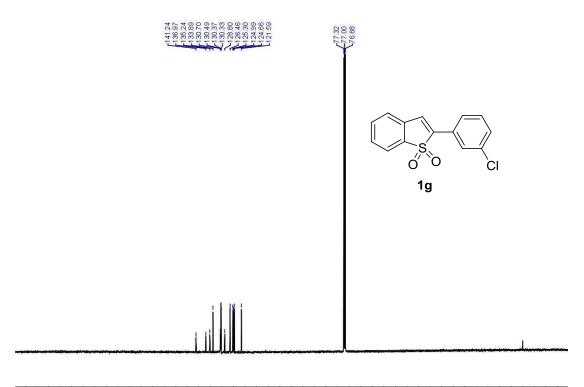
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)



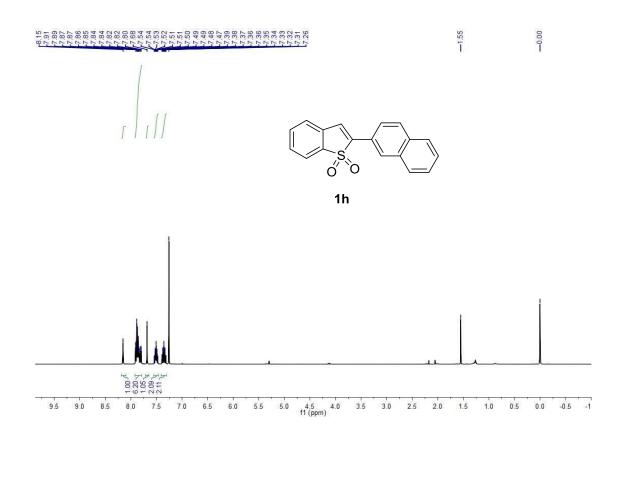

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

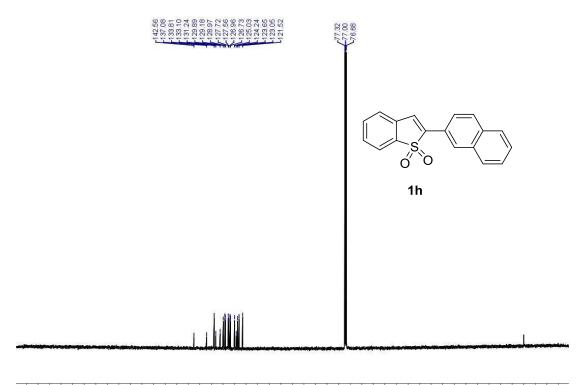

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

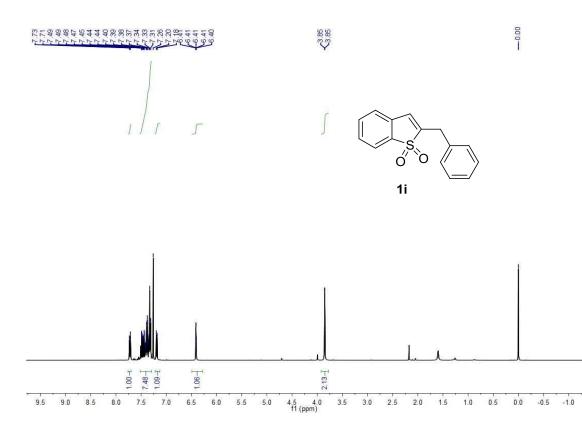




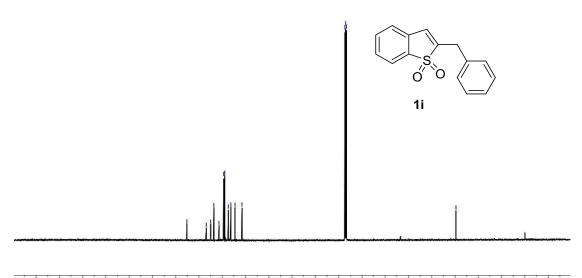
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)



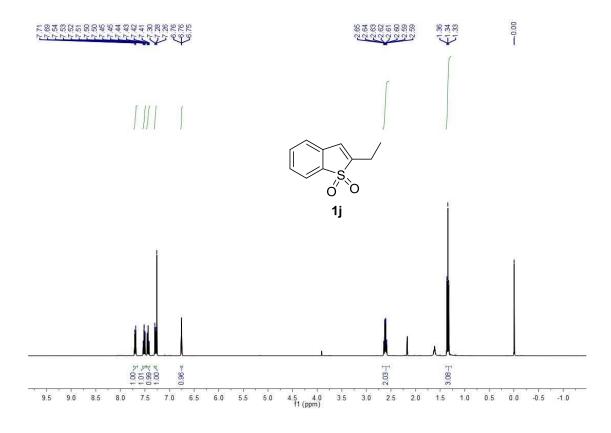

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

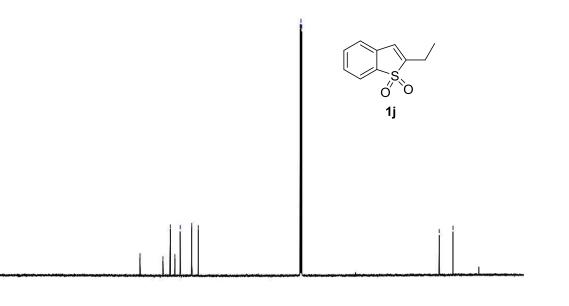


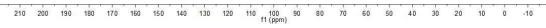
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

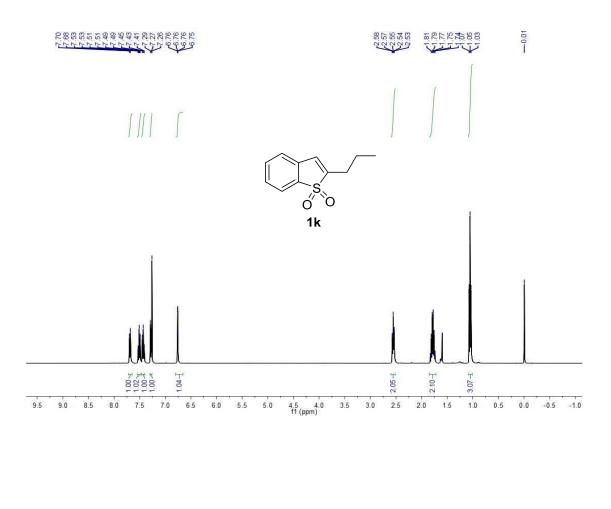


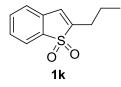
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

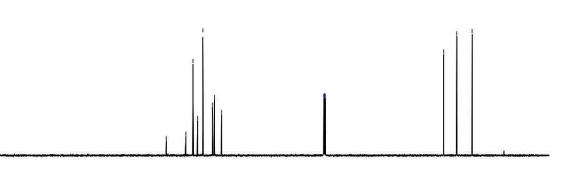


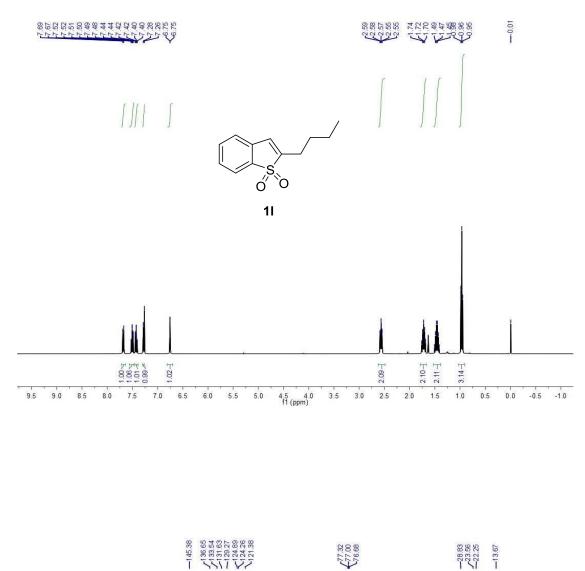


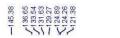

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)



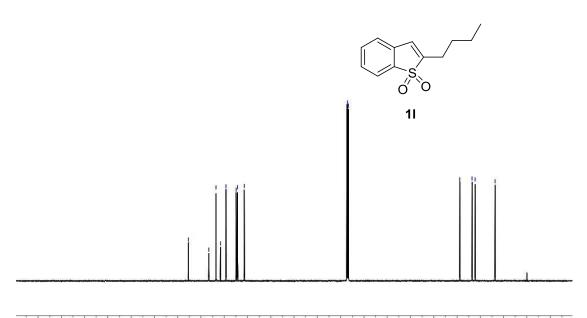




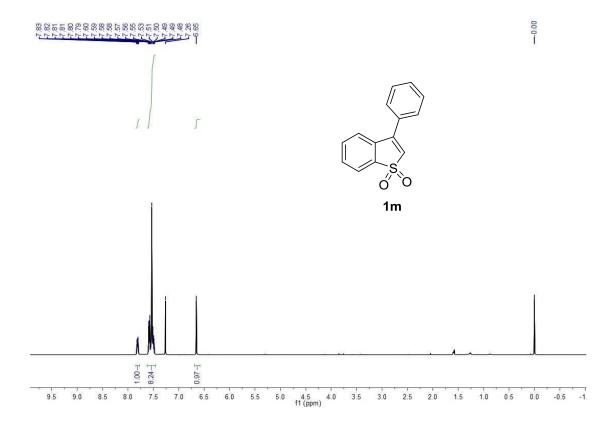


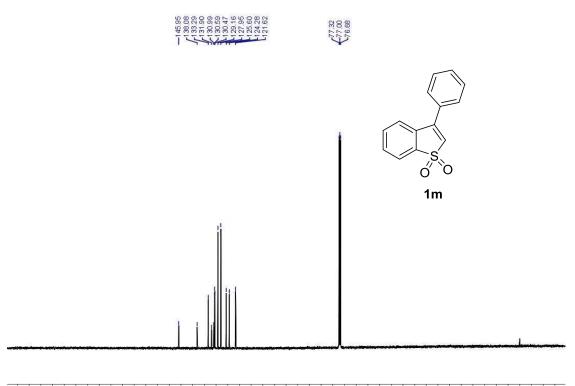


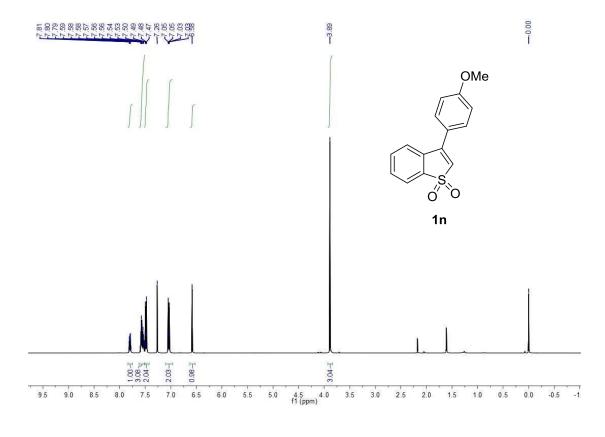
£77.32 77.00 76.68

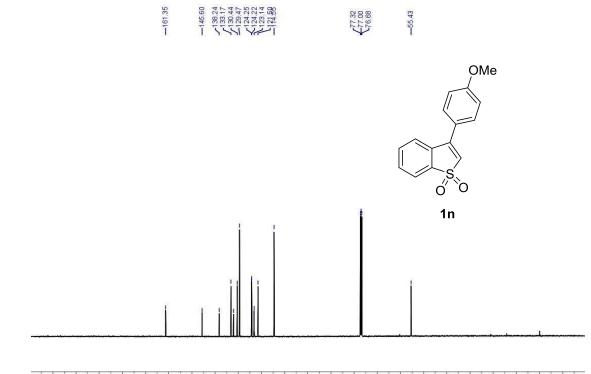


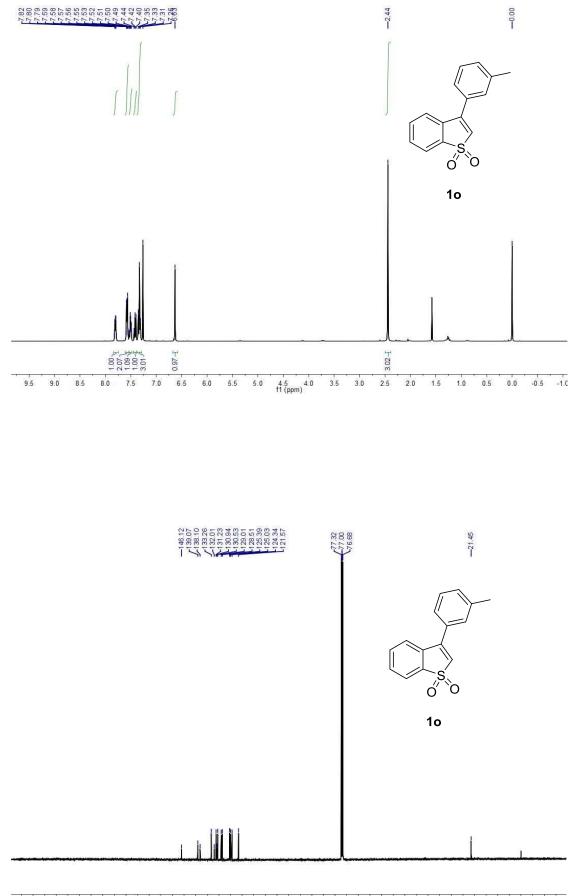
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)



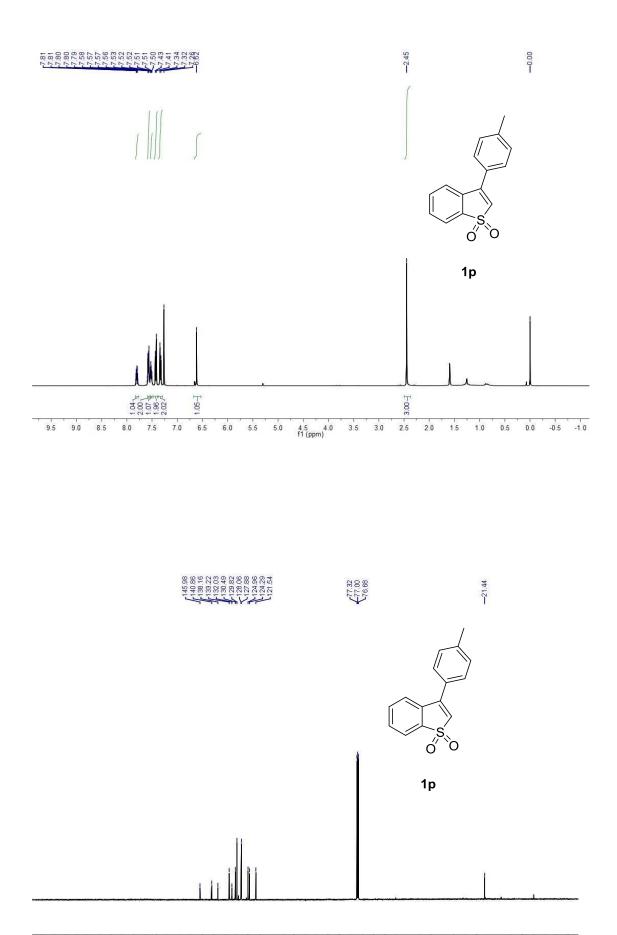


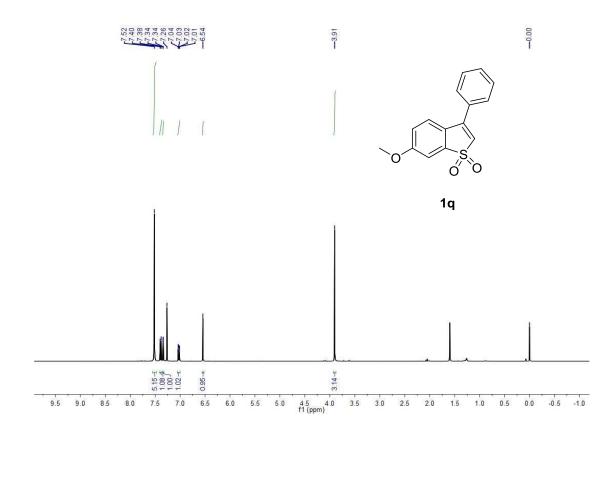


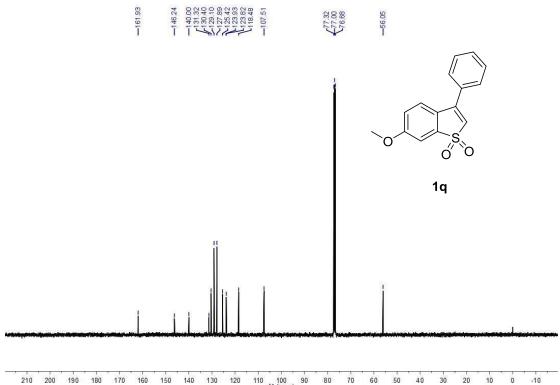

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10} f1 (ppm) 0 -10



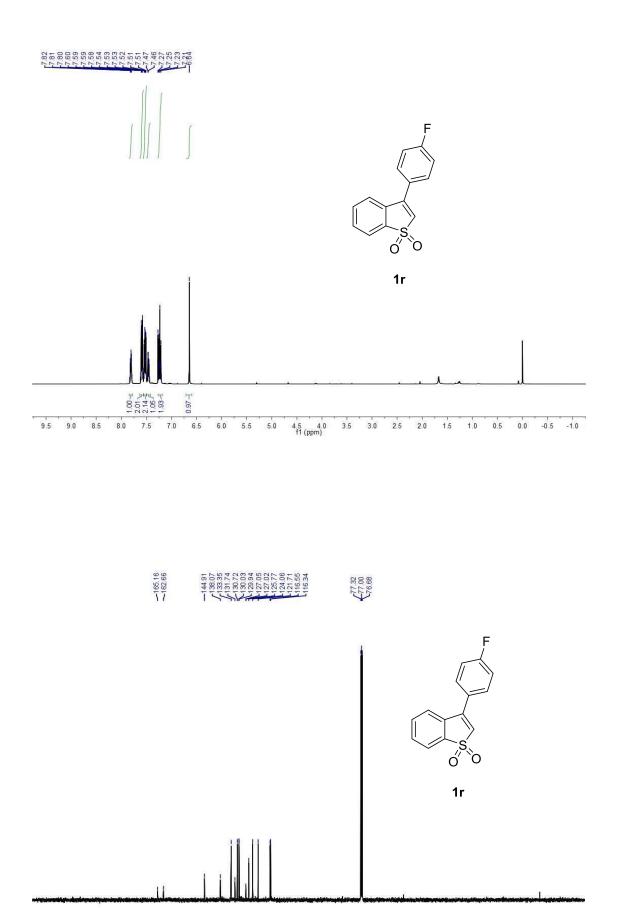
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

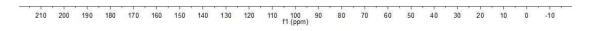


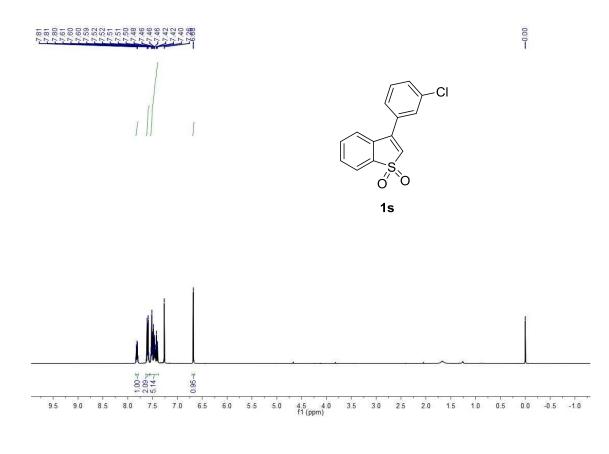

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

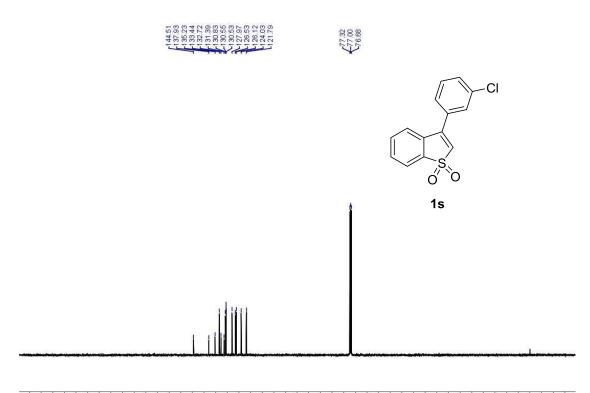


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

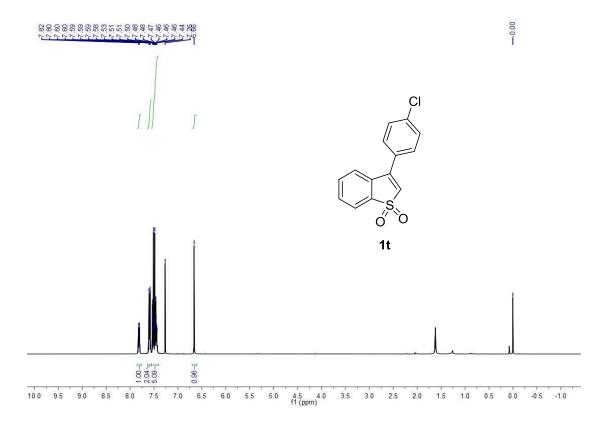


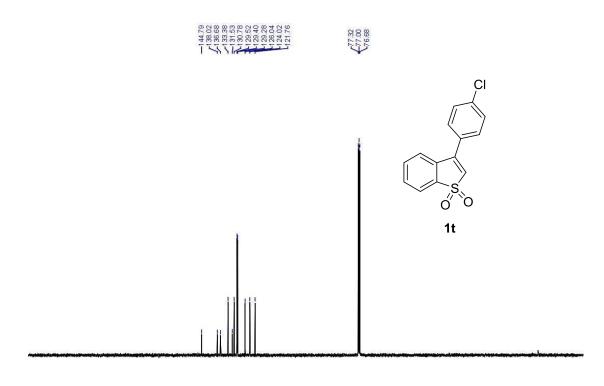

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

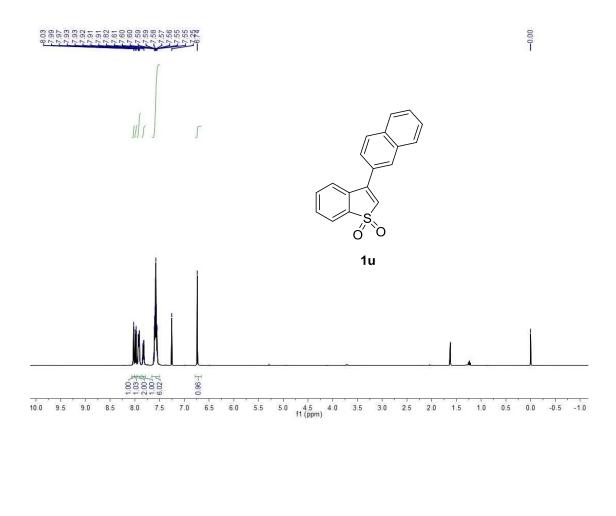


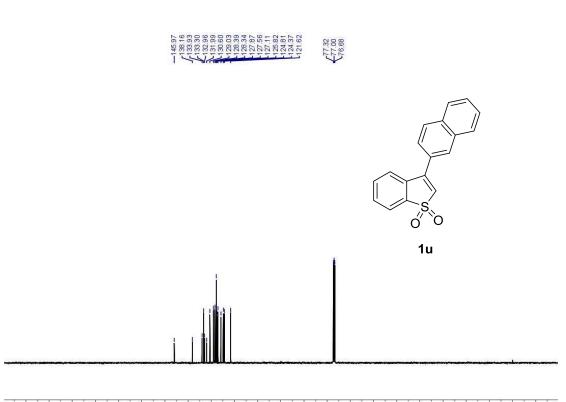


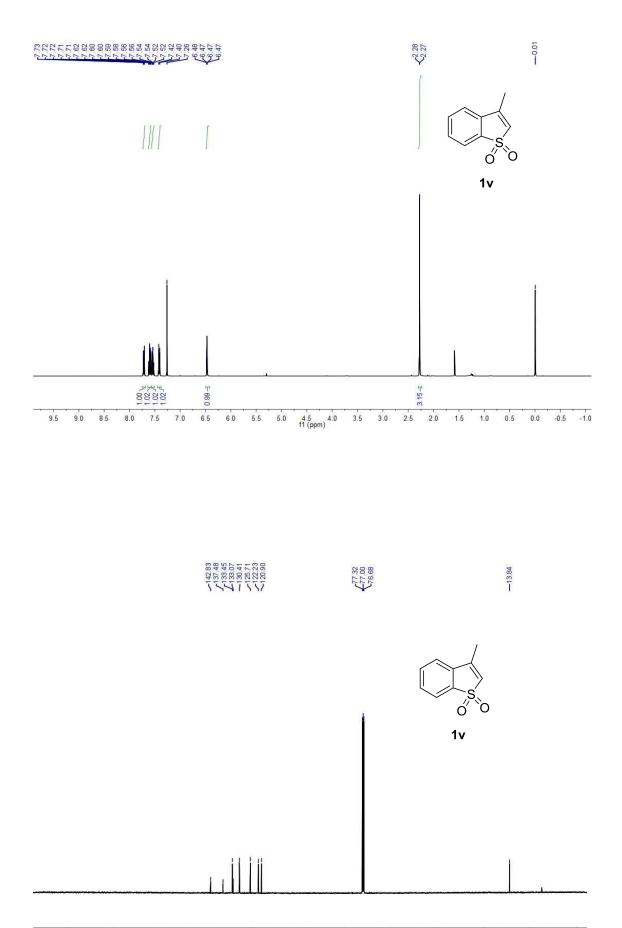
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)



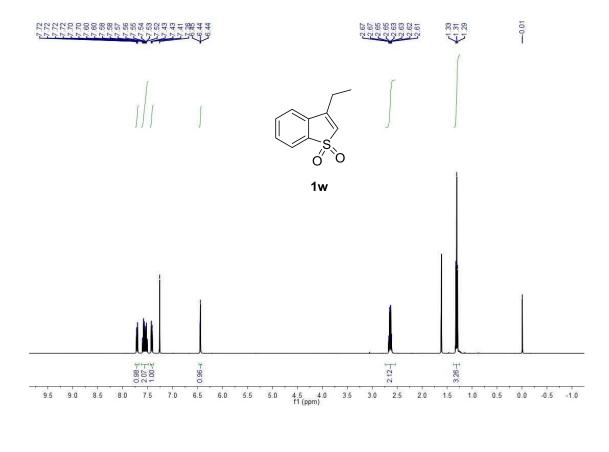


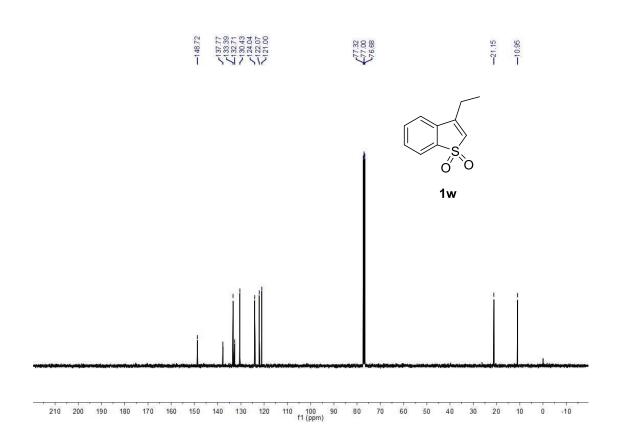


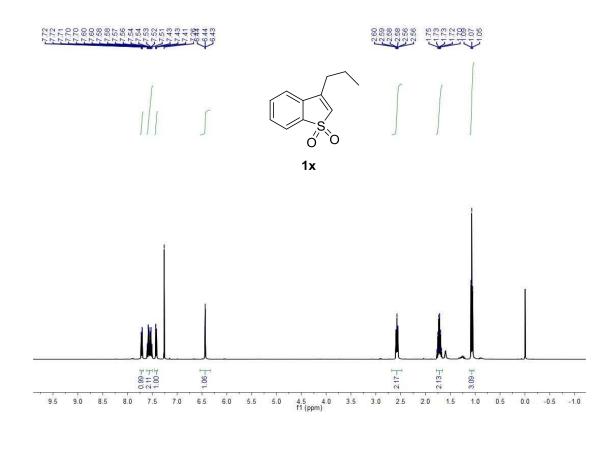

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

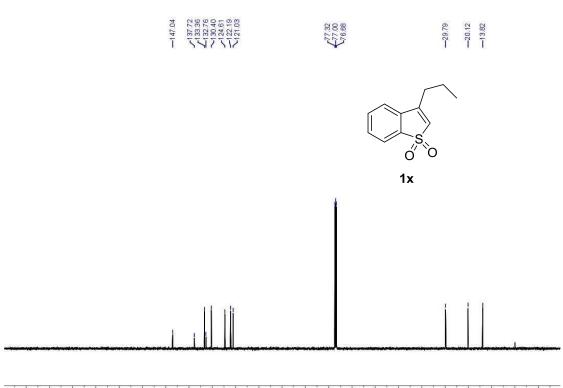


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

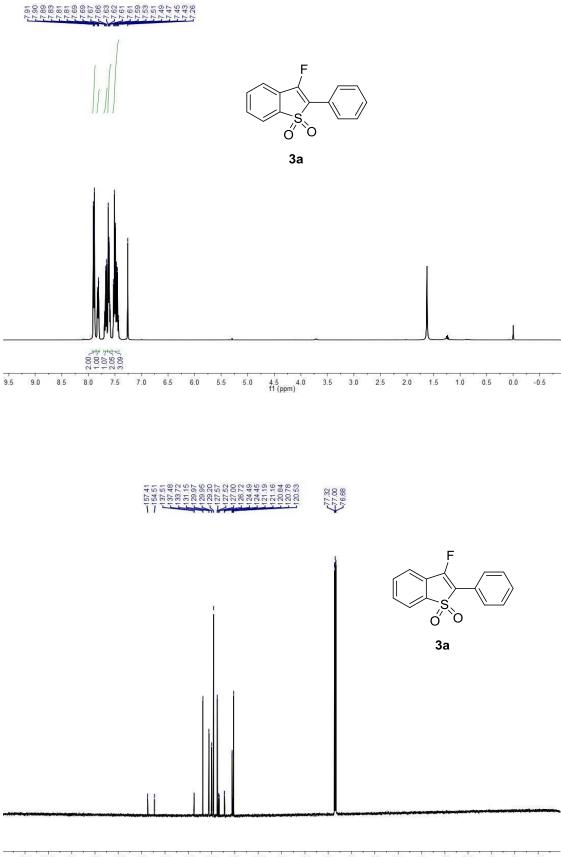


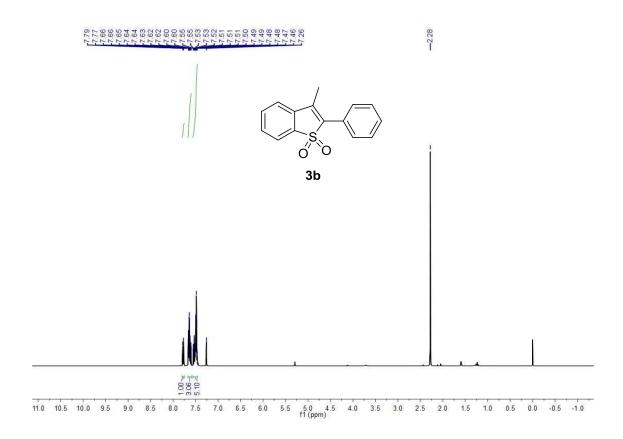


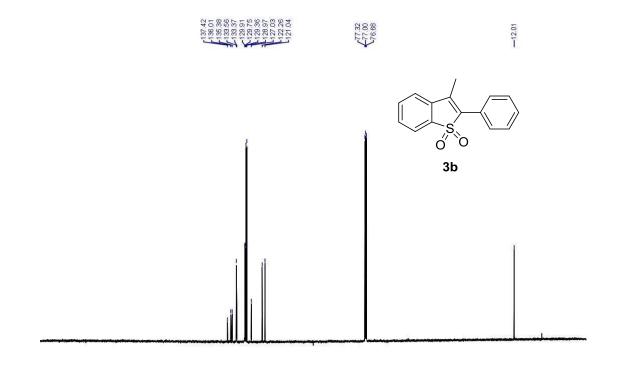

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1(ppm)



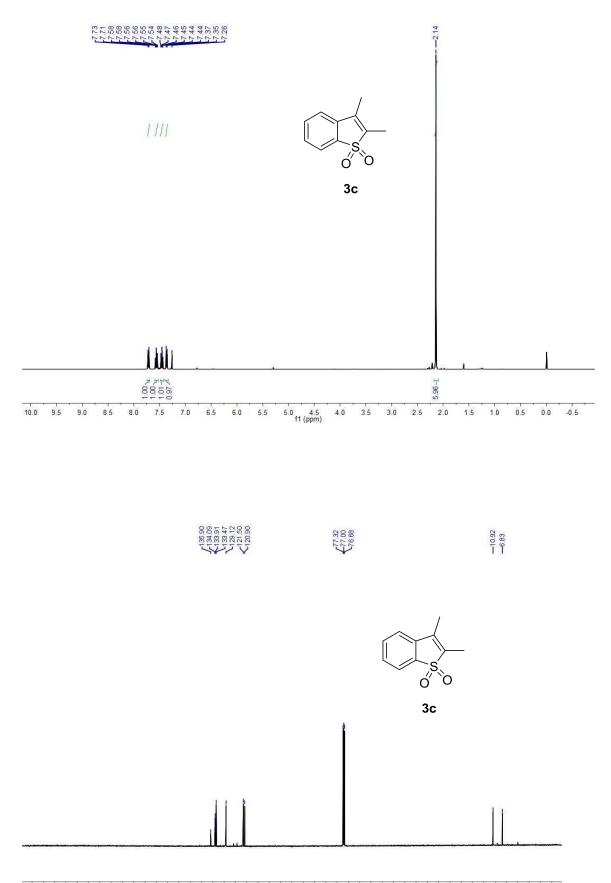
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)



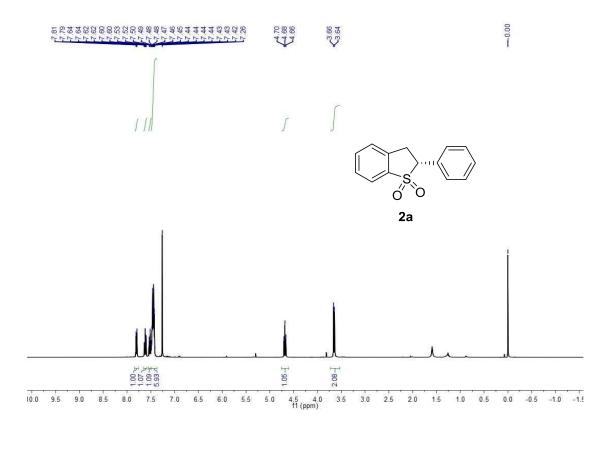


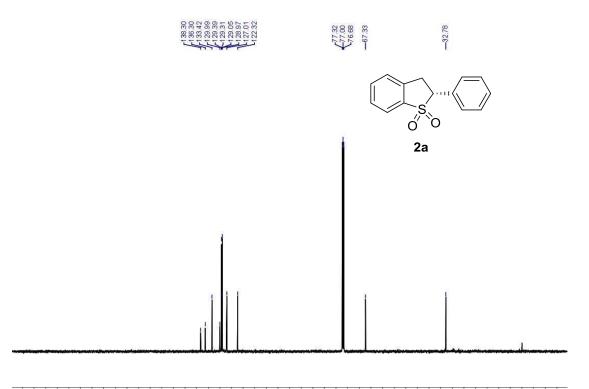


^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

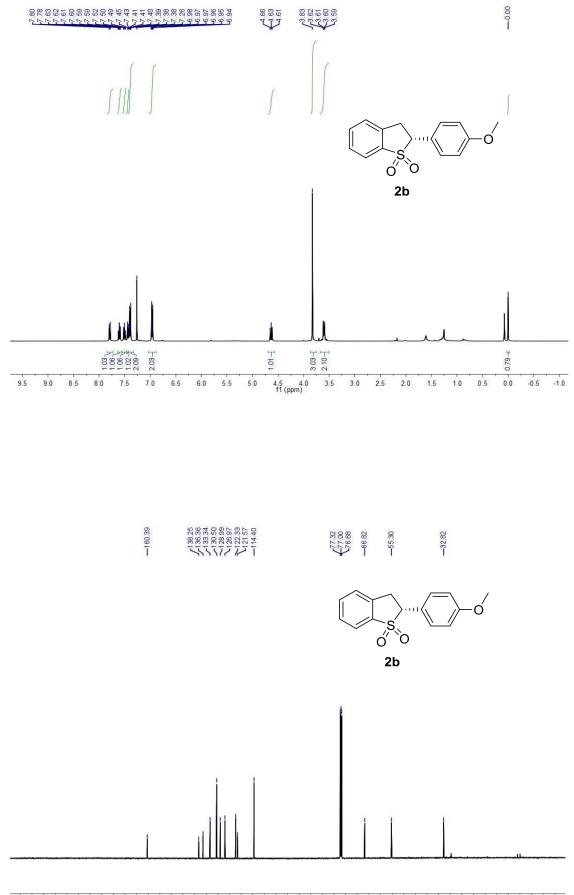


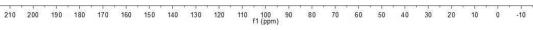
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

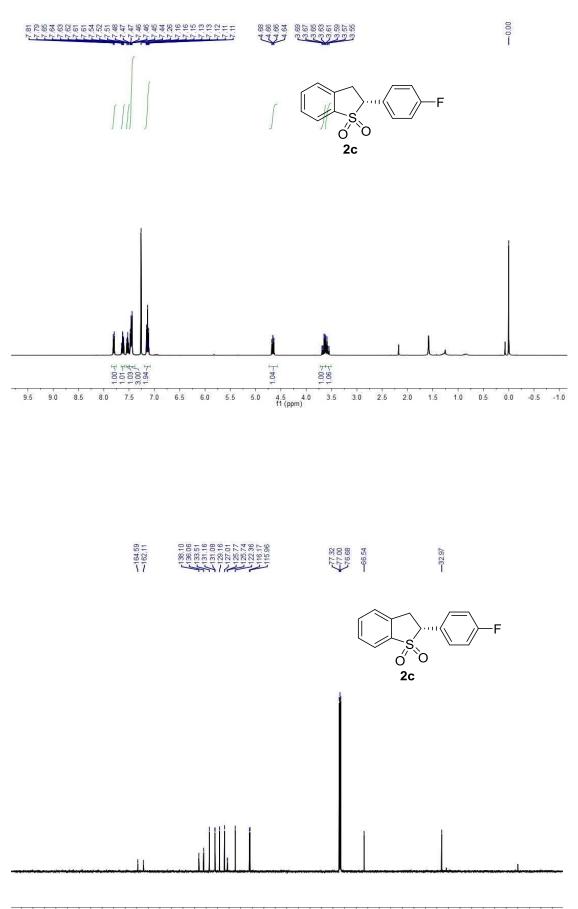


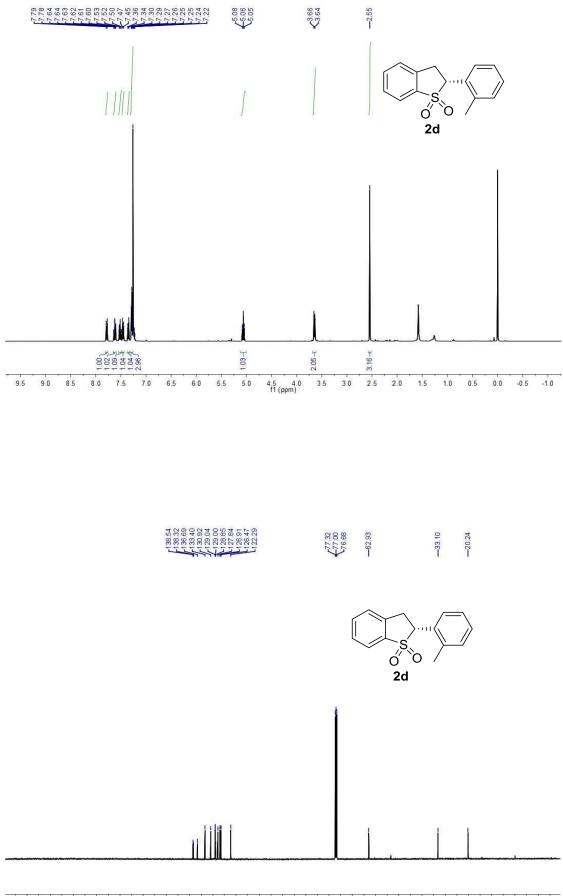


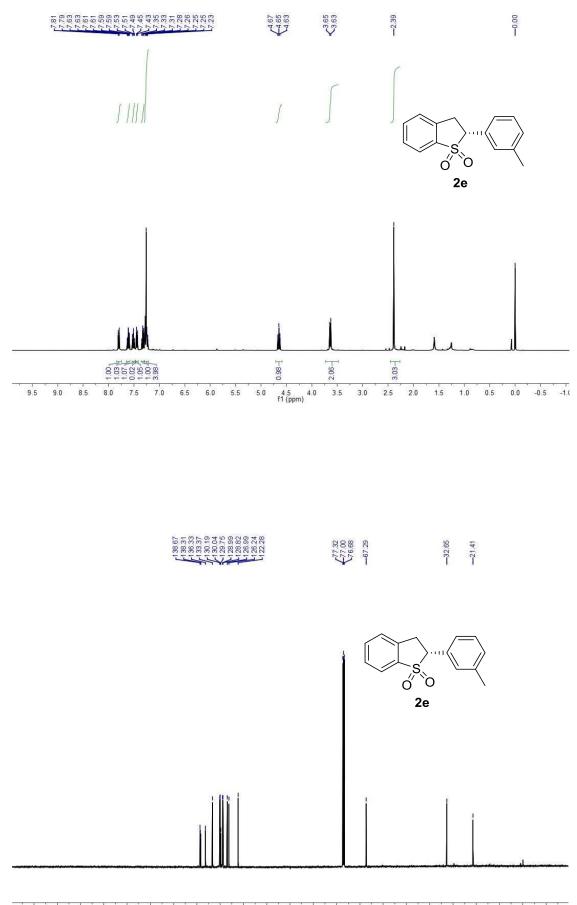
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1(ppm)

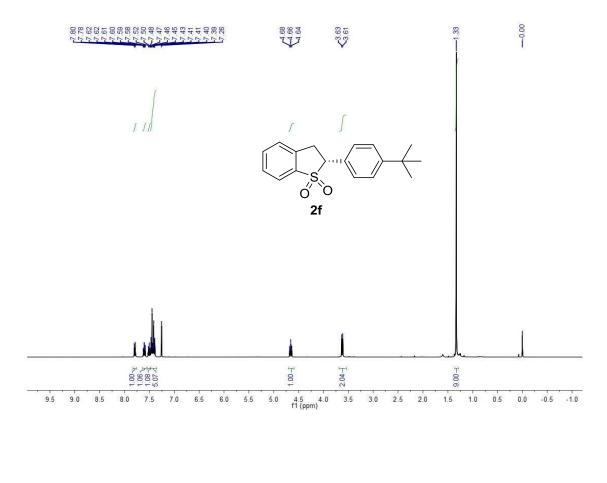


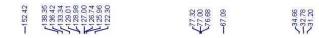


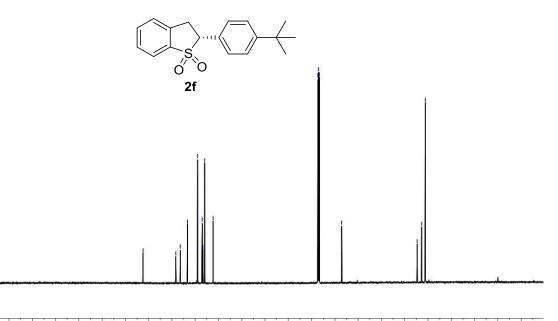


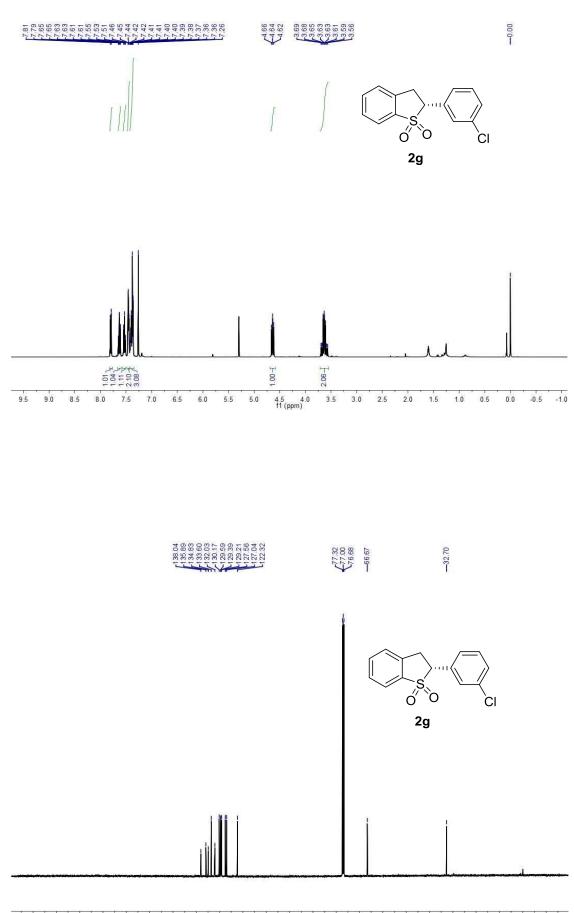

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

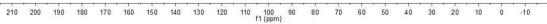


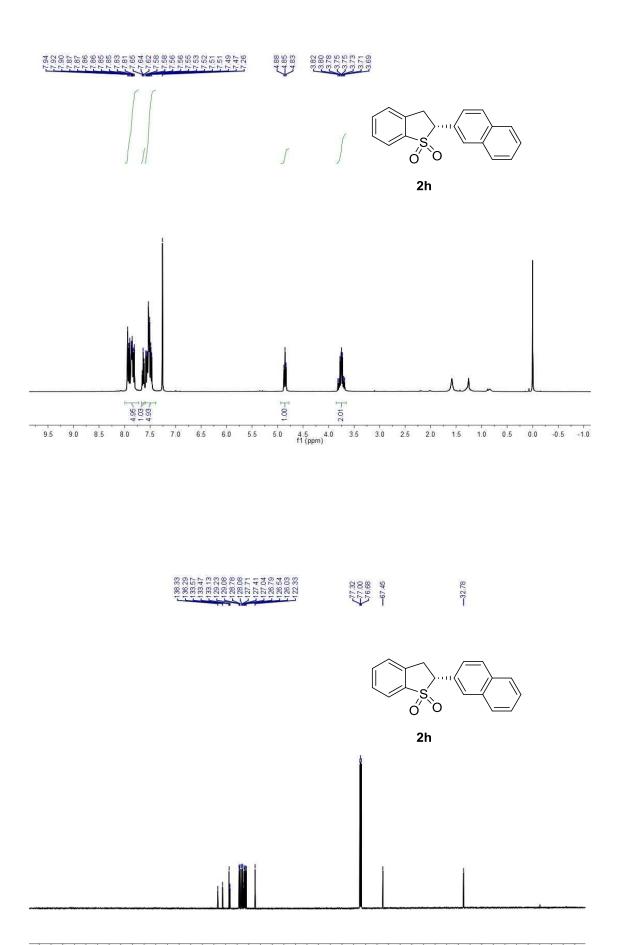

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)



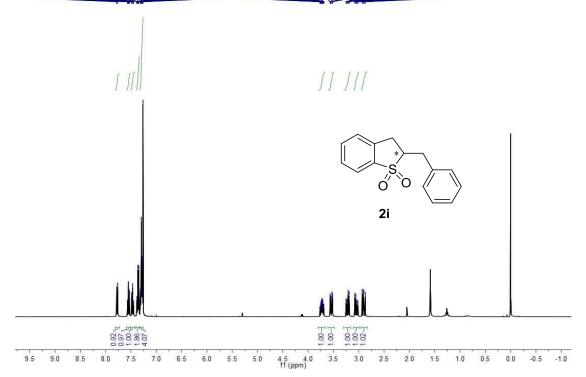

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

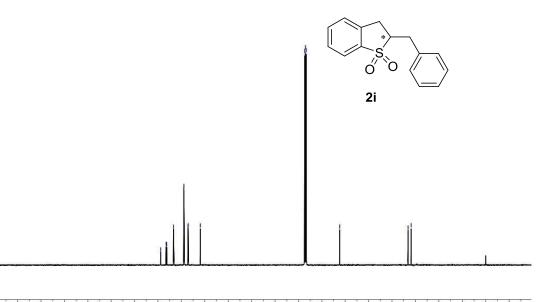


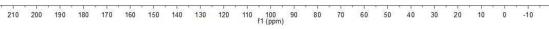


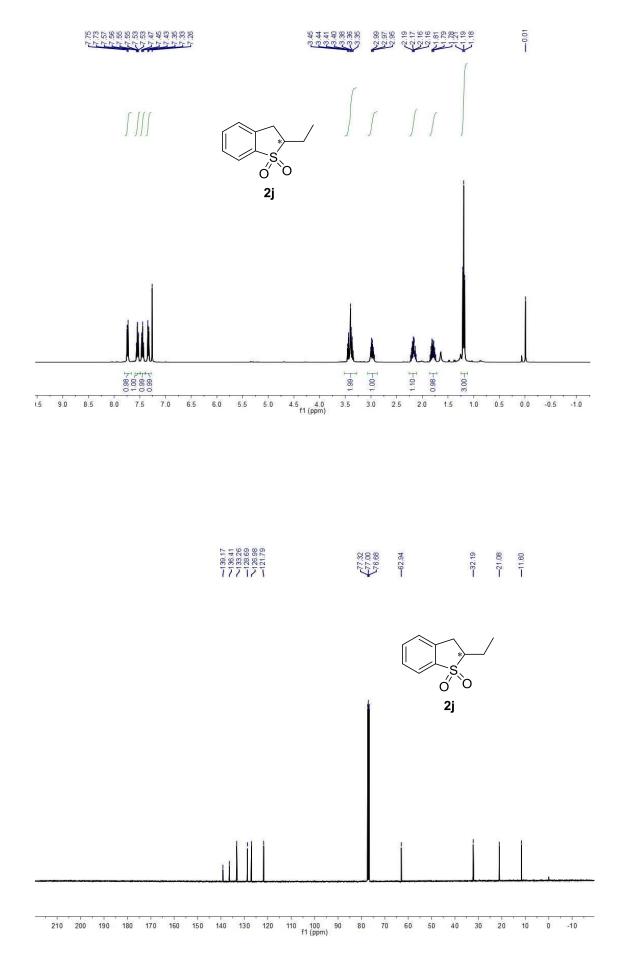
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

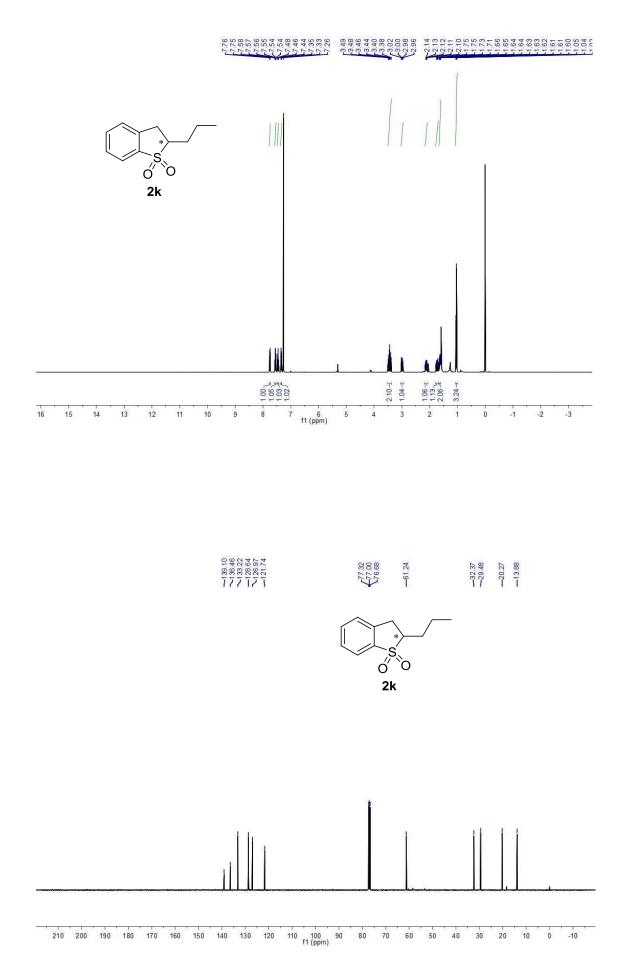


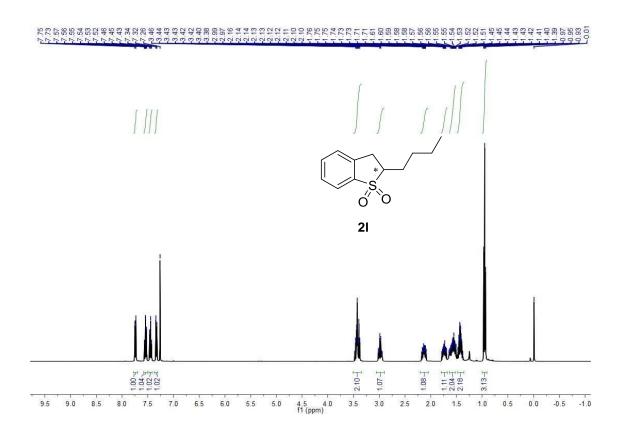
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

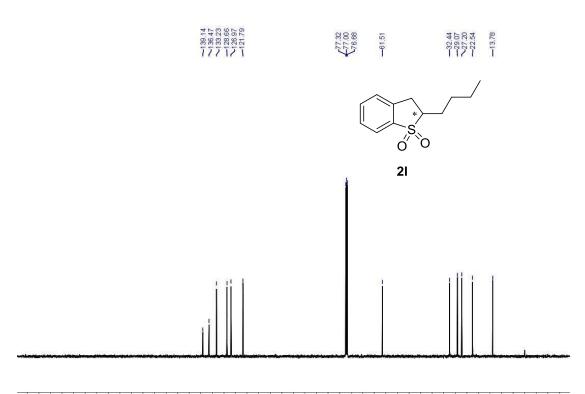


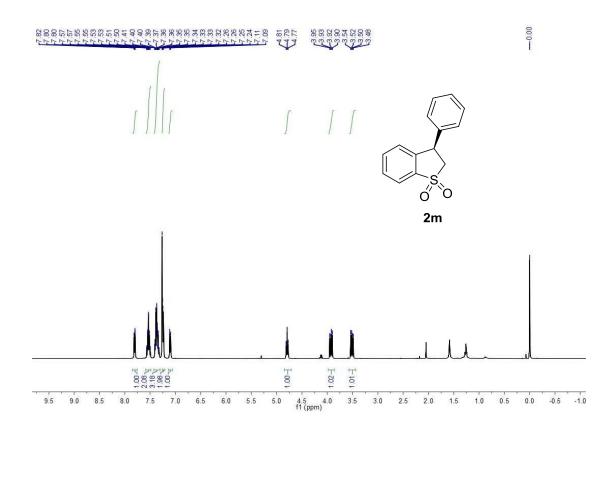


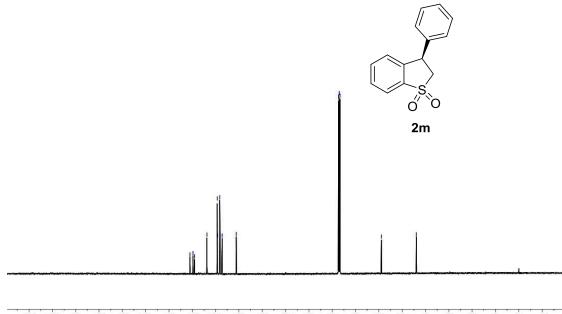




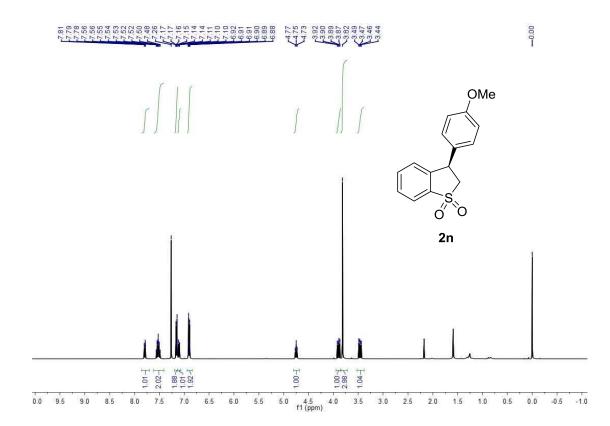

~33.15 ~31.83

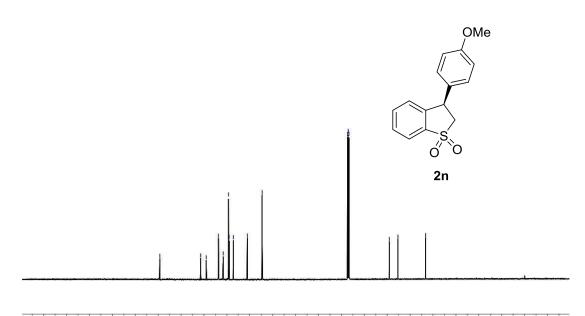


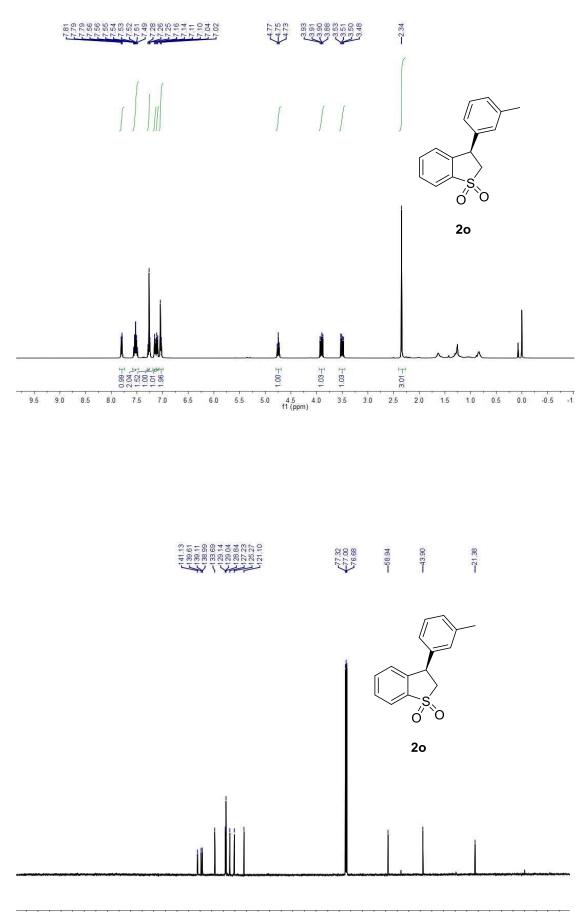


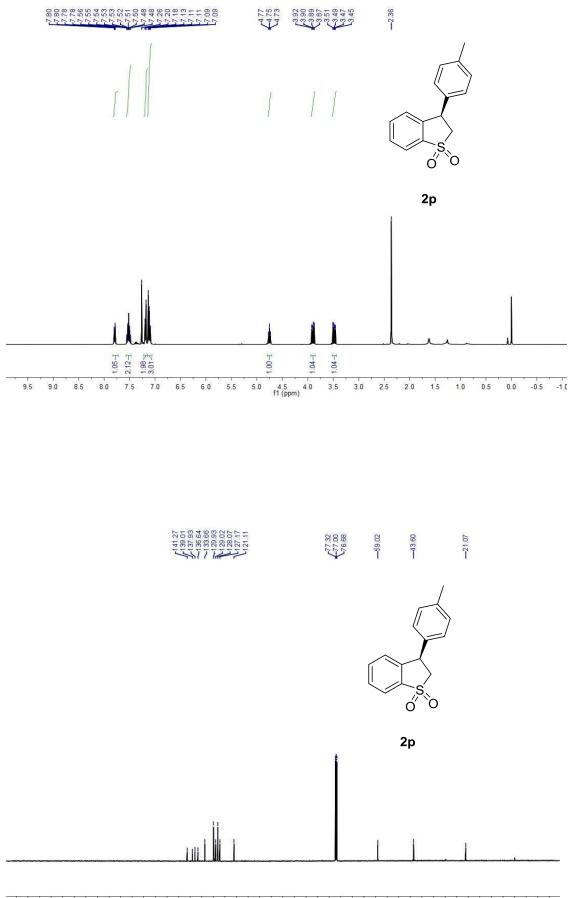


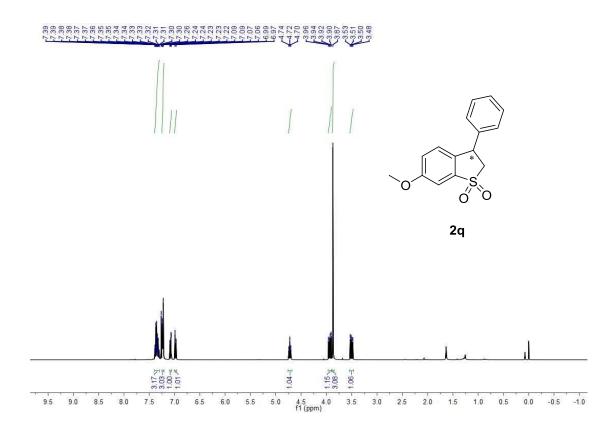
^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

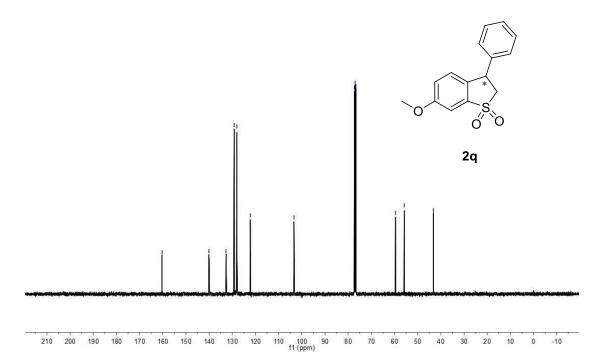


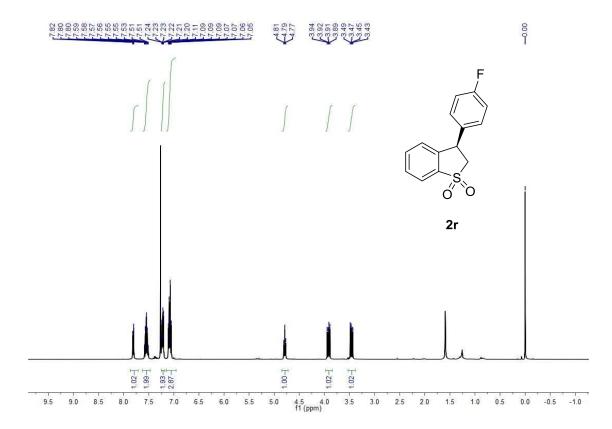


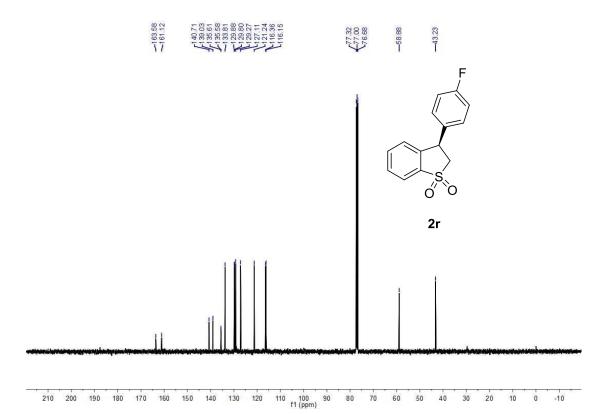

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

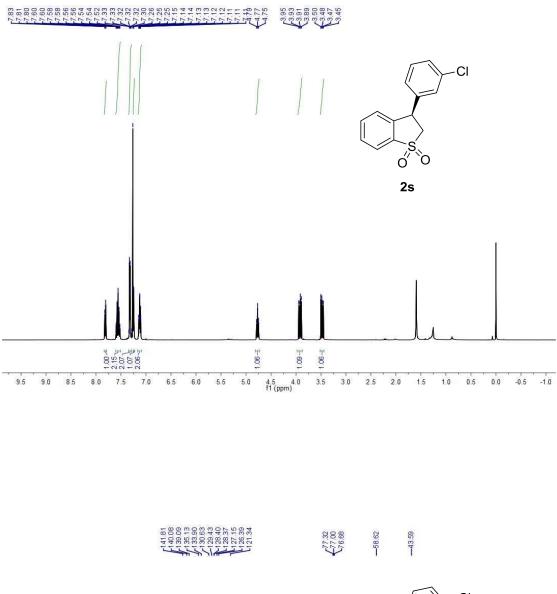

-159.28-159.28 -138.97 -138.97 -138.97 -138.97 -138.97 -138.97 -138.96 -114.58 -114.58 -56.31 -56.31 -43.22

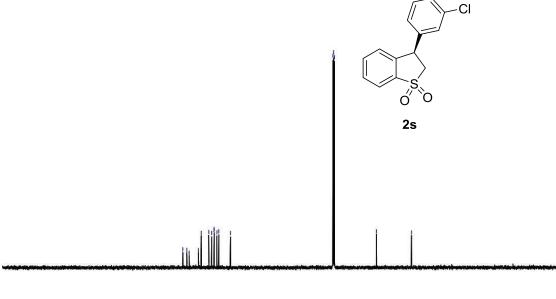

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

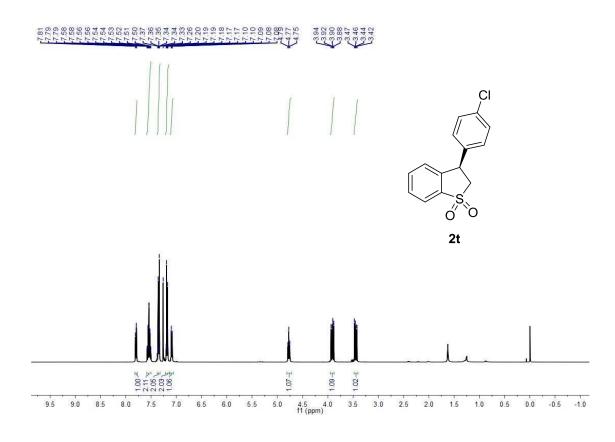

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

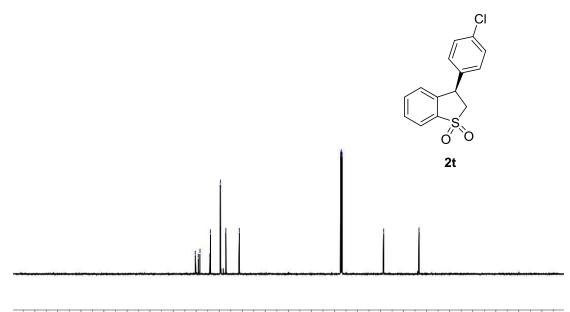


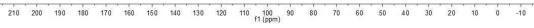

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

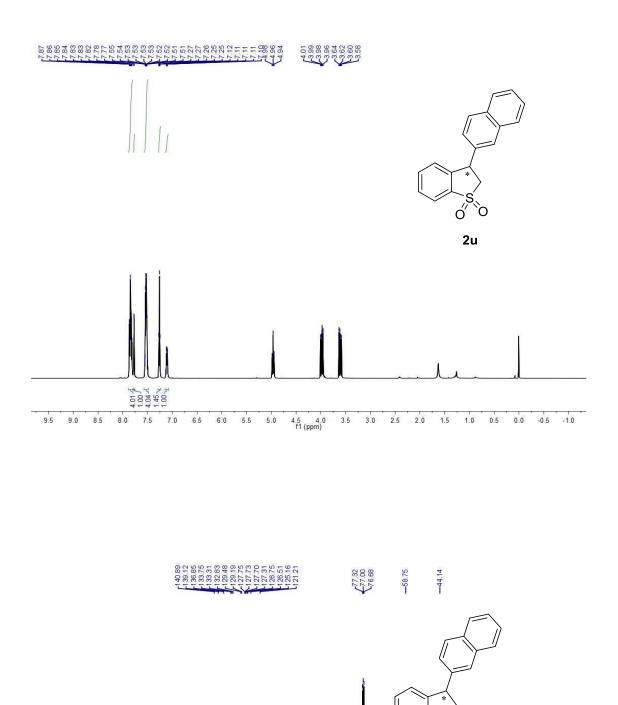


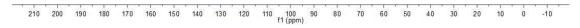


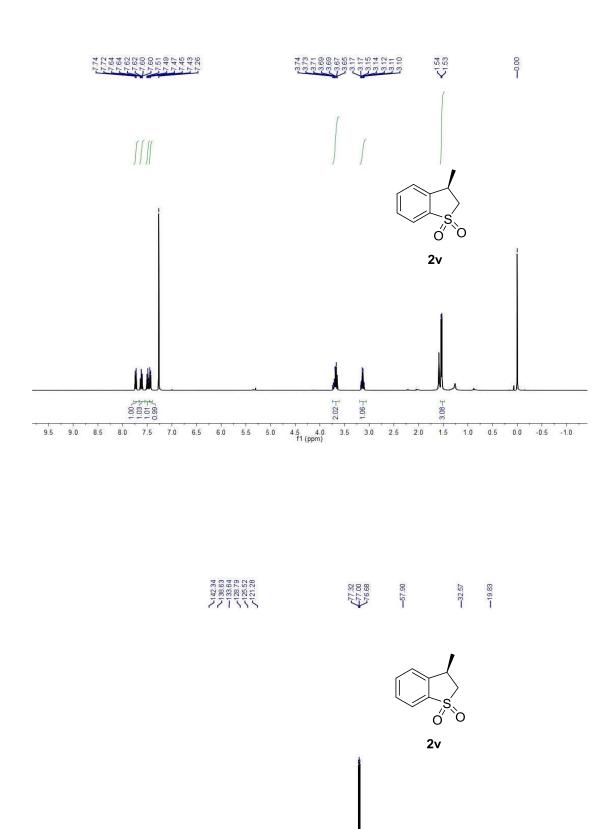


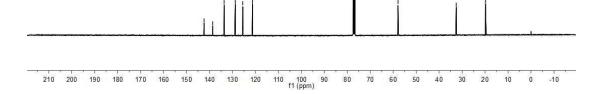


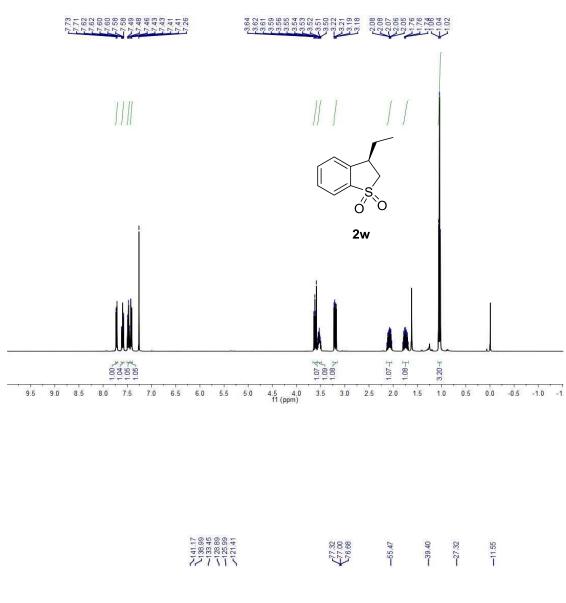


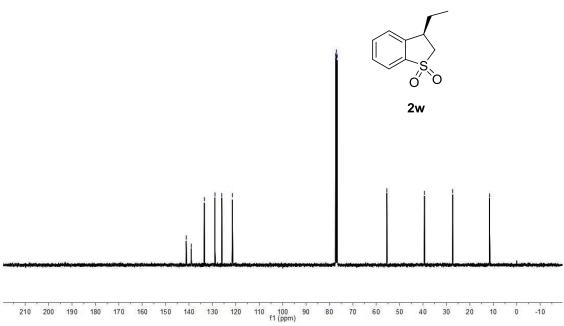

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

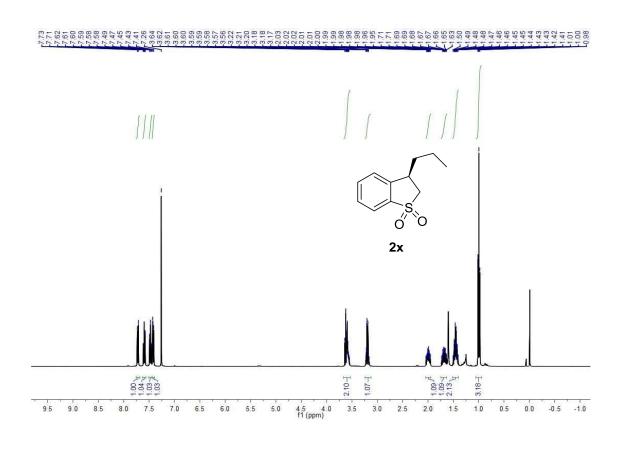


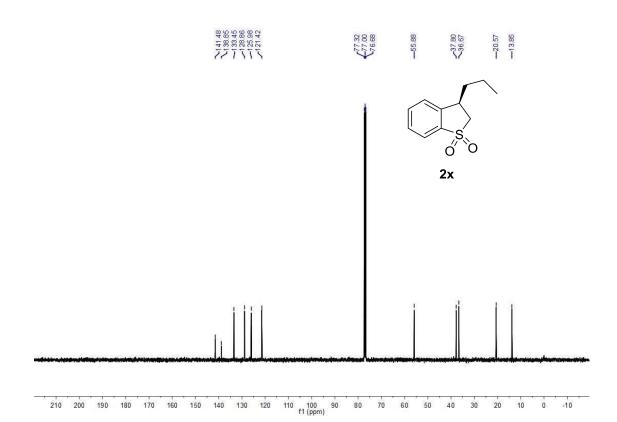


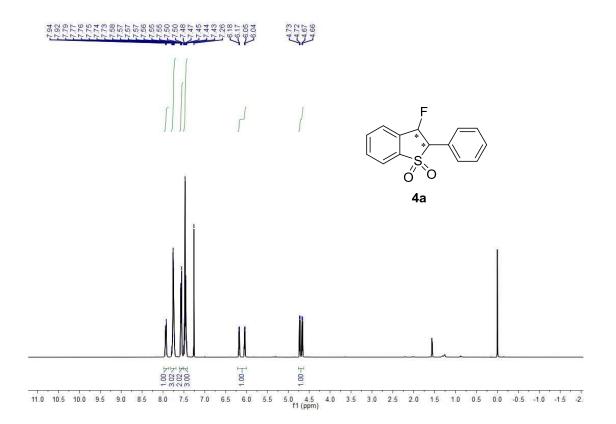


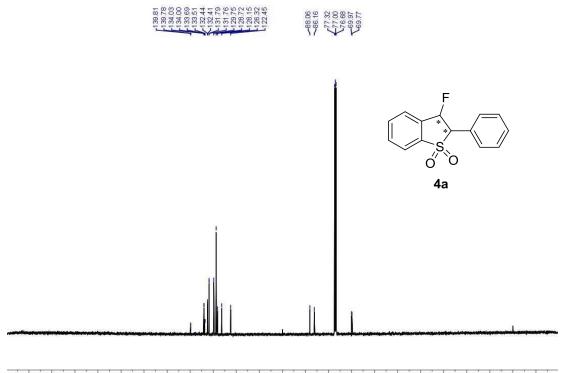



_s ₀́ ``0


2u







^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

9. HPLC spectra

HPLC of racemic-2a

Data File D:\DATA\LGY\LGY-1-43\LGY-1-43 2018-09-11 14-49-28\011-0301.D Sample Name: LGY-1-43-1

Acq. Operator	: Seq. Line : 3
•	: Instrument 1 Location : Vial 11
Injection Date	: 9/11/2018 3:15:08 PM Inj: 1
	Inj Volume : 5.000 µl
Acq. Method	: D:\DATA\LGY\LGY-1-43\LGY-1-43 2018-09-11 14-49-28\VWD-AS(1-6)-80-20-1ML-5UL -220NM-80MIN.M
Last changed	: 9/11/2018 4:37:46 PM
	(modified after loading)
-	: D:\METHOD\LG\VWD-AD(1-2)-99-1-0.2ML-2UL-220NM-10MIN.M
Last changed	: 9/12/2018 9:50:51 AM
Additional Info	(modified after loading)
	: Peak(s) manually integrated Vavelength=220 nm (D:\DATA\LGY\LGY-1-43\LGY-1-43 2018-09-11 14-49-28\011-0301.D)
mAU]	Vavailangui = 220 mm (D. DATALO FILO FILO FILO FILO FILO FILO SO 101 - 030 1.D)
-	
-	
-	
80 -	
-	
-	
60 -	
	Rives Base
-	بې بې بې
-	
40 -	
-	
-	
-	
20 -	
-	
-	
0	
40	45 50 55 60 65 70 75 80 85 mi
	Area Percent Report
Sorted By	: Retention Time
Multiplier	: 1.0000
Dilution	: 1.0000
Use Multiplier	& Dilution Factor with ISTDs
Signal 1: VWD1	A, Wavelength=220 nm
Peak RetTime Si	g Type Area Height Area
# [min]	[mAU*s] [mAU] %
	-
1 54.891 1	
2 73.318 1	MP 8096.65479 48.65597 49.6800
Totals :	1.62976e4 108.86377

Instrument 1 9/12/2018 9:51:45 AM

Page 1 of 2

HPLC of 2a

Jaca File E:/DAIA/LGI/LGI-I-100/LGI-I-100 2010-02-03 10-42-19/023-0301.D Sample Name: LGY-1-106-3

Acq. Instrument : 1260BPLC-WD Location : Vial 23 Injection Date : 2/3/2018 8:47:02 PM Inj : 1 Inj Volume : 5.000 µl Acq. Method : E: EDATALGYLGYL-106LGC1-106 2018-02-03 16-42-19\VWD-AS(1-6)-80- SUL-220NM-90MIN.M Last changed : 2/3/2018 4:42:20 PM by SYSTEM Analysis Method : E: LOATALGYLGY-1-106LGC1-106 2018-02-03 16-42-19\VWD-AS(1-6)-80- SUL-220NM-90MIN.M (Sequence Method) Last changed : 9/14/2018 3:37:119 PM by SYSTEM (modified after loading) Additional Info : Peak(a) manually integrated MU 100 40 40 40 40 40 40 45 50 55 60 55 60 55 60 57 75 60 57 75 60 50 55 60 57 75 60 50 55 60 57 75 60 50 55 60 57 75 60 50 55 60 57 75 60 50 55 60 57 75 60 50 50 55 60 57 75 60 50 55 60 57 75 60 75 75 60 75 75 60 75 75 75 75 75 75 75 75 75 75	
Inj Volume : 5.000 µl Acq. Method : E:\DATA\LGY\LGY-1-106\CQ18-02-03 16-42-19\VWD-AS(1-6)-80- SUL-220NM-9OMIN.M Last changed : 2/3/2018 4:42:20 PM by SYSTEM Analysis Method : E:\DATA\LGY\LGY-1-106\LGY-1-106 2018-02-03 16-42-19\VWD-AS(1-6)-80- SUL-220NM-9OMIN.M (Sequence Method) Last changed : 9/14/2018 3:37:19 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated WO1A W wwengh=220 nm (E:DATALGY\LGY-1-06LGY-1-06 2018-02-03 16-42-19023-0501D) MAU 100 100 40 40 45 55 60 65 70 75 80 Area Percent Report Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # (min) (min) (mAU*s) (mAU) % 154.617 MM 2.2208 1.40164e4 105.75460 99.5222 2 74.745 MM 1.6222 67.29838 6.91447e-1 0.4778	
Acq. Method : E:\DATALGYLGYLGYL-1-106\LGY-1-106\2018-02-03 16-42-19\VWD-AS(1-6)-80- SUL-220NM-90MIN.M Last changed : 2/3/2018 4:42:20 PM by SYSTEM Analysis Method : E:\DATALGYLGYL-1-106\LGY-1-106\2018-02-03 16-42-19\VWD-AS(1-6)-80- SUL-220NM-90MIN.M (Sequence Method) Last changed : 9/14/2018 3:37:19 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated WU01A.Wawdemgh=220 nm (E:DATALGYLGYL-1-106LGY-1-1062018-0203 16-42-19023-0501D) mAU 100 40 45 50 55 60 65 70 75 80 	
SUL-220MP-90MIN.M Last changed : 2/3/2018 4:42:20 PM by SYSTEM Analysis Method : E:\DATALGYLLGY-1-106\LGY-1-106 2018-02-03 16-42-19\VWD-AS(1-6)-80- SUL-220MP-90MIN.M (Sequence Method) Last changed : 9/14/2018 3:37:19 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated MUVLA Wavdength=20 nm (E:DATALGYLGY-1-002018-02-03 16-42-19023-0501D) mAU 100 100 40 40 45 55 60 65 70 75 80 Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Dilution : 1.0000 Dilution : 1.0000 Dilution : 1.0000 Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	0.0 1.15
Analysis Method : E:\DATALLGYLGY-1-106\LGY-1-106 2018-02-03 16-42-19\VWD-AS(1-6)-80- SUL-220NM-90MIN.M (Sequence Method) Last changed : 9/14/2018 313:19 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated WD1A.Wawkength=220 nm (E:DATALGYLGY-1-106LGY-1-106 2018-02-03 16-42-19:023-0501.D) mAU 100 100 40 45 50 55 60 65 70 75 80 Sorted By : Signal Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU's] [mAU] % 154.617 MM 2.2089 1.40164e4 105.75460 99.5222 2 74.745 MM 1.6222 67.29838 6.91447e-1 0.4778	20-1ML-
SUL-220NN-90MIN.M (Sequence Method) Last changed : 9/14/2018 3:37:19 FM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated WUD1A Wawkmgth=220 nm (E:DATALGYLGYL-100LGYL-10022018-02-03 16-42-19023-0501.D) mAU 100 100 100 100 100 100 100 10	
Last changed : 9/14/2018 3:37:19 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated	20-1ML-
(modified after loading) Additional Info : Peak(s) manually integrated W01A. Waxdengh=220 nm (E:DATALGYLGYL-106LGYL-10622018-02-03 16-42-19/023-0501.D) mAU 100 100 100 100 100 100 100 10	
Additional Info : Peak(s) manually integrated WD1A.Wavelength=220 nm (E:DATALGYLGY-1:106.2018-02-03 16-42-19023-0501.D) mAU 140 140 140 140 140 140 140 140	
mAU 100 120 100 60 60 60 65 70 75 80 65 70 75 90 65 100 65 100 75 100 65 100 75 100 100 100 100 100 100 100 100 100 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10	
100 1000 100 10000 10000 <td< td=""><td></td></td<>	
100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 100 10000 10000 10000 1000	
100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 100 10000 10000 10000 1000	
100- 0 80- 0 40- 45 40- 45 40- 45 40- 45 40- 45 40- 45 50- 55 60- 65 70- 75 80- 65 70- 75 80- 65 70- 75 80- 65 70- 75 80- 65 70- 75 80- 65 70- 75 80- 65 70- 75 80- 65 70- 75 80- 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	
100- 0 80- 0 40 45 50 55 60 65 70 75 80	
100- 0 80- 0 40 45 50 55 60 65 70 75 80	
80 60 40 20 40 45 50 55 60 65 70 75 80 60 65 70 75 80 70 75 80 70 75 80	
60 40 20 20 0 40 40 45 50 55 60 65 70 75 Area Percent Report Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	
60 40 20 20 0 40 40 45 50 55 60 65 70 75 Area Percent Report Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	
40 40 40 45 50 55 60 65 70 75 80 Area Percent Report	
40 40 45 50 55 60 65 70 75 80 Area Percent Report	
20 9 37.8% 40 45 50 55 60 65 70 75 80 Area Percent Report Area Percent Report Sorted By : Signal Multiplier 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU] %	
20 9 37.8% 40 45 50 55 60 65 70 75 80 Area Percent Report Area Percent Report Sorted By : Signal Multiplier 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU] %	
40 45 50 55 60 65 70 75 80 Area Percent Report Area Percent Report Sorted By : Signal Multiplier 1.0000 Dilution 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] [mAU*s] 1 54.617 MM 2.2089 1.40164e4 1.6222 67.29838 6.91447e-1 0.4778	
40 45 50 55 60 65 70 75 80 Area Percent Report Area Percent Report Sorted By : Signal Multiplier 1.0000 Dilution 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] [mAU*s] 1 54.617 MM 2.2089 1.40164e4 1.6222 67.29838 6.91447e-1 0.4778	
40 45 50 55 60 65 70 75 80 Area Percent Report Area Percent Report Sorted By : Signal Multiplier 1.0000 Dilution 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] [mAU*s] 1 54.617 MM 2.2089 1.40164e4 1.6222 67.29838 6.91447e-1 0.4778	
40 45 50 55 60 65 70 75 80 Area Percent Report Area Percent Report Sorted By : Signal Multiplier 1.0000 Dilution 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] [mAU*s] 1 54.617 MM 2.2089 1.40164e4 1.6222 67.29838 6.91447e-1 0.4778	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU*s] [mAU] %	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	85
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU*s]	
Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	
Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	
Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	
Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 54.617 MM 2.2089 1.40164e4 105.75460 99.5222 2 74.745 MM 1.6222 67.29838 6.91447e-1 0.4778	
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	
<pre># [min] [min] [mAU*s] [mAU] % 1 54.617 MM 2.2089 1.40164e4 105.75460 99.5222 2 74.745 MM 1.6222 67.29838 6.91447e-1 0.4778</pre>	
 1 54.617 MM 2.2089 1.40164e4 105.75460 99.5222 2 74.745 MM 1.6222 67.29838 6.91447e-1 0.4778	
1 54.617 MM 2.2089 1.40164e4 105.75460 99.5222 2 74.745 MM 1.6222 67.29838 6.91447e-1 0.4778	
2 74.745 MM 1.6222 67.29838 6.91447e-1 0.4778	
Totals: 1.40837e4 106.44605	

HPLC of racemic-2b

Data File E:\DATA\LXX\YC-CN-3\CL-BR-CN-RAC-AD 2017-11-20 14-41-19\011-1501.D Sample Name: LGY-1-30-1-RE-2

Acq. Operator	: SYSTEM Seq. Line : 15
Acq. Instrument	
Injection Date	: 11/21/2017 12:11:03 AM Inj : 1 Inj Volume : 5.000 µl
Acq. Method	: E:\DATA\LXX\YC-CN-3\CL-BR-CN-RAC-AD 2017-11-20 14-41-19\VWD-AD(1-2)-80- 20-1ML-5UL-220NM-120MIN.M
Last changed	: 11/20/2017 7:15:44 PM by SYSTEM
Analysis Method	: E:\DATA\LXX\YC-CN-3\CL-BR-CN-RAC-AD 2017-11-20 14-41-19\VWD-AD(1-2)-80- 20-1ML-5UL-220NM-120MIN.M (Sequence Method)
Last changed	: 4/13/2018 10:38:59 AM by SYSTEM (modified after loading)
	: Peak (s) manually integrated avelength=220 nm (E:\DATA\LXX\YC-CN-3\CL-BR-CN-RAC-AD 2017-11-20 14-41-19\011-1501.D)
	average 20 mm (2.200 m 200 cm
250-	
200 -	
2007	
150 -	N.
	35.427
1	
100 -	
1	
50-	
o 	
20	<u>30 40 50 60 min</u>
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Mult:	iplier & Dilution Factor with ISTDs
Signal 1: VWD1 A	A, Wavelength=220 nm
······································	-,
Peak RetTime Typ	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
	1.2062 5253.11182 65.18310 50.0431
2 02.100 DD	1.2002 3233,11102 - 03,10310 - 30,0431
Totals :	1.04972e4 161.64289
	*** End of Report ***
	and birkeport and

1260HPLC-VWD 4/13/2018 10:39:03 AM SYSTEM

Page 1 of 1

HPLC of 2b

Data File E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\046-2101.D Sample Name: LGY-1-95-6

Acq. Operator	: SYSTEM Seq. Line : 21
Acq. Instrument	: 1260HPLC-VWD Location : Vial 46
Injection Date	: 1/11/2018 10:48:07 PM Inj : 1
Acq. Method	Inj Volume : 5.000 µl : E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\VWD-AD(1-2)-80-20-1ML- 5UL-220NM-70MIN.M
Last changed	: 1/11/2018 9:32:22 AM by SYSTEM
-	: E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\VWD-AD(1-2)-80-20-1ML- SUL-220NM-70MIN.M (Sequence Method)
Last changed	: 4/13/2018 11:11:59 AM by SYSTEM (modified after loading)
	: Peak(s) manually integrated
_	avelength=220 nm (E:\DATA\LGY:1-95\LGY:1-95\LGY:1-95 2018-01-11 09-00-29\046-2101.D)
mAU .	
600 -	
1	
500 -	
500	
400 -	. sh
-	e v
]	Server and S
300 -	\wedge
200 -	
100 -	
l o‡	
20	<u> </u>
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Mult:	iplier & Dilution Factor with ISTDs
Giomal I. UIDI	Userlangth-220 pm
анднат т: VWD1 и	A, Wavelength=220 nm
Peak RetTime Ty	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
1 36.638 BB	
2 54.468 MM	1.3885 2.50952e4 301.22711 98.2605
Totals :	2.55395e4 307.54088
	*** End of Report ***

1260HPLC-VWD 4/13/2018 11:12:06 AM SYSTEM

HPLC of racemic-2c

Data File E:\DATA\LGY\LGY-1-30\LGY-1-30 2017-11-18 09-16-49\002-0301.D Sample Name: LGY-1-30-2-RE

	: SYSTEM Seq. Line : 3
Acq. Instrument	•
-	: 11/18/2017 11:29:08 AM Inj : 1
-	Inj Volume : 5.000 µl
Acq. Method	: E:\DATA\LGY\LGY-1-30\LGY-1-30 2017-11-18 09-16-49\VWD-AD1-2)-90-10-1ML- 5UL-220NM-120MIN.M
Last changed	: 11/18/2017 9:16:49 AM by SYSTEM
Analysis Method	: E:\DATA\LGY\LGY-1-30\LGY-1-30 2017-11-18 09-16-49\VWD-AD1-2)-90-10-1ML- 5UL-220NM-120MIN.M (Sequence Method)
Last changed	: 4/13/2018 11:15:55 AM by SYSTEM (modified after loading)
Additional Info	(modified after isading) : Peak(s) manually integrated
VWD1 A, Wa	velength=220 nm (E:\DATA\LGY\LGY-1-30\LGY-1-30 2017-11-18 09-16-49\002-0301.D)
mAU]	
70-	
60-	
50-	
40-	
	8
	09 <i>2, 1</i> 4
30-	Q 55. 94 95
20-	
10-	
o ‡	
1 1	
	35 40 46 50 55 60 65 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Multi	plier & Dilution Factor with ISTDs
Signal 1: VWD1 A	, Wavelength=220 nm
)e Width Area Height Area [min] [mAU≭s] [mAU] %
# [min]	[min] [mAU*s] [mAU] %
	1.0081 2028.27917 30.18014 49.8963
	1.1583 2036.71033 26.21724 50.1037
Tabala a	40.04 000.00 0.000.00
Totals :	4064.98950 56.39738
	*** End of Report ***

1260HPLC-VWD 4/13/2018 11:17:17 AM SYSTEM

HPLC of 2c

Data File E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\051-2301.D Sample Name: LGY-1-95-7

.cq. Operator	: SYSTEM			Seq. Line	: 23			
.cq. Instrument	: 1260HPL	C-VWD		Location	: Vial 51			
njection Date	: 1/12/20	18 12:09:48	AM	Inj	: 1			
				-	: 5.000 µ			
.cq. Method		\LGY\LGY-1-9	5\LGY-1-95	2018-01-11	09-00-29\	VWD-AD (1-2))-90-10-1M	[L-
		NM-70MIN.M		_				
ast changed		18 9:57:00 A	-					
nalysis Method		\LGY\LGY-1-9 NM-70MIN.M (09-00-29\	VWD-AD(1-2))-90-10-1M	[L-
ast changed		18 11:25:57 [°]	-					
-	(modifi	ed after loa	ding)					
dditional Info								
VWD1 A, Wa	rvelength≓220 n	m (E:\DATA\LGY\LG	Y-1-95\LGY-1-95.2	2018-01-11 09-00	29/051-2301.D)			
mAU]								
1								
350 -								
1								
300 -								
1								
250 -								
					15 24 Par 194 51.2			
200 -					S. C			
					λ. Δ			
150 -					11			
·~ 1					- []			
1					11			
100 -					$\{ \}$			
1					1 1			
50 					$\{ \}$			
~ j			918		$ \rangle$			
			47.8		I			
1				_,	<u> </u>			
o 								
1	· · · · ·				· · · · ·	· · · ·	· · · ·	
0 30	35	40		50	 55	60	65	 г
1	35		45	50	55	60	65	 г
1 30							65	
1 30		 Area Percent	Report			=	65	
1		 Area Percent	Report			=	65	
1 30		 Area Percent	Report			=		
30 30 Corted By fultiplier		Area Percent Signal 1.0000	Report			=		 - -
30 30 Forted By fultiplier ilution	 	Area Percent Signal 1.0000 1.0000	: Report			=	 æ	
30 30 Corted By fultiplier	 	Area Percent Signal 1.0000 1.0000	: Report			=	65	
30 30 Forted By fultiplier ilution	 	Area Percent Signal 1.0000 1.0000	: Report			=	65	
30 30 Forted By fultiplier ilution o not use Multi	: : : .plier & D	Area Percent Signal 1.0000 1.0000 ilution Fact	: Report			=		
30 30 Forted By fultiplier ilution	: : : .plier & D	Area Percent Signal 1.0000 1.0000 ilution Fact	: Report			=		
30 Sorted By Sorted By Sultiplier Silution So not use Multi Signal 1: VWD1 A	: : : : : : : : : : : : : : : : : : :	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm	Report	Ds		=		
orted By Jultiplier Jultiplier Jultion o not use Multi Jignal 1: VWD1 4 eak RetTime Typ	iplier « D A, Wavelen De Width	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area	: Report :	Ds Area		=		
30 30 corted By (ultiplier ilution o not use Multi (ignal 1: VWD1 4 eak RetTime Typ # [min]		Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s]	Preport Report For with IST Height [mAU]	Ds Area		=	- I 65	
orted By Jultiplier Jultiplier Jultion o not use Multi Jignal 1: VWD1 4 eak RetTime Typ	: : : .plier & D A, Wavelen De Width [min] 	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s]	Preport Report For with IST Height [mAU]	Ds Area %		=	- I 65	
30 30 30 30 30 30 30 30 30 30	::::::::::::::::::::::::::::::::::::::	Area Percent Signal 1.0000 ilution Fact gth=220 nm Area [mAU*s] 201.08961	; Report ; Report ; or with IST Height [mAU] 	Ds Area & 1 1.3724		=		
30 30 Sorted By Sorted By Sor	::::::::::::::::::::::::::::::::::::::	Area Percent Signal 1.0000 ilution Fact gth=220 nm Area [mAU*s] 201.08961	; Report ; Report ; or with IST Height [mAU] 	Ds Area & 1 1.3724		=		
30 30 Sorted By Sorted By Sor	::::::::::::::::::::::::::::::::::::::	Area Percent Signal 1.0000 ilution Fact gth=220 nm Area [mAU*s] 201.08961	: Report :.or with IST Height [mAU] 	Ds Area & 1 1.3724		=		
Jorted By Gorted By Gultiplier ilution o not use Multi Gignal 1: VWD1 # Teak RetTime Typ # [min] 	::::::::::::::::::::::::::::::::::::::	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s] 	: Report :.or with IST Height [mAU] 	Ds Area & 1 1.3724		=	 65	
Jorted By Gorted By Gultiplier ilution o not use Multi Gignal 1: VWD1 # Teak RetTime Typ # [min] 	::::::::::::::::::::::::::::::::::::::	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s] 	: Report :.or with IST Height [mAU] 	Ds Area & 1 1.3724		=		

1260HPLC-VWD 4/13/2018 11:26:05 AM SYSTEM

HPLC of racemic-2d

Data File E:\DATA\LGY\LGY-1-48\LGY-1-48 2017-11-28 08-45-45\001-0201.D Sample Name: LGY-1-48

acq. Operator				Seq. Line			
Acq. Instrument	: 1260HPL	C-VWD		Location	: Vial l		
Injection Date	: 11/28/2	017 8:59:18	AM	-	: 1		
Acq. Method			48\LGY-1-48		: 5.000 μl 08-45-45\VW	D-AD(1-2)-90-10-	-1ML-
last changed		NM-60MIN.M 017 8:45:45	AM by SVSTR	.м			
-			-		08-45-45\VW	D-AD(1-2)-90-10-	IML-
		MM-60MIN.M (,,	
ast changed.		18 2:34:27 H ed after los		I			
Additional Info				× 47 44 × 00 00 45	48-004-0004-D)		
www.mau]	svelength=220 nr	n (E:\DATA\LGY\LG	07-1-481LGY-1-482	017-11-28-08-46-4	46VUU1-0201.D)		
-							
100 -							
-							
50 -		88 88		ø			
		Ä		8 8 8 8 8			
0-				A			
-		[]		11			
1		[]		11			
-		()	l	[]			
-50 -				$ \rangle$			
			<u> </u>				
-100 20	25			35	40	45	· · mi
		Area Percent 	-				
orted By	:	Signal					
Multiplier	-	1.0000					
ilution	:	1.0000					
)o not use Mult:	iplier & D	ilution Fact	or with IST	Ds			
öignal l: VWDl∦	A, Wavelen	yth=220 nm					
eak RetTime Typ	pe Width	Area	Height	Area			
# [min]	[min]	[mAU*s]	[mAU]	* .			
 1 29.838 BB							
2 34.839 BB							
Fotals :		9485.28906	204.63777				
		*** End of	Report ***				
		DE CACTER				Page 1 of 1	

1260HPLC-VWD 4/13/2018 2:34:39 PM SYSTEM

HPLC of 2d

Data File E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\052-2401.D Sample Name: LGY-1-95-8

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 24 Location : Vial 52 Injection Date : 1/12/2018 1:20:36 AM inj : . Inj Volume : 5.000 μl Acq. Method : E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\VWD-AD(1-2)-90-10-1ML-5UL-220NM-60MIN.M Last changed : 1/11/2018 9:58:22 AM by SYSTEM Analysis Method : E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\VWD-AD(1-2)-90-10-1ML-5UL-220NM-60MIN.M (Sequence Method) : 4/13/2018 2:41:55 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E\DATA\LGYL-95\LGY-1-95\LGY-1-95\LGY-1-109-00-29052-2401.D) mAU 600 500 35.019 400 300 200 100 80028 0 25 275 35 375 40 45 min зò 32.5 42.5 -----Area Percent Report -----Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] # [min] ÷ # [min] [mAU*s] ----|-----|----|-----|-----|-----1 1 30.029 BB 0.6273 273.22952 6.62337 1.5151 2 35.019 BB 0.7703 1.77611e4 347.47638 98.4849 1.80343e4 354.09975 Totals : *** End of Report ***

1260HPLC-VWD 4/13/2018 2:42:05 PM SYSTEM

HPLC of racemic-2e

Data File E:\DATA\LGY\LGY-1-43-RE\LGY-1-43-RE 2017-11-21 20-17-16\001-0201.D Sample Name: LGY-1-43-2

```
Acq. Operator : SYSTEM
                                       Seg. Line :
                                                    - 2
                                         Location : Vial 1
Acq. Instrument : 1260HPLC-VWD
Injection Date : 11/21/2017 8:28:50 PM
                                             Inj: 1
                                        Inj Volume : 5.000 µl
            : E:\DATA\LGY\LGY-1-43-RE\LGY-1-43-RE 2017-11-21 20-17-16\VWD-AD(1-2)-90-
Acq. Method
10-1ML-5UL-220NM-80MIN.M
Last changed : 11/21/2017 8:17:16 PM by SYSTEM
Analysis Method : E:\DATA\LGY\LGY-1-43-RE\LGY-1-43-RE 2017-11-21 20-17-16\VWD-AD(1-2)-90-
              10-1ML-5UL-220NM-80MIN.M (Sequence Method)
           : 4/13/2018 2:45:27 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak (s) manually integrated

VWD1A, Wavelength=220 nm (E:\DATA\LGY143-RE\LGY143-RE 2017-11-21 20-17-16/001-0201.D)
  mAU
   120 -
   100
    80 1
    60
                        40.308
                                                     56.502
    40 -
    20
    0
                                                           60
                                                                    65
     က်
                       40
                                         50
                                                  55
              35
                                45
                                                                            min
Area Percent Report
-----
                                   .........................
Sorted By
                        Signal
                  :
                      اعمر
1.0000
Multiplier
              :
                        1.0000
Dilution
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width
                      Area
                               Height
                                         Area
 #
    [min]
               [min]
                      [mAU*s]
                                [mAU]
                                          *
1 40.308 BB 0.8700 2698.65698 46.85027 49.7331
2 56.502 BB 1.2107 2727.62354 33.54262 50.2669
Totals :
                      5426.28052 80.39289
*** End of Report ***
```

1260HPLC-VWD 4/13/2018 2:45:37 PM SYSTEM

HPLC of 2e

Data File E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\053-2501.D Sample Name: LGY-1-95-9

	Operator :				Seq. Line				
wed.	Instrument :	1260HPL	C-VWD		Location		3		
Injed	ction Date :	1/12/203	18 2:21:26 A	AM	Inj	: 1			
					Inj Volume				
Acq.	Method :			95\LGY-1-95	2018-01-11	09-00-29	\VWD-AD	(1-2)-90-10	0-1MJ
	-h		MM-70MIN.M						
	changed : ysis Method :			AM by SYSTEM		00-00-20		(1-2)-00-10	
Anary	ysis neunou :			(Sequence Me		09-00-29	VAMD-WD	(1-2)-90-10) – 111
Last	changed :			PM by SYSTEM					
	-		ed after log						
Addit	tional Info :								
	-	elength≓220 nπ	n (E:\DATA\LGY\L(9Y-1-95VLGY-1-952	018-01-11 09-00-	29/053-2501.0	")		
m	AU								
	1								
ε	300-								
	1								
	1								
6	500 -								
	1								
	+00-								
'	™ <u> </u>		6						
	-		0488. BUS						
3	300-]		4						
	1		842						
	1		- 11						
2	200 -		- A						
	1		- 1 (
	100 -		- { }						
'	····]		- [\			Q			
	-		$ \rangle$			56.882			
	0		₋∠≻┭_		<u>_</u>				
1	01								
	°↓ ↓	35	40		50	55	60		
	1	35	40		50	55	60	 65	
	30								
	1								
	1 30	i	Area Percent						
	1 	i	Area Percent	t Report					- - -
===== Sorte	1	:	Area Percent Signal	t Report					
===== Sorte Multi	d By iplier		Area Percent Signal 1.0000	t Report				65	- · · ·
===== Sorte Multi Diluț	and by the set of the	:	Area Percent Signal 1.0000 1.0000	t Report				65	
===== Sorte Multi Diluț	d By iplier	:	Area Percent Signal 1.0000 1.0000	t Report					- . -
===== Sorte Multi Diluț	and by the set of the	:	Area Percent Signal 1.0000 1.0000	t Report					- · · ·
Sorte Multi Dilut Do no	and by the set of the	: : : : : : : : :	Area Percent Signal 1.0000 1.0000 ilution Fact	t Report					
Sorte Multi Dilui Do no Signa	al 1: VWD1 A,	: : : blier & D: , Wavelen(Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm	t Report					· · ·
Sorte Multi Dilui Do no Signa Peak	al 1: VWD1 A, RetTime Type	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area	t Report tor with IST Height	Ds Area				
===== Sorte Multi Dilui Do no Signa Signa Peak #	al 1: VWD1 A, RetTime Type [min]	j j i j j j j j j j j j j j j j j j j j	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s]	t Report tor with IST Height [mAU]	 Ds Area				<u> </u>
Sorta Multi Dilui Do no Signa Peak #	al 1: VUD1 A, RetTime Type [min]	: : : olier & D: , Waveleng e Width [min]	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s]	t Report tor with IST Height [mAU]	Ds Area				
Sorta Multi Dilui Do no Signa Peak # 1	al 1: VWD1 A, [min] [min] [min] [min] [min] [min]	: : : : : : : : : : : : : : : : : : :	Area Percent Signal 1.0000 ilution Fact gth=220 nm Area [mAU*s] 1.60755e4	t Report tor with IST Height [mAU] 261.68359	Ds Area % 1 98.2730				
Sorta Multi Dilui Do no Signa Peak # 1	al 1: VUD1 A, RetTime Type [min]	: : : : : : : : : : : : : : : : : : :	Area Percent Signal 1.0000 ilution Fact gth=220 nm Area [mAU*s] 1.60755e4	t Report tor with IST Height [mAU] 261.68359	Ds Area % 1 98.2730				
Sorta Multi Dilui Do no Signa Peak # 1	al 1: VWD1 A, RetTime Type [min] 	: : : : : : : : : : : : : : : : : : :	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s] 1.60755e4 282.50827	t Report tor with IST Height [mAU] 261.68359	Ds Area % 1 98.2730				
Sorte Multi Dilui Do no Signa Peak # 	al 1: VWD1 A, RetTime Type [min] 	: : : : : : : : : : : : : : : : : : :	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s] 1.60755e4 282.50827	t Report tor with IST Height [mAU] 261.68359 2.90835	Ds Area % 1 98.2730				<u> </u>
Sorte Multi Dilui Do no Signa Peak # 1 1 2 Total	al 1: VUD1 A, RetTime Type [min] 	: : : : : : : : : : : : : : : : : : :	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s] 1.60755e4 282.50827 1.63580e4	ter with IST Height [mAU] 261.68359 2.90835 264.59194	Ds Area * 				<u> </u>
Sorte Multi Dilui Do no Signa Peak # 1 1 2 Total	al 1: VWD1 A, RetTime Type [min] 	: : : : : : : : : : : : : : : : : : :	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s] 1.60755e4 282.50827 1.63580e4	t Report tor with IST [mAU] 261.68359 2.90835 264.59194	Ds Area * 				
Sorte Multi Dilui Do no Signa Peak # 1 1 2 Total	al 1: VUD1 A, RetTime Type [min] 	: : : : : : : : : : : : : : : : : : :	Area Percent Signal 1.0000 1.0000 ilution Fact gth=220 nm Area [mAU*s] 1.60755e4 282.50827 1.63580e4	ter with IST Height [mAU] 261.68359 2.90835 264.59194	Ds Area * 				<u> </u>

HPLC of racemic-2f

Data File E:\DATA\LGY\LGY-1-30\LGY-1-30 2017-11-18 09-16-49\003-0701.D Sample Name: LGY-1-30-3

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 7 Location : Vial 3 Injection Date : 11/18/2017 2:32:24 PM Inj: 1 Inj Volume : 5.000 µl Acq. Method : E:\DATA\LGY\LGY-1-30\LGY-1-30 2017-11-18 09-16-49\VWD-AD1-2)-90-10-1ML-5UL-220NM-120MIN.M Last changed : 11/18/2017 3:20:37 PM by SYSTEM (modified after loading) Analysis Method : E:\DATA\LGY\LGY-1-30\LGY-1-30 2017-11-18 09-16-49\VWD-AD1-2)-90-10-1ML-5UL-220NM-120MIN.M (Sequence Method) : 4/13/2018 2:55:30 PM by SYSTEM Last changed (modified after loading) mALL 250 200 -150 -29.217 31.436 100 **50** · 0 24 26 зò 32 34 38 min 28 Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] [mAU*s] [mAU] # [min] * 1 29.217 BV 0.7098 5531.45459 118.23405 49.8168 2 31.436 VB 0.7460 5572.14600 113.45072 50.1832 Totals : 1.11036e4 231.68477

1260HPLC-VWD 4/13/2018 2:55:40 PM SYSTEM

HPLC of 2f

Data File E:\DATA\LGY\LGY-1-99\LGY-1-99 2018-01-17 23-28-41\011-0301.D Sample Name: LGY-1-99-1

						=		
Acq. Operator	: SYSTEM			Seq. Line				
Acq. Instrument			8. HF		: Vial 11			
Injection Date	: 1/18/20	18 12:11:03			: 1 : 5.000 µl	1		
Acq. Method		LGY\LGY-1-9 MM-40MIN.M		-			1-2)-90-10-11	IL-
Last changed			PM by SYSTE	м				
Analysis Method			-		23-28-41\\	WD-AD (J	1-2)-90-10-11	IL-
	5UL-2201	MM-40MIN.M	(Sequence Me	thod)				
Last changed	(modifi)	ed after loa						
Additional Info			1tegrated 37:1-99%L67:1-992	040.04.47.22.20	44\014.0204.D)			
mAU]	verengu – 220 m	II(E.SDATAEOTIES	/1-1-8812/01-1-88/2	01001-17 2020	41011-0301.0)			
1750 -								
1								
1500 -								
1250 -								
1								
1000 -				31.082				
-				Ĕ				
1				\wedge				
750 -				= 1				
1								
500 -				- I \				
					١			
1				1	/			
250 -			5	{	\			
1			29.051		1			
o‡				\rightarrow				
22	24	26	28	30	32	34	36	п
<u></u>	27	20						
		Area Percent	_			=		
			-			=		
forted By	:	Signal						
Multiplier		1.0000						
ilution		1.0000						
o not use Multi	plier & D:	ilution Fact	or with IST	Ds				
Signal 1: VWD1 A	, Wavelen	gth=220 nm						
	o Usider	hr	Voicht	dro-				
eak RetTime Typ?		Area [w/Wtal	Height	Area %				
# [min] 	[min]	[mAU*s]	[mAU]					
1 29.051 BV			20.34970	2.0434				
2 31.082 VB		4.35909e4						
Cotals :		4.45002e4	894.25967					
			Report ***			=		
		and OL	Keport """					
							Degra 1 of 1	

1260HPLC-VWD 4/13/2018 3:01:09 PM SYSTEM

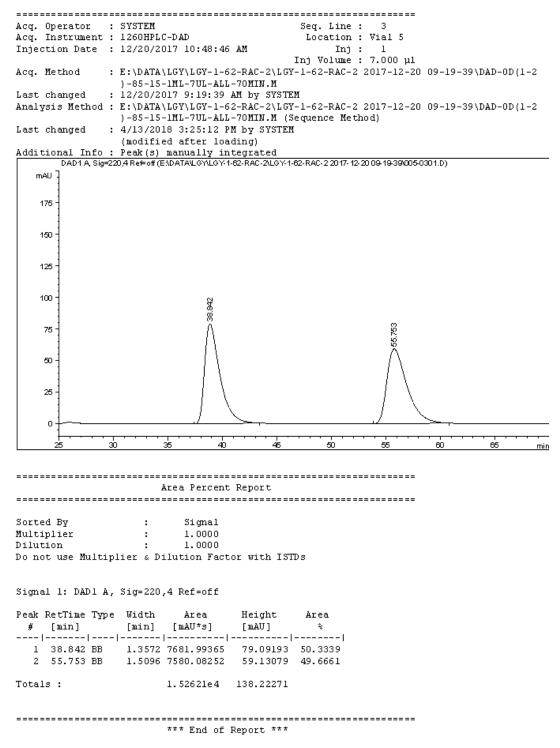
HPLC of racemic-2g

Data File E:\DATA\LGY\LGY-1-43-RE-1\LGY-1-43-RE-1 2017-11-22 08-15-14\001-0401.D Sample Name: LGY-1-43-3--RE

Acq. Operator	: SYSTEM Seq. Line : 4	
Acq. Instrument	: 1260HPLC-VWD Location : Vial 1 : 11/22/2017 10:40:29 AM Inj : 1	
injection pace	Inj Volume : 5.000 µl	
Acq. Method	: E:\DATA\LGY\LGY-1-43-RE-1\LGY-1-43-RE-1 2017-11-22 08-15-14\VWD-AD.	1-2)-
	90-10-1ML-5UL-220NM-120MIN.M	
last changed	: 11/22/2017 10:25:44 AM by SYSTEM	
Analysis Method	: E:\DATA\LGY\LGY-1-43-RE-1\LGY-1-43-RE-1 2017-11-22 08-15-14\VWD-AD.	1-2)-
Last changed	90-10-1ML-5UL-220NM-120MIN.M (Sequence Method) : 4/13/2018 3:11:26 PM by SYSTEM	
	(modified after loading)	
	: Peak(s) manually integrated velength=220 nm(E:\DATA\LGY\LGY\LGY\-143-RE1\LGY\-143-RE1 2017-11-22 08-15-14001-0401.D)	
mAU]	verengun-220 mm (cho Analco nico ni nasi nico ni nasi nico ni nasi nici ni zizi doni si nado noa nico)	
1		
1		
100 -		
1		
1		
80-		
-		
-		
® -		
]	4	
-	in the second se	
40 -		
1		
]	Λ Ň	
20 -		
₀		
-	· · · · · · · · · · · · · · · · · · ·	_, ,
30	35 40 45 50 56	mir
	Area Percent Report	
Sorted By	Circus I	
Multiplier	: Signal : 1.0000	
Dilution	: 1.0000	
	plier & Dilution Factor with ISTDs	
Signal 1: VWD1 A	., Wavelength=220 nm	
	•••••••••	
Peak RetTime Typ		
# [min]	[min] [mAU*s] [mAU] %	
1 42.227 MM		
	1.0459 1983.48608 28.43331 50.4683	
ſotals :	3930.15967 60.92780	
	*** Red of Recent ***	
	*** End of Report ***	

1260HPLC-VWD 4/13/2018 3:11:31 PM SYSTEM

HPLC of 2g


Data File E:\DATA\LGY\LGY-1-99\LGY-1-99 2018-01-17 23-28-41\012-0401.D Sample Name: LGY-1-99-2

Acq. Operator : SYSTEM Seq. Line : 4 Acq. Instrument : 1260HPLC-VWD Location : Vial 12 Injection Date : 1/18/2018 12:51:51 AM Inj : 1 Inj Volume : 5.000 µl	
Injection Date : 1/18/2018 12:51:51 AM Inj : 1	
In Volume : 5.000 vi	
Acq. Method : E:\DATA\LGY\LGY-1-99\LGY-1-99 2018-01-17 23-28-41\VWD-AD(1-2)-90	0-10-1ML-
5UL-220NM-60MIN.M Last changed : 1/17/2018 11:28:42 PM by SYSTEM	
Analysis Method : E:\DATA\LGY\LGY-1-99\LGY-1-99 2018-01-17 23-28-41\VWD-AD(1-2)-90	0-10-1ML-
5UL-220NM-60MIN.M (Sequence Method)	
Last changed : 4/13/2018 3:16:25 PM by SYSTEM (modified after loading)	
Additional Info : Peak(s) manually integrated	
VWD1 A, W avelength=220 nm (E:\DATA\LGY\LGY-1-99\LGY-1-99\LGY-1-99 2018-01-17 23-28-41\012-0401.D)	
mAU .	
1400 -	
1200 -	
- 000	
1000 -	
5	
800 - 8	
Λ	
600	
400 -	
200-	
	 mir
Area Percent Report	
Area Percent Report	
Area Percent Report	
Area Percent Report Sorted By : Signal	
Area Percent Report Sorted By : Signal Multiplier : 1.0000	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %	
Area Percent Report Sorted By : Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU] *	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU] *	
Area Percent Report Sorted By : Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU] *	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU] *	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU*s] [mAU]	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU*s] [mAU]	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] [mAU]	
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [mAU]	

1260HPLC-VWD 4/13/2018 3:16:32 PM SYSTEM

HPLC of racemic-2h

Data File E:\DATA\LGY\LGY-1-62-RAC-2\LGY-1-62-RAC-2 2017-12-20 09-19-39\005-0301.D Sample Name: LGY-1-62-1

1260HPLC-VWD 4/13/2018 3:25:17 PM SYSTEM

HPLC of 2h

Data File E:\DATA\YCC\YCC-2018-01-17\YCC-233 2018-04-12 08-57-37\004-5001.D Sample Name: LGY-1-99-3

Acq. Operator : SYSTEM Seq. Line : 50 Location : Vial 4 Acq. Instrument : 1260HPLC-DAD Injection Date : 4/13/2018 8:38:57 AM Inj: 1 Inj Volume : 7.000 µl : E:\DATA\YCC\YCC-2018-01-17\YCC-233 2018-04-12 08-57-37\DAD-0D(1-2)-85-15 Acq. Method -1ML-7UL-ALL-70MIN.M Last changed : 4/12/2018 8:57:25 PM by SYSTEM Analysis Method : E:\DATA\YCC\YCC-2018-01-17\YCC-233 2018-04-12 08-57-37\DAD-0D(1-2)-85-15 -1ML-7UL-ALL-70MIN.M (Sequence Method) : 4/13/2018 3:30:25 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated DAD1A Sig=220,4 Re≠off (ENDATANYCCVCC-2018 01-17/YCC-233 2018 04 12 08-57-37/0045001.D) mAU 2000 36.413 1500 1000 500 62.515 0 зò 35 μ'n. 45 ഞ ஸ் 55 65 25 min Area Percent Report _____ Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=220,4 Ref=off Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----1 1 35.413 BB 1.2040 1.13739e5 1290.86548 97.4011 2 52.515 BB 1.2788 3034.80859 27.77357 2.5989 Totals : 1.16774e5 1318.63905 *** End of Report ***

1260HPLC-VWD 4/13/2018 3:30:36 PM SYSTEM

HPLC of racemic-2i

Data File E:\DATA\LGY\LGY-1-89\LGY-1-89 2017-12-28 08-35-12\041-0201.D Sample Name: LGY-1-89-RAC

Acq. Operator : SYSTEM Seq. Line : 2 Acq. Instrument : 1260HPLC-VWD Location : Vial 41 Injection Date : 12/28/2017 9:09:00 AM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\LGY\LGY-1-89\LGY-1-89 2017-12-28 08-35-12\VWD-AS(1-6)-80-20-1ML-Acq. Method 5UL-220NM-90MIN.M : 12/28/2017 10:31:49 AM by SYSTEM Last changed (modified after loading) Analysis Method : E:\DATA\LGY\LGY-1-89\LGY-1-89 2017-12-28 08-35-12\VWD-AS(1-6)-80-20-1ML-5UL-220NM-90MIN.M (Sequence Method) : 4/13/2018 3:35:12 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATA\LGY\LGY\-1-89\LGY-1-89\LGY-1-89 2017-12-28 08:35-120041-0201.D) mAU 160 -140 -120 -100 -80 -60 · 3038.01 8 40 222 20 0 40 45 50 55 60 65 70 min 35 -----Area Percent Report -Sorted By Simmal : 1.0000 Multiplier : Dilution 1.0000 : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] # [min] * ----1 1 46.942 BB 1.3121 3043.56836 34.98038 50.0622 2 58.755 MM 1.9840 3036.00806 25.50352 49.9378 Totals : 6079.57642 60.48391

1260HPLC-VWD 4/13/2018 3:35:23 PM SYSTEM

HPLC of 2i

Data File E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 09-06-53\045-0801.D Sample Name: LGY-1-95-11-RE

Acq. Operator	: SYSTEM Seq. Line : 8
-	: 1260HPLC-VWD Location : Vial 45
Injection Date	: 1/13/2018 3:01:51 PM Inj : 1
Acq. Method	Inj Volume : 5.000 µl : E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 09-06-53\VWD-AS(1-6)-80-20-
Last changed	1ML-5UL-220NM-75MIN.M : 1/13/2018 9:06:54 AM by SYSTEM
-	: E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 09-06-53\VWD-AS(1-6)-80-20-
-	1ML-5UL-220NM-75MIN.M (Sequence Method)
Last changed	: 4/13/2018 3:50:00 PM by SYSTEM (modified after loading)
	: Peak(s) manually integrated
_	avelength=220 nm (E:\DATA\LGY\LGY-1-95\LGY-1-95\RE 2018-01-13 09-06-53\045-0801.D)
mAU .	
160-	
140-	
120	
100-]	and the second s
]	a contraction of the second
80-	\wedge
]	$\left\{ \right\}$
0	
40-]	
20-]	State and the second
1	
0	
40	46 50 56 60 65 70 mi
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Mult	iplier & Dilution Factor with ISTDs
Signal 1: VMD1	A, Wavelength=220 nm
	,
	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
	2.0249 1.03487e4 85.17876 91.6677 2.4811 940.65881 6.31878 8.3323
2 07.979 MI	2.4011 940.00001 0.01070 0.0320
Totals :	1.12894e4 91.49755
	*** End of Report ***
	Ind of Acporto

1260HPLC-VWD 4/13/2018 3:50:20 PM SYSTEM

HPLC of racemic-2j

Data File E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 18-47-33\064-0701.D Sample Name: LGY-1-94-1-RA

Acq. Operator : SYSTEM Seq. Line : 7 Location : Vial 64 Acq. Instrument : 1260HPLC-VWD Injection Date : 1/14/2018 2:53:48 AM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 18-47-33\VWD-AS(1-6)-80-20-Acg. Method
 IML-5UL-220NM-90MIN.M

 Last changed
 : 1/13/2018 6:47:33 PM by SYSTEM
 Analysis Method : E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 18-47-33\VWD-AS(1-6)-80-20-1ML-5UL-220NM-90MIN.M (Sequence Method) Last changed : 4/13/2018 5:11:04 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1 A, Wavelength=220 nm (E:\DATA\LGY\LGY\1-95\LGY-1-95\LGY-1-95-RE 2018-01-13 18-47-33\064-0701.D) mAU] 200 26.319 150 Strate Barries 100 -50 0 ஸ். ഞ 20 30 40 min Area Percent Report -Sorted By Signal : : 1.0000 Multiplier Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] * ----|-----|-----|----|----|-----| 1 26.319 BB 0.7423 6276.41748 127.73354 50.2344 2 57.365 MM 1.6722 6217.85449 61.97150 49.7656 1.24943e4 189.70504 Totals : *** End of Report ***

1260HPLC-VWD 4/13/2018 5:11:14 PM SYSTEM

HPLC of 2j

Data File E:\DATA\LGY\LGY-1-99\LGY-1-99 2018-01-18 18-48-43\012-0801.D Sample Name: LGY-1-99-5-RE-1

Acq. Instrument :	SYSTEM 1260HPLC-VMD		Seq. Line Location	: o : Vial 12		
-	1/19/2018 12:35:40	АМ		: 1		
injection bace .	1,15,2010 12:00.40		Inj Volume			
Acq. Method :	E:\DATA\LGY\LGY-1- 5UL-220NM-70MIN.M	99\LGY-1-99	-)-AS(1-6)-80-20-1	ML-
Last changed :	1/18/2018 6:48:44	PM by SYSTEM	[
Analysis Method :	E:\DATA\LGY\LGY-1- 5UL-220NM-70MIN.M			18-48-43\VWI	-AS(1-6)-80-20-1	ML-
Last changed :	4/13/2018 5:15:55 2 (modified after log	PM by SYSTEM				
Additional Info :	Peak(s) manually in					
VWD1 A, W <i>a</i> vel	ength=220 nm (E:\DATA\LGY\LG	3Y-1-99VLGY-1-99-2	2018-01-18 18-48-4	43\012-0801.D)		
mAU]						
250 -						
200-						
150 -	8					
	88					
1	81 A					
100 -	1					
	()					
50-]]					
50-					ę	
50-					4.046	
50 - - - 					64.945	
			· · · · ·		64.945	
					09 	
0	30				· · · · · ·	- ,
0-	30			-	· · · · · ·	- , min
0-				-	· · · · · ·	 min
		t Report			· · · · · ·	
	Area Percen	t Report			· · · · · ·	
	Area Percen : Signal	t Report			· · · · · ·	
	Area Percen	t Report			· · · · · ·	
Sorted By Multiplier Dilution	Area Percen : Signal : 1.0000 : 1.0000	t Report			· · · · · ·	
Sorted By Multiplier Dilution	Area Percen : Signal : 1.0000	t Report			· · · · · ·	- ,
Sorted By Multiplier Dilution	Area Percen : Signal : 1.0000 : 1.0000	t Report			· · · · · ·	
Sorted By Multiplier Dilution Do not use Multip.	Area Percen : Sigmal : 1.0000 : 1.0000 lier & Dilution Fac	t Report			· · · · · ·	
Sorted By Multiplier Dilution Do not use Multip.	Area Percen : Signal : 1.0000 : 1.0000	t Report			· · · · · ·	
Sorted By Multiplier Dilution Do not use Multip. Signal 1: VWD1 A,	Area Percen : Signal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm	t Report	Ds		· · · · · ·	
Sorted By Multiplier Dilution Do not use Multip. Signal 1: VWD1 A, Peak RetTime Type	Area Percen : Signal : 1.0000 : 1.0000 lier « Dilution Fac Wavelength=220 nm Width Area	t Report tor with IST Height	Ds Area		· · · · · ·	 min
Sorted By Multiplier Dilution Do not use Multip. Signal 1: VWD1 A, Peak RetTime Type # [min]	Area Percen : Signal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s]	t Report tor with IST Height [mAU]	Ds Area		· · · · · ·	 min
Sorted By Multiplier Dilution Do not use Multip. Signal 1: VWD1 A, Peak RetTime Type # [min]	Area Percen : Signal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s]	t Report tor with IST Height [mAU]	Ds Area %		· · · · · ·	
Sorted By Multiplier Dilution Do not use Multip. Signal 1: VWD1 A, Peak RetTime Type # [min] 	Area Percen : Signal : 1.0000 : 1.0000 lier « Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s] 	t Report tor with IST Height [mAU] 119.24654	Ds Area * 1 93.9898		· · · · · ·	
Sorted By Multiplier Dilution Do not use Multip. Signal 1: VWD1 A, Peak RetTime Type # [min]	Area Percen : Signal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s] 	t Report tor with IST Height [mAU] 119.24654	Ds Area %		· · · · · ·	 min
Sorted By Multiplier Dilution Do not use Multip. Signal 1: VWD1 A, Peak RetTime Type # [min] 	Area Percen : Sigmal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s] 0.8552 6747.79639 1.2595 431.48953	t Report tor with IST Height [mAU] 119.24654 4.03849	Ds Area * 1 93.9898		· · · · · ·	
Sorted By Multiplier Dilution Do not use Multip. Signal 1: VWD1 A, Peak RetTime Type # [min] 	Area Percen : Sigmal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s] 0.8552 6747.79639 1.2595 431.48953	t Report tor with IST Height [mAU] 119.24654	Ds Area * 1 93.9898		· · · · · ·	
Sorted By Multiplier Dilution Do not use Multip. Signal 1: VWD1 A, Peak RetTime Type # [min] 	Area Percen : Sigmal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s] 0.8552 6747.79639 1.2595 431.48953	t Report tor with IST Height [mAU] 119.24654 4.03849	Ds Area * 1 93.9898		· · · · · ·	
Sorted By Multiplier Dilution Do not use Multipl Signal 1: VWD1 A, Peak RetTime Type # [min] 	Area Percen : Sigmal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s] 0.8552 6747.79639 1.2595 431.48953	Height [mAU] 119.24654 123.28502	Ds Area * 		· · · · · ·	
Sorted By Multiplier Dilution Do not use Multipl Signal 1: VWD1 A, Peak RetTime Type # [min] 	Area Percen : Signal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s] 0.8552 6747.79639 1.2595 431.48953 7179.28592	Height [mAU] 119.24654 123.28502	Ds Area * 		· · · · · ·	
Sorted By Multiplier Dilution Do not use Multipl Signal 1: VWD1 A, Peak RetTime Type # [min] 	Area Percen : Signal : 1.0000 : 1.0000 lier & Dilution Fac Wavelength=220 nm Width Area [min] [mAU*s] 0.8552 6747.79639 1.2595 431.48953 7179.28592	t Report tor with IST [mAU] 119.24654 4.03849 123.28502	Ds Area * 		· · · · · ·	

1260HPLC-VWD 4/13/2018 5:16:41 PM SYSTEM

HPLC of racemic-2k

Data File E:\DATA\YJX\YJX-1-93\YJX-1-93 2018-03-28 09-24-48\041-1301.D Sample Name: LGY-1-130-RA

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 13 Location : Vial 41 Injection Date : 3/28/2018 3:52:49 PM Inj: 1 Inj Volume : 5.000 µl Acq. Method : E:\DATA\YJX\YJX-1-93\YJX-1-93 2018-03-28 09-24-48\VWD-AS(1-6)-80-20-1ML-5UL-220NM-90MIN.M Last changed : 3/28/2018 9:59:05 AM by SYSTEM Analysis Method : E:\DATA\YJX\YJX-1-93\YJX-1-93 2018-03-28 09-24-48\VWD-AS(1-6)-80-20-1ML-5UL-220NM-90MIN.M (Sequence Method) : 4/26/2018 9:45:39 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATA\V)XYJX 1-93 YJX 1-93 2018-03-29 09-24480041-1301.D) mAU 140 120 -24.479 100 -80 -82 60 · ĝ 40 -20 n. . . . ź άō 15 25 зò зŚ 46 ை 55 min Area Percent Report -----Sorted By Signal : 1.0000 Multiplier : Dilution 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] # [min] * 1 24.479 BB 0.6556 4785.61572 111.09396 49.9677 2 43.482 BB 1.1908 4791.80518 60.91084 50.0323 9577.42090 172.00481 Totals : *** End of Report ***

1260HPLC-VWD 4/26/2018 9:45:50 PM SYSTEM

HPLC of 2k

Data File E:\DATA\LGY\LGY-1-153\LGY-1-153 2018-04-19 21-33-46\022-3301.D Sample Name: LGY-1-154-2

```
Acq. Operator : SYSTEM
Acq. Instrument : 1260HPLC-VWD
                                        Seq. Line : 33
                                         Location : Vial 22
Injection Date : 4/21/2018 12:45:12 AM
                                           Inj: 1
                                       Inj Volume : 5.000 μl
            : E:\DATA\LGY\LGY-1-153\LGY-1-153 2018-04-19 21-33-46\VWD-AS(1-6)-80-20-
Acg. Method
1ML-5UL-220NM-90MIN.M
Last changed : 4/19/2018 9:33:47 PM by SYSTEM
Analysis Method : E:\DATA\LGY\LGY-1-153\LGY-1-153 2018-04-19 21-33-46\VWD-AS(1-6)-80-20-
               1ML-5UL-220NM-90MIN.M (Sequence Method)
Last changed
             : 4/26/2018 9:53:18 PM by SYSTEM
               (modified after loading)
Additional Info : Peak(s) manually integrated

VWD1A, Wavelength=220 nm (E:\DATALGYLGY-1-153LGY-1-1532018-04-19-21-33-46022-3301.D)
   mAU
   500
   400
                   38
   300 -
                   \mathbf{b}
   200 -
   100 -
                                                             6
                                                             ĝ
    0
                                                                     55
              25
                        30
                                          40
                                                            50
      ź'n
                                 35
                                                   46
                                                                             min
_____
                     Area Percent Report
Sorted By
                  :
                        Signal
                       1.0000
Multiplier
               :
                        1.0000
Dilution
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width
                      Area
                               Height
                                         Area
# [min] [mAU*s] [mAŪ] %
  1 27.236 BB 0.7804 1.32302e4 259.66959 95.8221
2 50.573 BB 1.1083 576.84888 7.01531 4.1779
Totals :
                      1.38071e4 266.68490
*** End of Report ***
```

1260HPLC-VWD 4/26/2018 9:53:26 PM SYSTEM

HPLC of racemic-2l

Data File E:\DATA\LGY\LGY-1-161\LGY-1-161 2018-04-25 10-36-34\011-0301.D Sample Name: LGY-1-161

```
Acq. Operator : SYSTEM
Acq. Instrument : 1260HPLC-VWD
                                        Seq. Line :
                                                      3
                                          Location : Vial 11
Injection Date : 4/25/2018 11:21:38 AM
                                              Inj : 1
                                         Inj Volume : 5.000 µl
Acq. Method
             : E:\DATA\LGY\LGY-1-161\LGY-1-161 2018-04-25 10-36-34\VWD-AS(1-6)-80-20-
1ML-5UL-220NM-90MIN.M
Last changed : 4/25/2018 10:36:35 AM by SYSTEM
Analysis Method : E:\DATA\LGY\LGY-1-161\LGY-1-161 2018-04-25 10-36-34\VWD-AS(1-6)-80-20-
               1ML-5UL-220NM-90MIN.M (Sequence Method)
            : 4/26/2018 9:55:57 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak(s) manually integrated

VWD1A, Wavelength=220 nm (E:\DATALGYLGY1-161\LGY-1-161\2018-04-2510-36-34011-0301.D)
   mAU
   600 -
   500 -
                            8
   400 ·
                            2
   300 -
                                                       41.731
   200 -
   100 -
    0
                                                                         . . .
                                                             45
                                                                      ώ.
                        25
                                           35
                                                    μ'n.
                                 зò
      15
               20
                                                                              min
Area Percent Report
-----
Sorted By
                         Signal
                   :
                       1.0000
Multiplier
                 :
                         1.0000
Dilution
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width
                      Area
                                Height
                                           Area
                [min]
                       [mAU*s]
                                 [mAU]
 #
    [min]
                                            *
---- | ---- --- | ----
              1 27.139 BB 0.8775 2.18521e4 375.71609 49.9349
2 41.731 BB 1.4134 2.19090e4 231.87233 50.0651
                      4.37611e4 607.58842
Totals :
*** End of Report ***
```

1260HPLC-VWD 4/26/2018 9:56:06 PM SYSTEM

HPLC of 21

Data File E:\DATA\LGY\LGY-1-162\LGY-1-162 2018-04-26 14-42-05\072-0401.D Sample Name: LGY-1-162-2

-	Operator :	SYSTEM	Seq.	Line :	4			
Tanàna		1260HPLC-VWD	Loc		Vial 72			
injec	tion Date :	4/26/2018 4:25:20 PM		Inj:				
	Washing d	P.) D.1011 1 000 1 000 1 0 000			5.000 µl			
Acq. 1	Method :	E:\DATA\LGY\LGY-1-162		.8-04-26	14-42-03	o∖VWD-AS	(1-6)-80-2	U-
Lavt -	changed :	1ML-5UL-220NM-60MIN.M 4/26/2018 2:42:05 PM						
	-	4/26/2018 2:42:05 PM E:\DATA\LGY\LGY-1-162	-	8-04-26	14-42-04	51 VIIID - 4 9	(1-6)-80-2	n-
Andr 1	bib neanod .	1ML-5UL-220NM-60MIN.M			14 46 00	NITED HO	(1 0) 00 2	°
Last	changed :	4/26/2018 10:00:14 PM		,				
		(modified after loadi	ng)					
Addit		Peak(s) manually inte						
	-	length=220 nm (E:\DATA\LGY\LGY-1	- 162/LGY-1- 162 2018-0	14 26 14 42-0	15\072-0401.D)		
mA	*** {							
	1							
3	50-1							
	1							
30	∞- <u> </u>							
]							
	so -	~						
2	~}	30.237						
	1	ы К						
20	∞ <u>+</u>	Д						
	1							
18	න - j	(\						
]	\						
	_]	{						
"	⁰⁰	1 \						
	1] {						
{	50 				8			
	1	f (47.42			
	o‡		1		-	- ,		
	-							
		<u> </u>			<u>.</u>	· · · · ·	· · · · · ·	
	· · · ·		5 40	4	6	50	55	
	20	25 30 3						
	20	25 30 3						
		25 30 3						
		Area Percent R	eport					
			eport					
		Area Percent R	eport					
===== Sorte	 d By	Area Percent R : Signal	eport					
===== Sorte	d By plier	Area Percent R	eport					
===== Sorte Multij Dilut	d By plier ion	Area Percent R : Signal : 1.0000	eport					
===== Sorte Multij Dilut	d By plier ion	Area Percent R : Signal : 1.0000 : 1.0000	eport					
===== Sorte Multij Dilut Do no	d By plier ion t use Multip	Area Percent R : Signal : 1.0000 : 1.0000 lier & Dilution Factor	eport					
===== Sorte Multij Dilut Do no	d By plier ion t use Multip	Area Percent R : Signal : 1.0000 : 1.0000	eport					
Sorte Multij Dilut Do no Signa	d By plier ion t use Multip l 1: VWD1 A,	Area Percent R : Signal : 1.0000 : 1.0000 lier & Dilution Factor Wavelength=220 nm	eport					
Sorte Multij Dilut Do no Signa Peak 1	d By plier ion t use Multip l 1: VWD1 A, RetTime Type	Area Percent R : Signal : 1.0000 : 1.0000 lier & Dilution Factor Wavelength=220 nm	eport with ISTDs Height Are	:======				
====== Sorte Multij Dilut Do no Signa Signa Peak 1 #	d By plier ion t use Multip l 1: VWD1 A, RetTime Type [min]	Area Percent R : Signal : 1.0000 : 1.0000 lier & Dilution Factor Wavelength=220 nm Width Area [min] [mAU*s]	eport with ISTDs Height Are [mAU] *	:				
===== Sorte Multij Dilut Do no Sigma Sigma Peak 1 # 	d By plier ion t use Multip l 1: VWD1 A, RetTime Type [min] 	Area Percent R : Signal : 1.0000 : 1.0000 lier & Dilution Factor Wavelength=220 nm	eport with ISTDs Height Are [mAU] ⁴	:a :1				
===== Sorte Multi; Do no Sigma Sigma Peak 1 # 1	d By plier ion t use Multip l 1: VWD1 A, RetTime Type [min] 30.237 BB	Area Percent R : Signal : 1.0000 : 1.0000 lier & Dilution Factor Wavelength=220 nm Width Area [min] [mAU*s] 	eport with ISTDs Height Are [mAU] * 	a; ; ;1;				
===== Sorte Multi; Do no Sigma Sigma Peak 1 # 1	d By plier ion t use Multip l 1: VWD1 A, RetTime Type [min] 30.237 BB	Area Percent R : Signal : 1.0000 : 1.0000 lier & Dilution Factor Wavelength=220 nm Width Area [min] [mAU*s] 0.9804 1.37557e4 2	eport with ISTDs Height Are [mAU] * 	a; ; ;1;				
===== Sorte Multi; Do no Sigma Sigma Peak 1 # 1	d By plier ion t use Multip l 1: VWD1 A, RetTime Type [min] 30.237 BB 47.742 BB	Area Percent R : Signal : 1.0000 : 1.0000 lier & Dilution Factor Wavelength=220 nm Width Area [min] [mAU*s] 0.9804 1.37557e4 2	eport with ISTDs Height Are [mAU] * 12.17484 95.6 7.19835 4.3	a; ; ;1;				
Sorte Multij Dilut Do no Signa Peak 1 # 1 2	d By plier ion t use Multip l 1: VWD1 A, RetTime Type [min] 30.237 BB 47.742 BB	Area Percent R : Signal : 1.0000 : 1.0000 lier « Dilution Factor Wavelength=220 nm Width Area [min] [mAU*s] 0.9804 1.37557e4 2 1.2271 632.47974	eport with ISTDs Height Are [mAU] * 12.17484 95.6 7.19835 4.3	a; ; ;1;				
Sorte Multij Dilut Do no Signa Peak) # 1 2 Total:	d By plier ion t use Multip ll 1: VWD1 A, RetTime Type [min] 30.237 BB 47.742 BB s :	Area Percent R : Signal : 1.0000 : 1.0000 lier « Dilution Factor Wavelength=220 nm Width Area [min] [mAU*s] 	eport with ISTDs [mAU] 3 	a 				
Sorte Multij Dilut Do no Signa Peak) # 1 2 Total:	d By plier ion t use Multip ll 1: VWD1 A, RetTime Type [min] 30.237 BB 47.742 BB s :	Area Percent R : Signal : 1.0000 : 1.0000 lier & Dilution Factor Wavelength=220 nm Width Area [min] [mAU*s] 0.9804 1.37557e4 2 1.2271 632.47974 1.43881e4 2	eport with ISTDs [mAU] = 12.17484 95.6 7.19835 4.3 19.37319	a 				
Sorte Multij Dilut Do no Signa Peak) # 1 2 Total:	d By plier ion t use Multip ll 1: VWD1 A, RetTime Type [min] 30.237 BB 47.742 BB s :	Area Percent R : Signal : 1.0000 : 1.0000 lier « Dilution Factor Wavelength=220 nm Width Area [min] [mAU*s] 	eport with ISTDs [mAU] = 12.17484 95.6 7.19835 4.3 19.37319	a 				

HPLC of racemic-2m

Data File E:\DATA\WSW\WSW-2-162-RACE-2\XZC-171205-1 2017-12-06 09-37-46\002-0801.D Sample Name: LGY-1-47

-----Acq. Operator : SYSTEM Seq. Line : 8 Location : Vial 2 Acq. Instrument : 1260HPLC-VWD Injection Date : 12/6/2017 1:15:36 PM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\WSW\WSW-2-162-RACE-2\XZC-171205-1 2017-12-06 09-37-46\VWD-AS(1-6 Acq. Method)-80-20-1ML-5UL-220NM-100MIN.M Last changed : 12/6/2017 9:52:57 AM by SYSTEM Analysis Method : E:\DATA\WSW\WSW-2-162-RACE-2\XZC-171205-1 2017-12-06 09-37-46\VWD-AS(1-6)-80-20-1ML-5UL-220NM-100MIN.M (Sequence Method) : 4/13/2018 5:20:12 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak (s) manually integrated VWD1A, Wavelength=220 nm (E:DATAW SW/WSW-2:162-RACE-2/XZC-171205-12017-12:06.09-37-46002-0801.D) mAU 200 150 39.572 and the second s 100 50 0 e'n. an. α'n. ல் z'n. min Area Percent Report _____ Sorted By Signal : 1.0000 Multiplier : 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] * 1 39.572 BB 1.3921 8682.41602 94.48367 49.6372 2 58.904 MM 2.2334 8809.33691 65.74026 50.3628 1.74918e4 160.22394 Totals : *** End of Report ***

1260HPLC-VWD 4/13/2018 5:21:15 PM SYSTEM

${\rm HPLC} ~{\rm of}~ 2m$

Data File E:\DATA\LGY\LGY-1-93\LGY-1-93 2018-01-04 11-23-37\023-1201.D Sample Name: LGY-1-92-4

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 12 Location : Vial 23 Inj : 1 Inj Volume : 5.000 μl Injection Date : 1/4/2018 7:00:13 PM : E:\DATA\LGY\LGY-1-93\LGY-1-93 2018-01-04 11-23-37\VWD-AS(1-6)-80-20-1ML-Acg. Method 5UL-220NM-70MIN.M Last changed : 1/4/2018 11:27:15 AM by SYSTEM Analysis Method : E:\DATA\LGY\LGY-1-93\LGY-1-93 2018-01-04 11-23-37\VWD-AS(1-6)-80-20-1ML-5UL-220NM-70MIN.M (Sequence Method) Last changed : 4/13/2018 5:25:11 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATA\LGY\LGY\LGY\1-93\LGY-1-93 2018-01-04 11-23-37\023-1201.D) mAU 175 150 -125 a. 35001 8 8 8 100 -75 -50 -25 0 50 в'n 30 40 2Ò. min _____ Area Percent Report Sorted By : Signal : 1.0000 : 1.0000 Multiplier Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 59.780 MM 2.4132 1.35007e4 93.24097 100.0000 Totals : 1.35007e4 93.24097 *** End of Report ***

1260HPLC-VWD 4/13/2018 5:25:17 PM SYSTEM

HPLC of racemic-2n

Data File E:\DATA\LGY\LGY-1-53-RE-3\LGY-1-53-RE-3 2017-12-01 08-52-48\002-0401.D Sample Name: LGY-1-54

Acq. Operator	: SYSTEM	Seq. Line : 4	
Acq. Instrument		Location : Vial 2	
Injection Date	: 12/1/2017 11:08:34 AM	Inj: 1	
Acq. Method	: E:\DATA\LGY\LGY-1-53-RE-3\	Inj Volume : 5.000 µl LGV-1-53-DF-3 2017-12-01 08	3-52-48\WWD-45(1-6)-
Acq. neanou	80-20-1ML-5UL-220NM-120MIN		5 52 40(000 AD(1 0)
Last changed	: 12/1/2017 8:52:49 AM by SY		
Analysis Method	: E:\DATA\LGY\LGY-1-53-RE-3\		3-52-48\VWD-AS(1-6)-
Leat showed	80-20-1ML-5UL-220NM-120MIN		
Last changed	: 4/13/2018 5:26:51 PM by SY (modified after loading)	SIEM	
Additional Info	: Peak(s) manually integrate	d	
	avelength=220 nm (E:\DATA\LGY\LGY-1-53-RE-3	NLGY-1-53-RE-3 2017-12-01 08-52-48/002-0	401.D)
mAU			
100 -			
80-			
~]			
-			
60-			
]			
]	8		
40-	8 84:		
	\wedge	27.25	
	{}	8	
20-	{ \	\wedge	
20]	{ \	/ \	
	{ \	/ `	\
		/	
0			
40 '	50 60	70 80	90 min
	Area Percent Report		
Court of Dec	. <u>(** 1</u>		
Sorted By Multiplier	: Signal : 1.0000		
Dilution	: 1.0000		
	iplier & Dilution Factor with	ISTDs	
∋ignai 1: VWD1 A	A, Wavelength=220 nm		
Peak RetTime Typ	pe Width Area Heigh	t Area	
# [min]	[min] [mAU*s] [mAU]		
1 55.446 BB		011 49.9658	
2 82.725 BB	2.5774 5023.49561 26.50	241 50.0342	
Totals :	1.00401e4 63.62	252	
	1.0040104 00.02		
	*** End of Report	***	
	DIG F. D.C. FO DK CWCTTK		Page 1 of 1

1260HPLC-VWD 4/13/2018 5:26:59 PM SYSTEM

HPLC of 2n

Data File E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\041-1501.D Sample Name: LGY-1-95-1

```
Acq. Operator : SYSTEM
Acq. Instrument : 1260HPLC-VWD
                                       Seq. Line : 15
                                        Location : Vial 41
                                       Inj : 1
Inj Volume : 5.000 μl
Injection Date : 1/11/2018 3:18:34 PM
Acq. Method
            : E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\VWD-AS(1-6)-80-20-1ML-
5UL-220NM-100MIN.M
Last changed : 1/11/2018 9:00:30 AM by SYSTEM
Analysis Method : E:\DATA\LGY\LGY-1-95\LGY-1-95 2018-01-11 09-00-29\VWD-AS(1-6)-80-20-1ML-
              5UL-220NM-100MIN.M (Sequence Method)
           : 4/13/2018 5:44:37 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak (s) manually integrated

VWD1A, Wavelength=220 nm (E:\DATAVLGY\LGY:1-95\LGY:1-95\2018-01-11.09-00-290041-1501.D)
   mAU
   100 -
    80 -
    60 -
                                                          84.922
    40 ·
    20 -
    0
                                                                φċ.
                                         70
     α'n.
                             ல்
                                                    εÒ.
                 50
                                                                          min
------
                    Area Percent Report
-----
Sorted By
                        Signal
                  :
              : 1.0000
: 1.0000
Multiplier
Dilution
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width
                      Area
                              Height
                                        Area
               [min]
                      [mAU*s]
                                [mAU]
 #
    [min]
                                         *
1 84.922 BB 2.6560 1.07293e4
                               50.53551 100.0000
Totals :
                     1.07293e4
                                50.53551
*** End of Report ***
                                                              Page 1 of 1
```

1260HPLC-VWD 4/13/2018 5:44:40 PM SYSTEM

HPLC of racemic-20

Data File E:\DATA\LGY\LGY-1-72-RACE\YJX-1-19-0 2017-12-16 19-17-14\002-0401.D Sample Name: LGY-1-72-2

```
Acq. Operator : SYSTEM
Acq. Instrument : 1260HPLC-VWD
                                           Seq. Line :
                                                        - 4
                                            Location : Vial 2
   Injection Date : 12/16/2017 9:11:48 PM
                                                 Inj: 1
                                            Inj Volume : 5.000 µl
   Acq. Method
                : E:\DATA\LGY\LGY-1-72-RACE\YJX-1-19-0 2017-12-16 19-17-14\VWD-AS(1-6)-80-
   20-1ML-5UL-220NM-70MIN.M
Last changed : 12/16/2017 7:17:15 PM by SYSTEM
   Analysis Method : E:\DATA\LGY\LGY-1-72-RACE\YJX-1-19-0 2017-12-16 19-17-14\VWD-AS(1-6)-80-
                  20-1ML-5UL-220NM-70MIN.M (Sequence Method)
               : 4/14/2018 7:46:00 PM by SYSTEM
   Last changed
                  (modified after loading)
   Additional Info : Peak (s) manually integrated

VWD1 A, Wavelength=220 nm (E:\DATA\LGY\LGY\1-72-RACE\YJX-1-19-0 2017-12-16 19-17-14002-0401.D)
      mAU
      250
      200
                                 8
                                 ñ
      150 -
                                                         41.375
      100 -
       50 -
        n
                                                               45
         15
                           25
                                    зò
                                             35
                                                      μ'n
                                                                        ல்
                  20
                                                                                min
   Area Percent Report
   -----
   Sorted By
                            Signal
                      :
                          1.0000
   Multiplier
                  :
   Dilution
                            1.0000
   Do not use Multiplier & Dilution Factor with ISTDs
   Signal 1: VWD1 A, Wavelength=220 nm
   Peak RetTime Type Width
                          Area
                                   Height
                                             Area
                   [min]
                          [mAU*s]
                                    [mAU]
    #
       [min]
                                               *
   1 27.983 BB 0.9959 9999.52246 153.72369 49.6051
2 41.375 BB 1.4506 1.01587e4 106.13880 50.3949
                         2.01583e4 259.86250
   Totals :
   *** End of Report ***
                                                                    Page 1 of 1
1260HPLC-DAD 4/14/2018 7:46:12 PM SYSTEM
```

HPLC of 20

Data File E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 09-06-53\042-0501.D Sample Name: LGY-1-95-4-RE

Acq. Operator : SYSTEM Seq. Line : 5 Acq. Instrument : 1260HPLC-VWD Location : Vial 42 Injection Date : 1/13/2018 11:55:11 AM Inj: 1 Inj Volume : 5.000 μl Acq. Method : E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 09-06-53\VWD-AS(1-6)-80-20-1ML-5UL-220NM-60MIN.M Last changed : 1/13/2018 9:06:54 AM by SYSTEM Analysis Method : E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 09-06-53\VWD-AS(1-6)-80-20-1ML-5UL-220NM-60MIN.M (Sequence Method) : 4/14/2018 7:50:03 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak (s) manually integrated VWD1A, Wavelength=220 nm (E:\DATA\LGY\LGY\1.95\LGY\1.95\RE 2018.01.13.09-06.530042.0501.D) mAU 300 250 -200 ₽ ą 150 -100 -50 0 ல் 15 25 35 μ'n. 45 $2\dot{n}$ an. min Area Percent Report -----.............................. Sorted By Signal : Multiplier 1.0000 : : 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] ÷ -----|-----| 1 42.101 BB 1.5028 1.50565e4 151.58403 100.0000 Totals : 1.50565e4 151.58403 *** End of Report ***

1260HPLC-DAD 4/14/2018 7:50:09 PM SYSTEM

HPLC of racemic-2p

Data File E:\DATA\LGY\LGY-1-53-RE-3\LGY-1-53-RE-3 2017-12-01 08-52-48\003-0601.D Sample Name: LGY-1-55

Acq. Operator : SYSTEM Seq. Line : 6 Acq. Instrument : 1260HPLC-VWD Location : Vial 3 Injection Date : 12/1/2017 1:20:12 PM Inj: l Inj Volume : 5.000 µl : E:\DATA\LGY\LGY-1-53-RE-3\LGY-1-53-RE-3 2017-12-01 08-52-48\VWD-AS(1-6)-Aca. Method 80-20-1ML-5UL-220NM-120MIN.M Last changed : 12/1/2017 8:52:49 AM by SYSTEM Analysis Method : E:\DATA\LGY\LGY-1-53-RE-3\LGY-1-53-RE-3 2017-12-01 08-52-48\VWD-AS(1-6)-80-20-1ML-5UL-220NM-120MIN.M (Sequence Method) Last changed : 4/14/2018 7:53:32 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1 A, W avelength=220 nm (E:\DATA\LGY\LGY-1-53-RE-3\LGY-1-53-RE-3 2017-12-01 08-52-48/003-0601.D) mAU 175 150 -125 -Sana Archin 100 -88 48^{2 5158 52} 75 -50 -25 0 35 45 з'n 4'n 25 min Area Percent Report Sorted By Signal : : 1.0000 : 1.0000 Multiplier Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 33.866 MM 1.3651 5413.44727 66.09346 48.4639 2 40.309 MM 1.6109 5756.62109 59.55768 51.5361 1.11701e4 125.65114 Totals : _____ *** End of Report *** Page 1 of 1 1260HPLC-DAD 4/14/2018 7:53:39 PM SYSTEM

HPLC of 2p

Data File E:\DATA\LGY\LGY-1-99\LGY-1-99 2018-01-18 18-48-43\011-0701.D Sample Name: LGY-1-99-4-RE-1

Acq. Operator : SYSTEM Seq. Line : 7 Acq. Instrument : 1260HPLC-VWD Location : Vial 11 Injection Date : 1/18/2018 11:34:54 PM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\LGY\LGY-1-99\LGY-1-99 2018-01-18 18-48-43\VWD-AS(1-6)-80-20-1ML-Acq. Method 5UL-220NM-60MIN.M Last changed : 1/18/2018 6:48:44 PM by SYSTEM Analysis Method : E:\DATA\LGY\LGY-1-99\LGY-1-99 2018-01-18 18-48-43\VWD-AS(1-6)-80-20-1ML-5UL-220NM-60MIN.M (Sequence Method) Last changed : 4/14/2018 7:57:47 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1 A, Wavelength=220 nm (E:\DATA\LGY\LGY-1-99\LGY-1-99 2018-01-18 18-48-43/011-0701.D) mAU 700 600 · 500 · 39.587 400 300 -200 100 -0 35 40 45 з'n 25 min _____ Area Percent Report Sorted By Signal : 1.0000 Multiplier : Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 39.587 BB 1.6551 3.82501e4 356.39026 100.0000 Totals : 3.82501e4 356.39026 *** End of Report ***

1260HPLC-DAD 4/14/2018 7:58:00 PM SYSTEM

HPLC of racemic-2q

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\031-2701.D Sample Name: LGY-2-32-RE

Acq. Operator	:	Se	q. Line : 2	27		
Acq. Instrument	: Instrument 1	l	ocation : V	al 31		
	: 9/8/2018 2:57:05		Inj :	1		
-			Volume : 5	000 µl		
Acq. Method	: D:\DATA\LGY\LGY-2 1ML-5UL-220NM-60M		RE 2018-09-0	07 16-23-54\\	/WD-AS(1-6)-80	9-20-
Last changed	: 5/31/2018 10:45:3					
Analysis Method	: D:\METHOD\LG\VWD-	AD(1-2)-99-1-0.2	ML-2UL-220N	1-10MIN.M		
Last changed	: 9/10/2018 10:22:0	1 PM				
	(modified after 1					
	: Peak(s) manually Wavelength=220 nm (D:\DATA\I		72 DE 2018 00 0	46 02 54\021 070	1.D)	
mAU]	wavelength=220 httl (D.\DATA\t	LGT/LGT-2-73-RE/LGT-2	-73-RE 2016-09-0	10-23-34\031-270	1.0)	
-						
175 -						
-						
150 -						
			6			
125 -			36.452	-0-		
-			6.45 	N 010,20		
100 -			(Ub)	60. Baren Ba		
-				(NA)		
75 -						
-						
50 -						
25 -			\setminus			
		/				
0						
-			37.5	40 42	2.5 45	47.5
25	27.5 30			40 44		41.0
25	27.5 30	32.5 35				
	27.5 30					
		nt Report				
	Area Perce	nt Report				
Sorted By	Area Perce : Retent	nt Report				
Sorted By Multiplier	Area Perce : Retent : 1.0000	nt Report				
Sorted By Multiplier Dilution	Area Perce : Retent : 1.0000 : 1.0000	nt Report				
Sorted By Multiplier Dilution	Area Perce : Retent : 1.0000	nt Report				
Sorted By Multiplier Dilution Use Multiplier	Area Perce : Retent : 1.0000 : 1.0000	nt Report ion Time th ISTDs				
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm	nt Report				
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm g Type Area	ion Time th ISTDs Height Area				
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min]	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm g Type Area [mAU*s]	ion Time th ISTDs Height Area [mAU] %				
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm g Type Area [mAU*s] -	ion Time th ISTDs Height Area [mAU] %				
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 36.452 1	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm g Type Area [mAU*s] -	ion Time th ISTDs Height Area [mAU] % 	 33			
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 36.452 1	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm g Type Area [mAU*s] -	ion Time th ISTDs Height Area [mAU] % 	 33			
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 36.452 1 2 39.507 1	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm g Type Area [mAU*s] -	nt Report ion Time th ISTDs Height Area [mAU] % 	 33			
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 36.452 1 2 39.507 1	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm g Type Area [mAU*s] -	nt Report ion Time th ISTDs Height Area [mAU] % 	 33			
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 36.452 1 2 39.507 1	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm g Type Area [mAU*s] -	nt Report ion Time th ISTDs Height Area [mAU] % 	 33			
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 36.452 1 2 39.507 1 Totals :	Area Perce : Retent : 1.0000 : 1.0000 & Dilution Factor wi A, Wavelength=220 nm g Type Area [mAU*s] -	nt Report ion Time th ISTDs [mAU] % 02.32407 49.493 91.44144 50.506 93.76551	 33 57			

HPLC of $\mathbf{2q}$

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\032-2801.D Sample Name: LGY-2-73-7

Acq. Operator Acq. Instrument Enjection Date Acq. Method Last changed Analysis Method	: : Instrument 1 : 9/8/2018 3:57:57 : D:\DATA\LGY\LGY- 1ML-5UL-220NM-60		Seq. Line : Location : Inj :					
Injection Date Acq. Method Last changed	: 9/8/2018 3:57:57 : D:\DATA\LGY\LGY-							
Acq. Method	: D:\DATA\LGY\LGY-		inj :	1				
ast changed			Trad Maluma					
ast changed			Inj Volume :			(1 () 00		
-	1ML-5UL-220NM-60		-73-RE 2018-09	9-07 16-23	-54\VWD-AS	(1-6)-80-	20-	
-								
Nnalysis Method	: 9/8/2018 4:51:09							
Analysis Method	(modified after	-						
			-0.2ML-2UL-220	0NM-10MIN.	м			
ast changed	: 9/10/2018 10:24:							
	(modified after	-						
	: Peak(s) manually Vavelength=220 nm (D:\DATA							
mAU 200					,			
150 -								
- - - - - - - - - - - - - - - - - - -				6200 192 194 194 194 194 194 194 194 194 194 194				
0			81.96 0.0010 88.000000000000000000000000000000				· · · · · · ·	
25	27.5 30	32.5 35	37.5	40	42.5	45	47.5	n
	Area Perc	ent Report						
	: 1.000 : 1.000 & Dilution Factor w	0 ith ISTDs						
signal 1: VWD1 /	A, Wavelength=220 n	п						
Peak RetTime Sig	g Type Area	Height Ar	rea					
# [min]		-	%					
	- -							
1 36.784 1			.0880					
2 39.547 1		113.83140 99.						
	1.0250404							

Instrument 1 9/10/2018 10:24:23 PM

HPLC of racemic-2r

Data File E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 18-47-33\065-0801.D Sample Name: LGY-1-53-RA

```
_____
Acq. Operator : SYSTEM
                                       Seq. Line : 8
Acq. Instrument : 1260HPLC-VWD
                                       Location : Vial 65
Injection Date : 1/14/2018 4:24:33 AM
                                            Inj: 1
                                      Inj Volumé : 5.000 μl
Acq. Method
            : E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 18-47-33\VWD-AS(1-6)-80-20-
1ML-5UL-220NM-90MIN.M
Last changed : 1/13/2018 6:47:33 PM by SYSTEM
Analysis Method : E:\DATA\LGY\LGY-1-95\LGY-1-95-RE 2018-01-13 18-47-33\VWD-AS(1-6)-80-20-
              1ML-5UL-220NM-90MIN.M (Sequence Method)
Last changed
            : 4/13/2018 9:31:55 PM by SYSTEM
              (modified after loading)
Additional Info : Peak(s) manually integrated

VWD1A, Wavelength=220 nm (E:DATALGYLGY:1-95LGY:1-95 RE 2018-01-13 18-47-33065-0801.D)
   mALL
   200
   150
                                                        HORE STAR
                     728
   100
                     ΩŹ
    50
    0
                       45
                                        55
                                                 ဆ်
                                                         65
                                                                  70
              40
                               ல்
     35
                                                                          min
_____
                    Area Percent Report
Sorted By
                  :
                        Signal
                       1.0000
Multiplier
                :
Dilution
                       1.0000
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
                              Height
Peak RetTime Type Width
                       Area
                                        Area
# [min] [min] [mAU*s] [mAU] %
  1 43.728 BB 1.5127 8898.92871 88.68528 49.3191
  2 63.338 MM 2.1875 9144.65723 69.67457 50.6809
Totals :
                     1.80436e4 158.35985
*** End of Report ***
```

1260HPLC-VWD 4/13/2018 9:32:08 PM SYSTEM

HPLC of 2r

Data File E:\DATA\LGY\LGY-1-95-2\LGY-1-95-2-RE 2018-05-07 07-47-01\063-0201.D Sample Name: LGY-1-95-2-RE

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 2 Location : Vial 63 Injection Date : 5/7/2018 8:01:28 AM Inj: 1 Inj Volume : 5.000 µl Acq. Method : E:\DATA\LGY\LGY-1-95-2\LGY-1-95-2-RE 2018-05-07 07-47-01\VWD-AS(1-6)-80-20-1ML-5UL-220NM-90MIN.M Last changed : 5/7/2018 7:47:01 AM by SYSTEM Analysis Method : E:\DATA\LGY\LGY-1-95-2\LGY-1-95-2-RE 2018-05-07 07-47-01\VWD-AS(1-6)-80-20-1ML-5UL-220NM-90MIN.M (Sequence Method) : 5/7/2018 7:15:25 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak (s) manually integrated VWD1A, Wavelength=220 nm (E:\DATA\LGY\LGY\1-95-2:\LGY\1-95-2:\RE 2018-05-07 07-47-01\063-0201.D) mAU 140 -120 -8840 1,100 A 100 -80 -60 -40 -34.555 20 ф.^ф 0 -20 -70 40 50 вò зò min Area Percent Report Sorted By Signal : 1.0000 Multiplier : Dilution 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] # [min] * 1 43.787 MM 0.6485 34.55308 6.31873e-1 0.3119 -----2 63.851 MM 2.1334 1.10433e4 86.27399 99.6881 1.10778e4 86.90586 Totals : *** End of Report ***

1260HPLC-VWD 5/7/2018 7:15:31 PM SYSTEM

HPLC of racemic-2s

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\011-1101.D Sample Name: LGY-2-62-2

Acq. Operator	:	Seq. Line : 11			
	nt : Instrument 1	Location : Vial	11		
	e : 9/8/2018 1:33:26 AM	Inj: 1			
injection back	,	Inj Volume : 5.00	00 μl		
Acq. Method	: D:\DATA\LGY\LGY-2-73-RE\	•		5(1-6)-80-20-	
	1ML-5UL-220NM-80MIN.M				
Last changed	: 5/26/2018 3:44:58 PM				
Analysis Metho	d : D:\METHOD\LGY\VWD-AD(1-2	2)-95-5-0.3ML-5UL-220NM	-100MIN.M		
Last changed	: 9/10/2018 9:48:14 PM				
	(modified after loading)				
	<pre>Fo : Peak(s) manually integra</pre>				
mAU	A, Wavelength=220 nm (D:\DATA\LGY\LGY-2	-/3-RE\LGY-2-/3-RE 2018-09-0/ 16	5-23-54\011-1101.D)		
-					
120 -					
100 -					
	A. A.				
1	84 80 C				
80 -	A CONTRACTOR OF CONTRACTOR				
	\wedge				
60 -					
			~ -1	p.	
1			87.00 87.00 87.00	r	
40 -			Shee		
			/		
20 -					
				<	
0					
1					
	30 40	50	60	70	
	Area Percent Repo	ort			
Sorted By	: Retention Tim	ie			
Multiplier	: 1.0000				
Dilution	: 1.0000 A Dilution Factor with ISTD)c			
ose hurcipite	a Dilución Paccol with 1312	5			
Signal 1: VWD	L A, Wavelength=220 nm				
0	Sig Type Area Height	Area			
-		%			
Peak RetTime S # [min]	[mAU*s] [mAU]				
Peak RetTime 9 # [min] -					
Peak RetTime 5 # [min] - 1 35.462	1 MM 6002.12256 76.8486	50 49.8878			
Peak RetTime 9 # [min] -	1 MM 6002.12256 76.8486	50 49.8878			
Peak RetTime 9 # [min] 1 35.462 2 62.763	1 MM 6002.12256 76.8486 1 MM 6029.10986 38.3472	50 49.8878 26 50.1122			
Peak RetTime 5 # [min] - 1 35.462	1 MM 6002.12256 76.8486	50 49.8878 26 50.1122			
Peak RetTime 9 # [min] 1 35.462 2 62.763	1 MM 6002.12256 76.8486 1 MM 6029.10986 38.3472	50 49.8878 26 50.1122			
Peak RetTime 9 # [min] 1 35.462 2 62.763 Totals :	1 MM 6002.12256 76.8486 1 MM 6029.10986 38.3472	50 49.8878 26 50.1122 37			
Peak RetTime 9 # [min] 1 35.462 2 62.763 Totals :	1 MM 6002.12256 76.8486 1 MM 6029.10986 38.3472 1.20312e4 115.1958	50 49.8878 26 50.1122 37		Page 1	

HPLC of 2s

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\042-3401.D Sample Name: LGY-2-73-10

Acq. Operator	:	Seq. Line : 34	
	: Instrument 1	Location : Vial 42	
	: 9/8/2018 11:41:08 PM	Inj: 1	
	, ., 2010 11.41.00 PM	Inj Volume : 5.000 μl	
Acq. Method	• D•\DATA\IGY\IGY-2-73-RE\IG	GY-2-73-RE 2018-09-07 16-23-54\VWD-AS(1-6)-80-20-	
kcq. Hethou	1ML-5UL-220NM-80MIN.M	31-2-75-RE 2018-05-07 10-25-54 (WWD-A5(1-0)-80-20-	
act changed	: 9/8/2018 10:08:46 PM		
Last changed			
Analusia Matha	(modified after loading)	00 1 0 JML JUL JJONN 10NTN M	
-	: D:\METHOD\LG\VWD-AD(1-2)-9	99-1-0.2ML-2UL-220NM-10MIN.M	
ast changed	: 9/10/2018 10:32:41 PM		
Additional Taf	(modified after loading)	ad	
	: Peak(s) manually integrate	ea 3-RE\LGY-2-73-RE 2018-09-07 16-23-54\042-3401.D)	
mAU]	Wavelength=220 mm (D. DATALGTLGT-2-73	5-RE/LG1-2-75-RE 2016-05-07 10-25-54/042-5401.D)	
225 -			
223			
200 -			
1		12 Sector Sector	
175 –		5 ~ ⁶⁰ 6	
1		ici est.	
150 _		 ∧	
-			
125			
-			
100			
-			
75 –			
-			
50 -			
-			
25 -	18		
23	, %		
<u> </u>	8 400 01.18		
0			
	30 40	50 60	70 m
	Area Percent Report	t	
Sorted By	: Retention Time		
Multiplier	: 1.0000		
Dilution	: 1.0000		
	& Dilution Factor with ISTDs		
Signal 1: VWD1	A, Wavelength=220 nm		
	,		
-	g Type Area Height	Area	
_			
Peak RetTime S			
Peak RetTime S: # [min]	[mAU*s] [mAU]	% 	
Peak RetTime S: # [min]	[mAU*s] [mAU]		
Peak RetTime S: # [min] 1 35.495	[mAU*s] [mAU] 	 0.3890	
Peak RetTime S: # [min]	[mAU*s] [mAU] 	 0.3890	
Peak RetTime S: # [min] 1 35.495	[mAU*s] [mAU] 	 0.3890 99.6110	

Instrument 1 9/10/2018 10:32:47 PM

HPLC of racemic-2t

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\005-0601.D Sample Name: LGY-2-62-1

Acq. Operator	:	Seq. Line : 6
Acq. Instrumer	it : Instrument 1	Location : Vial 5
Injection Date	e : 9/7/2018 9:19:02 PM	Inj: 1
		Inj Volume : 5.000 μl
Acq. Method	: D:\DATA\LGY\LGY-2-73-RE\LC 1ML-5UL-220NM-80MIN.M	GY-2-73-RE 2018-09-07 16-23-54\VWD-AS(1-6)-80-20-
Last changed	: 5/26/2018 3:44:58 PM	
-	d : D:\METHOD\LGY\VWD-AD(1-2)	-95-5-0.3ML-5UL-220NM-100MIN.M
Last changed	: 9/10/2018 9:42:43 PM	
	(modified after loading)	
	Fo : Peak(s) manually integrate	ed 3-RE\LGY-2-73-RE 2018-09-07 16-23-54\005-0601.D)
mAU .	, Wavelengin=220 http://www.icon.con.con-2-70	5-NE-163 1-2-75-NE-2010-05-07 10-25-04 (005-0001.D)
-		
175 -		
150 -		
-		
125		
-		s ¹
100		Example 1 Bare 101001
100 -		Skee
-		Cares 1000.
75 -		
50 -		
-		
25 -		
-		
0		
35	40 45 5	50 55 60 65 70
	40 40 0	0 55 00 05 70
	Area Percent Report	t
Sorted By	: Retention Time	
Multiplier	: 1.0000	
Dilution	: 1.0000	
Use Multiplier	& Dilution Factor with ISTDs	
Signal 1 · Vulu	A, Wavelength=220 nm	
	, second the second	
U	ig Type Aper Height	Area
Peak RetTime S		
Peak RetTime S # [min]	[mAU*s] [mAU]	%
Peak RetTime S # [min] ·	[mAU*s] [mAU]	
Peak RetTime 5 # [min] - 1 52.213	[mAU*s] [mAU] 1 MM 1.07907e4 89.78436	 50.1836
Peak RetTime 5 # [min] - 1 52.213	[mAU*s] [mAU]	 50.1836
Peak RetTime 5 # [min] - 1 52.213	[mAU*s] [mAU] 1 MM 1.07907e4 89.78436	 50.1836 49.8164
Peak RetTime 5 # [min] - 1 52.213 2 60.083	[mAU*s] [mAU] 	 50.1836 49.8164
Peak RetTime 5 # [min] - 1 52.213 2 60.083 Totals :	[mAU*s] [mAU] 	 50.1836 49.8164
Peak RetTime 5 # [min] - 1 52.213 2 60.083 Totals :	[mAU*s] [mAU] 	 50.1836 49.8164

HPLC of 2t

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\036-3201.D Sample Name: LGY-2-73-9

Acq. Operator						
	:		Seq. Line			
	: Instrument 1		Location			
Injection Date	: 9/8/2018 8:3	39:25 PM	Inj			
			Inj Volume			
Acq. Method			(-2-73-RE 2018-	09-07 16-23-54\V	WD-AS(1-6)-80-20	-
	1ML-5UL-220N					
Last changed	: 9/8/2018 8:4					
		fter loading)				
		G\VWD-AD(1-2)-99	9-1-0.2ML-2UL-2	20NM-10MIN.M		
Last changed	: 9/10/2018 10					
Additional ImCa	,	fter loading)				
		ually integrated		09-07 16-23-54\036-3201	D)	
mAU]	Wavelengur-220 mm (D.	.IDATALOTILOT-2-73-P	REILOT-2-73-RE 2010	09-07 10-23-34\030-3201	.0)	
-						
160 -						
140 -						
140						
1						
120 -						
-				Ś		
100 –				8 1000		
1						
80 -						
-						
60 -						
-						
40 -						
20 -			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
20			8. % 			
_			Phic			
0						
0	45	50	55	60	65	70 m
	45	50	55	60	65	70 m
40					65	70 m
- - 40					65	70 m
40	Area				65	70 m
40	Area	Percent Report			65	70 m
40 40	Area	Percent Report			65	70 m
40 40 Sorted By	Area : F	Percent Report			65	70 m
40 50rted By Multiplier	Area : F : 1	Percent Report			65	70 m
40 Sorted By Multiplier Dilution	Area : F : 1	Percent Report Retention Time 1.0000			65	<u>70</u> m
40 Sorted By Multiplier Dilution	Area : F : 1 : 1	Percent Report Retention Time 1.0000			65	<u>70</u> m
40 Sorted By Multiplier Dilution Use Multiplier	Area : F : 1 : 1	Percent Report Retention Time 1.0000 1.0000 tor with ISTDs			65	<u>70</u> m
40 Sorted By Multiplier Dilution Use Multiplier	Area : F : 1 : 1 & Dilution Fact	Percent Report Retention Time 1.0000 1.0000 tor with ISTDs			65	<u>70</u> m
40 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1	Area : F : 1 : 1 & Dilution Fact	Percent Report Retention Time 1.0000 1.0000 tor with ISTDs 220 nm			65	70 m
40 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min]	Area : F : 1 & Dilution Fact A, Wavelength=2 g Type Area [mAU*s]	Percent Report Retention Time 1.0000 tor with ISTDs 220 nm Height] [mAU]	Area %		65	<u>70</u> m
40 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min]	Area : F : 1 & Dilution Fact A, Wavelength=2 g Type Area [mAU*s]	Percent Report Retention Time 1.0000 tor with ISTDs 220 nm Height] [mAU]	Area %		65	70 m
40 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min]	Area : F : 1 & Dilution Fact A, Wavelength=2 g Type Area [mAU*s] -	Percent Report Retention Time 1.0000 1.0000 tor with ISTDs 220 nm Height] [mAU] 	Area %		65	70 m
40 Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 	Area : F : 1 & Dilution Fact A, Wavelength=2 g Type Area [mAU*S] -	Percent Report Retention Time 1.0000 tor with ISTDs 220 nm Height] [mAU] - 197 3.44832	Area % 2.9820		65	<u>70 m</u>
40 Sorted By Multiplier Dilution Jse Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 54.843 1	Area : F : 1 & Dilution Fact A, Wavelength=2 g Type Area [mAU*S] -	Percent Report Retention Time 1.0000 tor with ISTDs 220 nm Height] [mAU] - 197 3.44832	Area % 2.9820		65	<u>70 m</u>

Instrument 1 9/10/2018 10:30:15 PM

HPLC of racemic-2u

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\003-0401.D Sample Name: LGY-2-53-4

Aca. Operator		Seq. Line : 4
Acq. Operator Acq. Instrument		Location : Vial 3
	: 9/7/2018 6:37:24 PM	Inj: 1
	5///2018 0.5/.24 PM	Inj Volume : 5.000 μl
Acq. Method	D.\DATA\IGY\IGY-2-73-RE\I	LGY-2-73-RE 2018-09-07 16-23-54\VWD-AS(1-6)-80-20-
ieq. nechou	1ML-5UL-220NM-80MIN.M	
ast changed	: 5/26/2018 3:44:58 PM	
-)-95-5-0.3ML-5UL-220NM-100MIN.M
	9/10/2018 9:36:41 PM	,
Ū	(modified after loading)	
dditional Info	Peak(s) manually integrat	ted
VWD1 A, Wa	velength=220 nm (D:\DATA\LGY\LGY-2-7	73-RE\LGY-2-73-RE 2018-09-07 16-23-54\003-0401.D)
mAU		
-		
600 -		
500 -		
-		
	Si kata	
400 -		
-	() ()	- 6
300 -		and the second sec
		e de la companya de l
-		us,
200 -		
-		
100 -		
0		
-		
25	30 35 40	45 50 55 60 65
	Area Percent Repor	
ontod By	: Retention Time	
orted By ultiplier	: Retention Time : 1.0000	2
ilution	: 1.0000	
	Dilution Factor with ISTDs	2
se nurcipiter a	bildelon raccor with 19703	,
ignal 1: VWD1 A	, Wavelength=220 nm	
0	5	
eak RetTime Sig	Type Area Height	Area
# [min]	[mAU*s] [mAU]	%
		-
	MM 3.25994e4 345.56903	3 50.1893
1 37.625 1	MM 3.23535e4 238.93916	6 49.8107
	6.49529e4 584.50819	9
2 56.836 1	6.49529e4 584.50819	9
2 56.836 1	6.49529e4 584.50819	9
2 56.836 1 otals :		9

Instrument 1 9/10/2018 9:36:46 PM

HPLC of 2u

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\034-3001.D Sample Name: LGY-2-73-8

Acq. Operator		
	:	Seq. Line : 30
Acq. Instrument		Location : Vial 34
Injection Date	: 9/8/2018 6:13:42 PM	Inj : 1
		Inj Volume : 5.000 μl
Acq. Method	: D:\DATA\LGY\LGY-2-73-RE\L	GY-2-73-RE 2018-09-07 16-23-54\VWD-AS(1-6)-80-20-
	1ML-5UL-220NM-80MIN.M	
ast changed	: 9/8/2018 6:39:09 PM	
	(modified after loading)	
		99-1-0.2ML-2UL-220NM-10MIN.M
Last changed	: 9/10/2018 10:26:57 PM	
	(modified after loading)	
	: Peak(s) manually integrat	ed 3-RE\LGY-2-73-RE 2018-09-07 16-23-54\034-3001.D)
mAU		
1000		
-		
800 -		. Դ
-		se and
-		and the second s
600 -		10%×
-		
400 -		
_		
-		
- - 200		
200 -	440	
- 200 -	5 188. 188	
-	Steen and the	
200 -	5 Rept. 128	
0	, <u>S</u> se ^o , ,	45 50 55 60 65 m
-	, <u>Š</u> v ^{ev} , , , , , , , , , , , , , , , , , , ,	45 50 55 60 65 m
0	, <u>S</u> se ^o , ,	
0	30 35 40	
0	30 35 40	 t
0	30 35 40 Area Percent Repor	t
0	30 35 40 Area Percent Repor	t
0	30 35 40	t
0 	30 35 40 Area Percent Repor	t
o 25 Sorted By Multiplier Dilution	30 35 40 Area Percent Repor : Retention Time : 1.0000	t
o 25 Sorted By Multiplier Dilution	Area Percent Repor : Retention Time : 1.0000 : 1.0000	t
Sorted By Multiplier Dilution Jse Multiplier &	Area Percent Repor : Retention Time : 1.0000 : 1.0000	t
Sorted By Multiplier Dilution Jse Multiplier &	Area Percent Repor : Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs	t
Sorted By Multiplier Dilution Jse Multiplier &	30 35 40 Area Percent Repor : Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm	t
0 25 Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 # Peak RetTime Sig # [min]	30 35 40 Area Percent Repor : Retention Time : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm g Type Area Height [mAU*s] [mAU]	t Area %
0 25 Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 # Peak RetTime Sig # [min]	30 35 40 Area Percent Repor : Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm g Type Area Height	t Area %
0 25 Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 # Peak RetTime Sig # [min]	Area Percent Repor : Retention Time : 1.0000 : 1.0000 S Dilution Factor with ISTDs A, Wavelength=220 nm g Type Area Height [mAU*s] [mAU] -	t Area %
Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 & Peak RetTime Sig # [min]	30 35 40 Area Percent Repor : Retention Time : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm g Type Area Height [mAU*s] [mAU] -	Area % 0.2348
O 25 Sorted By Multiplier Dilution Jse Multiplier & Signal 1: VWD1 A Peak RetTime Sig # [min] 1 37.547 1	30 35 40 Area Percent Repor : Retention Time : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm g Type Area Height [mAU*s] [mAU] -	Area % 0.2348

Instrument 1 9/10/2018 10:27:02 PM

HPLC of racemic-2v

Data File E:\DATA\LGY\LGY-1-101\LGY-1-101 2018-01-20 15-54-03\041-0301.D Sample Name: LGY-1-101

						-		
Acq. Operator	: SYSTEM			Seq. Line :				
Acq. Instrument				Location : Inj :				
Injection Date	: 1/20/20	10 4:30:1/ 6		Inj : Inj Volume :		1		
Acq. Method		\LGY\LGY-1-3 ONM-60MIN.M					D(1-2)-95-5-3	lML
Last changed		18 3:54:03 H	M by SYSTEM	:				
Analysis Method		\LGY\LGY-1-1 ONM-60MIN.M			15-54-03	3 \ VWD - A	D(1-2)-95-5-3	lML
Last changed		18 8:00:08 H ed after los						
Additional Info				1 2018-01-20 15-54(13/04/.030/1.0			
mAU]	wereingen-220 m			121001201004		·)		
250 -								
200 -			► 36288 27.909					
			- 51 - 51 - 51					
150 -								
			11 11					
100 -			/ _ / _ / /					
50-								
o]			/ Y	·~				
		· · · · · ·	· · · · · · ·	<u> </u>	<u>.</u>	·		
10	15	20	25	30 3	5	40	45	min
		Area Percent	: Report					
Sorted By	:	Signal						
Multiplier	:	1.0000						
Dilution Do not use Mult:	: inlier & D	1.0000 ilution Fact	or with IST	Ъз				
	.p							
Signal 1: VWD1 A	A, Wavelen	gth=220 nm						
Peak RetTime Typ	pe Width	Area	Height	Area				
# [min] 			[mAU]	÷ ا				
1 26.298 BV	0.5487	6153.86182	168.66835	49.6834				
2 27.909 VB	0.5753	6232.27979	162.20204	50.3166				
Totals :		1.23861e4	330.87039					
					;	=		
		*** End of	Report ***					
WDIC_DAD 4/14/20		O DM GVGTEM					Page 1 of 1	

1260HPLC-DAD 4/14/2018 8:00:32 PM SYSTEM

HPLC of 2v

Data File E:\DATA\LGY\LGY-1-101\LGY-1-101 2018-01-20 15-54-03\042-0401.D Sample Name: LGY-1-99-6

```
Acq. Operator : SYSTEM
Acq. Instrument : 1260HPLC-VWD
                                        Seq. Line :
                                                      - 4
                                         Location : Vial 42
                                         Inj : 1
Inj Volume : 3.000 μl
Injection Date : 1/20/2018 5:37:01 PM
Acq. Method
             : E:\DATA\LGY\LGY-1-101\LGY-1-101 2018-01-20 15-54-03\VWD-AD(1-2)-95-5-1ML
-3UL-220NM-60MIN.M
Last changed : 1/20/2018 3:54:03 PM by SYSTEM
Analysis Method : E:\DATA\LGY\LGY-1-101\LGY-1-101 2018-01-20 15-54-03\VWD-AD(1-2)-95-5-1ML
               -3UL-220NM-60MIN.M (Sequence Method)
            : 4/14/2018 8:06:25 PM by SYSTEM
Last changed
               (modified after loading)
Additional Info : Peak(s) manually integrated

WWD1A, Wavelength=220 nm (E:\DATALGYLGY1-101\LGY-1-1012018-01-20155403042-0401.D)
   mAU
   400
                                   ĝ
                                    ğ
   300 -
   200
   100 -
                                      27.723
     o
                                                                      46
                                 25
                                          з'n
                                                    з'n
                                                             40
      10
               15
                        20
                                                                              min
Area Percent Report
-----
Sorted By
                         Signal
                   :
                       1.0000
Multiplier
               :
Dilution
                         1.0000
Do not use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width
                      Area
                                Height
                                          Area
                [min]
                       [mAU*s]
                                 [mAU]
 #
    [min]
                                            *
---- | ----- | ----
              -|-----|-----|-----|
  1 26.109 BV 0.5409 1.04457e4 290.20370 98.5545
2 27.723 VB 0.5486 153.20755 4.02011 1.4455
                      1.05989e4 294.22382
Totals :
*** End of Report ***
```

1260HPLC-DAD 4/14/2018 8:06:42 PM SYSTEM

HPLC of racemic-2w

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\013-1401.D Sample Name: LGY-2-35-1

Acq. Operator	: Seq. Line : 14
	t : Instrument 1 Location : Vial 13
	: 9/8/2018 4:36:06 AM Inj: 1
J	Inj Volume : 5.000 μl
Acq. Method	: D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\VWD-AD(1-2)-95-5-0.
	3ML-5UL-220NM-100MIN.M
Last changed	: 9/7/2018 3:24:25 PM
-	d : D:\METHOD\LGY\VWD-AD(1-2)-95-5-0.3ML-5UL-220NM-100MIN.M
Last changed	: 9/10/2018 9:53:01 PM
	(modified after loading)
Additional Inf	o : Peak(s) manually integrated
	Wavelength=220 nm (D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\013-1401.D)
mAU	
140 -	
120 -	
100 -	
-	Se vice _ vice _
	Street 1051 Street 1155
80 -	$\overline{)}$
60 –	
40 -	
-	
20 -	
20	
-	
0 -	
-20 -	
1	<u> </u>
65	70 75 80 85 90 95
	Anna Dancart Danant
	Area Percent Report
Sorted By	: Retention Time
Multiplier	: 1.0000
Dilution	: 1.0000
	& Dilution Factor with ISTDs
	A, Wavelength=220 nm
Signal 1: VWD1	
Signal 1: VWD1	
-	ig Type Area Height Area
Peak RetTime S # [min]	[mAU*s] [mAU] %
Peak RetTime S # [min]	
Peak RetTime S # [min] - 1 82.983	[mAU*s] [mAU] % 1 MF 1.10910e4 104.12796 49.8553
Peak RetTime S # [min] - 1 82.983	[mAU*s] [mAU] %
Peak RetTime S # [min] - 1 82.983 2 86.978	[mAU*s] [mAU] % 1 MF 1.10910e4 104.12796 49.8553 1 FM 1.11554e4 99.01752 50.1447
Peak RetTime S # [min] - 1 82.983 2 86.978	[mAU*s] [mAU] % 1 MF 1.10910e4 104.12796 49.8553
Peak RetTime S # [min] - 1 82.983 2 86.978	[mAU*s] [mAU] % 1 MF 1.10910e4 104.12796 49.8553 1 FM 1.11554e4 99.01752 50.1447
Peak RetTime S # [min] - 1 82.983 2 86.978 Totals :	[mAU*s] [mAU] % 1 MF 1.10910e4 104.12796 49.8553 1 FM 1.11554e4 99.01752 50.1447 2.22464e4 203.14548
Peak RetTime S # [min] - 1 82.983 2 86.978 Totals :	[mAU*s] [mAU] % 1 MF 1.10910e4 104.12796 49.8553 1 FM 1.11554e4 99.01752 50.1447

HPLC of 2w

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\044-3701.D Sample Name: LGY-2-73-11

	:	Seq	. Line : 37		
Acq. Instrume	nt : Instrument 1	Lo	cation : Vial 44	1	
Injection Dat	e : 9/9/2018 3:13:	50 AM	Inj: 1		
		-	Volume : 5.000 μ		
Acq. Method		Y-2-73-RE\LGY-2-73-R	E 2018-09-07 16	-23-54\VWD-AD	(1-2)-95-5-0.
	3ML-5UL-220NM-				
Last changed	: 9/7/2018 3:24:				
		WD-AD(1-2)-99-1-0.2M	L-2UL-220NM-10M	[N.M	
Last changed	: 9/10/2018 10:3 (modified afte				
Additional In	fo : Peak(s) manual				
		TA\LGY\LGY-2-73-RE\LGY-2-7	3-RE 2018-09-07 16-23-	54\044-3701.D)	
mAU					
-					
600 –					
500 -					
			11		
400 -		06	~52 ^{11.}		
		a. Sise	-5 ² 1 ^{1,1}		
300		\bigwedge			
300 -		/ \			
200 -					
-					
100 -				8 ⁵¹	
100			نې : 13	ક્લ	
			88-190	^{ę6} ł	
0	· · · · ·			· · · · ·	· · · · · ·
	· · · · · · · · · · · · · · · · · · ·	80	5 85	90	95
0			85	90	
0			85	90	95
0	Area Pe		85	90 ==	95
0	Area Pe	rcent Report	85	90 ==	95
0	Area Pe	rcent Report	85	90 ==	95
0	Area Pe	rcent Report ention Time	85	90 ==	95
0 70 Sorted By	Area Pe : Ret	rcent Report ention Time 000	85	90 ==	95
0 70 Sorted By Multiplier Dilution	Area Pe : Ret : 1.0	rcent Report ention Time 000	85	90 ==	95
0 70 Sorted By Multiplier Dilution Use Multiplie	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor	rcent Report ention Time 000 000 with ISTDs	85	90 ==	95
0 70 Sorted By Multiplier Dilution Use Multiplie	Area Pe : Ret : 1.0 : 1.0	rcent Report ention Time 000 000 with ISTDs	85	90 ==	95
0 70 Sorted By Multiplier Dilution Use Multiplie Signal 1: VWD	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220	rcent Report ention Time 000 000 with ISTDs nm	85	90 ==	95
0 70 Sorted By Multiplier Dilution Use Multiplie Signal 1: VWD Peak RetTime	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220 Sig Type Area	rcent Report ention Time 000 000 with ISTDs nm Height Area	85	90 ==	95
0 70 Sorted By Multiplier Dilution Use Multiplie Signal 1: VWD Peak RetTime # [min]	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220 Sig Type Area [mAU*s]	rcent Report ention Time 000 000 with ISTDs nm Height Area [mAU] %		90 ==	95
0 70 Sorted By Multiplier Dilution Use Multiplie Signal 1: VWD Peak RetTime # [min] 	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220 Sig Type Area [mAU*s] 	rcent Report ention Time 000 000 with ISTDs nm Height Area	85	90 ==	95
0 70 Sorted By Multiplier Dilution Use Multiplie Signal 1: VWD Peak RetTime # [min] 	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220 Sig Type Area [mAU*s] 	rcent Report ention Time 000 000 with ISTDs nm Height Area [mAU] % 	85	90 ==	95
0 70 Sorted By Multiplier Dilution Use Multiplie Signal 1: VWD Peak RetTime # [min] 1 82.990	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220 Sig Type Area [mAU*s] 	rcent Report ention Time 000 000 with ISTDs nm Height Area [mAU] % 	85	90 ==	95
0 70 Sorted By Multiplier Dilution Use Multiplie Signal 1: VWD Peak RetTime # [min] 1 82.990	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220 Sig Type Area [mAU*s] 	rcent Report ention Time 000 000 with ISTDs nm Height Area [mAU] % 328.70041 99.1334 3.58854 0.8666	85	90 ==	95
O 70 Sorted By Multiplier Dilution Use Multiplie Signal 1: VWD Peak RetTime # [min] 1 82.990 2 87.193	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220 Sig Type Area [mAU*s] 	rcent Report ention Time 000 000 with ISTDs nm Height Area [mAU] % 328.70041 99.1334 3.58854 0.8666	85	90 ==	95
O 70 Sorted By Multiplier Dilution Use Multiplie Signal 1: VWD Peak RetTime # [min] 1 82.990 2 87.193	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220 Sig Type Area [mAU*s] 	rcent Report ention Time 000 000 with ISTDs nm Height Area [mAU] % 328.70041 99.1334 3.58854 0.8666	85	90 ==	95
O TO TO TO TO TO TO TO TO TO T	Area Pe : Ret : 1.0 : 1.0 r & Dilution Factor 1 A, Wavelength=220 Sig Type Area [mAU*s] 1 1 MM 3.52177e4 1 MM 307.85239 3.55255e4	rcent Report ention Time 000 000 with ISTDs nm Height Area [mAU] % 328.70041 99.1334 3.58854 0.8666	85	90 == ==	95

HPLC of racemic-2x

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\015-1601.D Sample Name: LGY-2-64

	: Seq. Line : 16
Acq. Instrument	t : Instrument 1 Location : Vial 15
	: 9/8/2018 7:57:49 AM Inj: 1
	Inj Volume : 5.000 µl
Acq. Method	: D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\VWD-AD(1-2)-95-5-0.
	3ML-5UL-220NM-90MIN.M
Last changed	: 6/14/2018 9:07:28 PM
Analysis Method	d : D:\METHOD\LG\VWD-AD(1-2)-99-1-0.2ML-2UL-220NM-10MIN.M
Last changed	: 9/10/2018 10:17:07 PM
	(modified after loading)
	o : Peak(s) manually integrated
	Wavelength=220 nm (D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\015-1601.D)
mAU	
-	
250	
250 -	
-	
-	
200 -	
-	
	<u>_</u>
150 -	Barea Maria Character Char
	a de la companya de la compa
	C. She
100 -	
-	
50 -	
-	
-	
0	
-	
60	62 64 66 68 70 72 74 76 78
	Area Percent Report
Sorted By	: Retention Time
Sorted By Multiplier	: Retention Time : 1.0000
Sorted By Multiplier Dilution	: Retention Time : 1.0000 : 1.0000
Sorted By Multiplier Dilution	: Retention Time : 1.0000
Sorted By Multiplier Dilution Use Multiplier	: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs
Sorted By Multiplier Dilution Use Multiplier	: Retention Time : 1.0000 : 1.0000
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1	: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime S:	: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm ig Type Area Height Area
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min]	: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm ig Type Area Height Area [mAU*s] [mAU] %
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 	: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm ig Type Area Height Area [mAU*s] [mAU] %
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 68.994 1	: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm ig Type Area Height Area [mAU*s] [mAU] %
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 68.994 1	: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm ig Type Area Height Area [mAU*s] [mAU] %
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 68.994 1	: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm ig Type Area Height Area [mAU*s] [mAU] %
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 	<pre>: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm ig Type Area Height Area [mAU*s] [mAU] % </pre>
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 	<pre>: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm ig Type Area Height Area [mAU*s] [mAU] % </pre>
Sorted By Multiplier Dilution Use Multiplier Signal 1: VWD1 Peak RetTime Si # [min] 1 68.994 1 2 72.998 1 Totals :	<pre>: Retention Time : 1.0000 : 1.0000 & Dilution Factor with ISTDs A, Wavelength=220 nm ig Type Area Height Area [mAU*s] [mAU] % </pre>

HPLC of 2x

Data File D:\DATA\LGY\LGY-2-73-RE\LGY-2-73-RE 2018-09-07 16-23-54\046-3901.D Sample Name: LGY-2-73-12

	ator :		Se	eq. Line :	39		
Acq. Inst	rument : In	strument 1	L	ocation :	Vial 46		
Injection	Date : 9/	9/2018 6:25:37 A	м	Inj :	1		
			-	Volume :	•		
Acq. Meth		\DATA\LGY\LGY-2-		RE 2018-0	9-07 16-23-5	4\VWD-AD(1-2	2)-95-5-0.
Last chan		IL-5UL-220NM-90MI 14/2018 9:07:28					
	-	\METHOD\LG\VWD-A		MI - 2111 - 22	ANM-10MTN M		
Last chan		10/2018 10:38:13					
	-	odified after lo					
		ak(s) manually i					
_	WD1 A, Wavelen	ngth=220 nm (D:\DATA\LG	YLGY-2-73-RELGY-2	-73-RE 2018-0	9-07 16-23-54\046	-3901.D)	
mAU							
-							
400 -							
-			10 ^{1.9}				
300 -		090	* 24 ^{01,9}				
-		See.					
-		/					
-		/ \	\				
200 -							
-							
100 -							
-					27		
-				175	Ae8.42.317		
0				23	preia		
				· · · ·			
	66	68	70	72	74	76	78
			t Report				
		Area Percen					
Sorted By	,	: Retenti					
Sorted By Multiplie	,	: Retenti : 1.0000					
Sorted By Multiplie Dilution	r	: Retenti : 1.0000 : 1.0000	on Time				
Sorted By Multiplie Dilution	r	: Retenti : 1.0000	on Time				
Sorted By Multiplie Dilution Use Multi	r plier & Dil	: Retenti : 1.0000 : 1.0000	on Time				
Sorted By Multiplie Dilution Use Multi	r plier & Dil	: Retentin : 1.0000 : 1.0000 .ution Factor wit	on Time				
Sorted By Multiplie Dilution Use Multi Signal 1: Peak RetT	r plier & Dil VWD1 A, Wa ime Sig Typ	: Retentin : 1.0000 : 1.0000 ution Factor with welength=220 nm we Area Ho	on Time h ISTDs eight Area				
Sorted By Multiplie Dilution Use Multi Signal 1: Peak RetT # [mi	r plier & Dil VWD1 A, Wa ime Sig Typ n]	: Retentin : 1.0000 : 1.0000 ution Factor with welength=220 nm pe Area He [mAU*s] [i	on Time h ISTDs eight Area mAU] %				
Sorted By Multiplie Dilution Use Multi Signal 1: Peak RetT # [mi 	r plier & Dil VWD1 A, Wa ime Sig Typ n] 	: Retentin : 1.0000 : 1.0000 uution Factor with velength=220 nm pe Area H [mAU*s] [n	on Time h ISTDs eight Area mAU] % 				
Sorted By Multiplie Dilution Use Multi Signal 1: Peak RetT # [mi 1 69.	r plier & Dil VWD1 A, Wa ime Sig Typ n] 060 1 MF	: Retentin : 1.0000 : 1.0000 ution Factor with velength=220 nm pe Area H [mAU*s] [i 	on Time h ISTDs eight Area mAU] % 1.55933 98.197	 79			
Sorted By Multiplie Dilution Use Multi Signal 1: Peak RetT # [mi 1 69.	r plier & Dil VWD1 A, Wa ime Sig Typ n] 	: Retentin : 1.0000 : 1.0000 ution Factor with velength=220 nm pe Area H [mAU*s] [i 	on Time h ISTDs eight Area mAU] % 	 79			
Sorted By Multiplie Dilution Use Multi Signal 1: Peak RetT # [mi 1 69.	r plier & Dil VWD1 A, Wa ime Sig Typ n] 060 1 MF	: Retentin : 1.0000 : 1.0000 ution Factor with velength=220 nm pe Area H [mAU*s] [i 	on Time h ISTDs mAU] % 1.55933 98.197 4.69764 1.802	 79			
Sorted By Multiplie Dilution Use Multi Signal 1: Peak RetT # [mi 1 69. 2 73.	r plier & Dil VWD1 A, Wa ime Sig Typ n] 060 1 MF	: Retentin : 1.0000 : 1.0000 ution Factor with nvelength=220 nm Pe Area Ht [mAU*s] [n 	on Time h ISTDs mAU] % 1.55933 98.197 4.69764 1.802	 79			
Sorted By Multiplie Dilution Use Multi Signal 1: Peak RetT # [mi 1 69. 2 73. Totals :	plier & Dil VWD1 A, Wa ime Sig Typ n] 060 1 MF 175 1 FM	: Retentin : 1.0000 : 1.0000 ution Factor with nvelength=220 nm Pe Area Ht [mAU*s] [n 	on Time h ISTDs mAU] % 1.55933 98.197 4.69764 1.802 6.25696	 79 21			

HPLC of racemic-4a

Data File D:\DATA\LGY\LGY-2-155-(2)\LGY-2-155-(2) 2018-11-26 09-15-18\001-0201.D Sample Name: LGY-2-155

Acq. Operator :	: Seq. Line : 2	
Acq. Instrument :	: Instrument 2 Location : Vial 1	
Injection Date :	: 11/26/2018 9:28:20 AM Inj: 1	
	Inj Volume : 5.000 µl	
Acq. Method :	: D:\DATA\LGY\LGY\LGY-2-155-(2)\LGY-2-155-(2) 2018-11-26 09-15-18\DAD-0D(1-2)-90-
T	10-1ML-5UL-ALL-80MIN.M	
-	: 5/26/2018 3:40:32 PM	
-	: D:\METHOD\TL\DAD-OJ(1-6)-80-20-1ML-3UL-ALL-10MIN.M : 12/4/2018 9:40:39 AM	
hast thanged .	(modified after loading)	
Additional Info :	: Peak(s) manually integrated	
	210,4 Ref=off (D\DATALGYLGY-2-155-(2))LGY-2-155-(2) 2018-11-26 09-15-18/001-0201.D)	
mAU]		
140 -		
1		
120 -		
120 -		
1	33	
100 -	36.137	
	A contract of the second se	
80 -		
1		
60 -		
1		
40		
40-		
20 -		
0-		
- -		
30		 min
	Area Percent Report	
Sorted By	: Signal	
Multiplier Di huti au	: 1.0000	
Dilution	: 1.0000	
use multipiler «	& Dilution Factor with ISTDs	
Signal 1. DADI C	C, Sig=210,4 Ref=off	
arguar i: DADI C,	,, NIY-DID, R REL-ULL	
Peak RetTime Type	pe Width Area Height Area	
# [min]	[min] [mAU*s] [mAU] %	
1 35.137 BB		
2 69.617 FM		
Totals :	1.31949e4 136.19715	

Instrument 2 12/4/2018 9:40:49 AM

HPLC of 4a

Data File D:\DATA\LYH\LYH-3-606\LYH-3-606 2018-12-03 15-33-42\011-0601.D Sample Name: LGY-3-14-1

Acq. Operator :		Seq. Lin	e: 6		
Acq. Instrument :	Instrument 2	Location	n : Vial ll		
Injection Date :	12/3/2018 5:16:10 PM	Inj	j: 1		
		Inj Volum	e : 5.000 μl		
Acq. Method :	D:\DATA\LYH\LYH-3-60 5UL-ALL-80MIN.M	6\LYH-3-606 2018-12	-03 15-33-42\D	AD-OD(1-2)-90-10-1	ML-
Last changed :	5/26/2018 3:40:32 PM				
Analysis Method :	D:\METHOD\TL\DAD-OJ(1-6)-80-20-1ML-3UL-A	ALL-10MIN.M		
Last changed :	12/3/2018 8:08:37 PM				
	(modified after load	ing)			
	Peak(s) manually int				
DAD1 C, Sig=210	0,4 Ref=off (D\DATA\LYH\LYH-3-60	6\LYH-3-606 2018-12-03 15-33-4	121011-0601.D)		
350 -					
300 -	•				
300 -	a rath.				
1	Spectar.				
250 -	1 1				
1					
200 -	11				
1	11				
100	Д				
150 -					
]					
100 -]	(}				
50 -	\ {			<i>.</i> .	
				E total 139th	
				2 A A	
0- <u></u>					
	····			······································	
0				<u></u>	
30	· · · · · · · · · · · · · · · · · · ·			······································	
30				······································	
30		Report		······································	
30	Area Percent 1	Report		······································	
30 30 Sorted By	Area Percent :	Report		······································	
30 30 Sorted By Multiplier	Area Percent : : Signal	Report		······································	
Sorted By fultiplier Dilution	Area Percent : : Signal : 1.0000	Report		······································	
30 30 Sorted By Multiplier Dilution	Area Percent : : Signal : 1.0000 : 1.0000	Report		······································	
30 30 Sorted By Multiplier Dilution Jse Multiplier & I	Area Percent : : Signal : 1.0000 : 1.0000 Dilution Factor with	Report		······································	
Sorted By Multiplier Dilution Use Multiplier & I	Area Percent : : Signal : 1.0000 : 1.0000	Report		······································	
Sorted By Multiplier Dilution Use Multiplier & I Signal 1: DAD1 C,	Area Percent : : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=210,4 Ref=off	Report		······································	
30 30 Sorted By Multiplier Dilution Use Multiplier & I Signal 1: DAD1 C, Peak RetTime Type	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=210,4 Ref=off Width Area	Report ISTDs Height Area		······································	
30 30 Sorted By Multiplier Dilution Use Multiplier & I Signal 1: DAD1 C, Peak RetTime Type # [min]	Area Percent : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=210, 4 Ref=off Width Area [min] [mAU*s]	Report ISTDs Height Area [mAU] %		······································	n
Sorted By Multiplier Dilution Use Multiplier & I Signal 1: DAD1 C, Peak RetTime Type # [min]	Area Percent : : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=210,4 Ref=off Width Area [min] [mAU*s]	Report ISTDs Height Area [mAU] %		······································	
30 30 Sorted By Multiplier Dilution Use Multiplier & I Signal 1: DAD1 C, Peak RetTime Type # [min] 1 35.026 MM	Area Percent : : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=210,4 Ref=off Width Area [min] [mAU*s] 	Report ISTDs Height Area [mAU] % 		······································	
Sorted By Multiplier Dilution Use Multiplier & I Signal 1: DAD1 C, Peak RetTime Type # [min]	Area Percent : : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=210,4 Ref=off Width Area [min] [mAU*s] 	Report ISTDs Height Area [mAU] %		······································	
30 30 Sorted By Multiplier Dilution Jse Multiplier & I Signal 1: DAD1 C, Peak RetTime Type # [min] 1 35.026 MM	Area Percent : : Signal : 1.0000 : 1.0000 Dilution Factor with Sig=210, 4 Ref=off Width Area [min] [mAU*s] 	Report ISTDs Height Area [mAU] % 		······································	

Instrument 2 12/3/2018 8:20:22 PM