SUPPLEMENTARY INFORMATON

Optimization of a Series of Mu Opioid Receptor (MOR) Agonists with High G Protein Signaling Bias

Nicole M. Kennedy,^{1,#} Cullen L. Schmid,^{2,#} Nicolette C. Ross,^{1,2} Kimberly M. Lovell,^{1,2} Zhizhou Yue,¹ Yen Ting Chen,¹ Michael D. Cameron,² Laura M. Bohn,^{2,*} Thomas D. Bannister^{1,*}

Table of Contents

Scheme S1. 3	Synthetic ro	oute for the preparation	oi 4-chiord	0-1-(1-(2-cniorobenz	zyi)piperiain-4-yi)
1H-benzo[d]i	imidazol-2(3 <i>H</i>)-one		(29)	from
isonipecotam	ide		S3		
Synthesis	and	characterization	of	1-(2-Chlorobenz	zyl)piperidin-4-one
(V)		\$3			
Synthesis ar	nd characte	erization of N-(3-chlo	ro-2-nitrop	phenyl)-1-(2-chlorob	penzyl)piperidin-4
amine (VII).					S4

¹ Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA

² Department of Molecular Medicine, The Scripps Research Institute, FL 33458, USA

Synthesis and characterization of 3-Chloro- N^{I} -(1-(2-chlorobenzyl)pi	peridin-4-yl)benzene-1,2-
diamine (VIII)	S4-S5
Synthesis and characterization of synthetic MOR analogs (2)-(51) S34	S5-
554	
¹ HNMR spectrum of 1-(1-(1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl]	ethyl)piperidin-4-yl)-1 <i>H</i> -
benzo[d]imidazol-2(3 H)-one, (25)	
S35	
HNMR spectrum of 1-(1-(4-(Trifluoromethoxy)phenyl)	ethyl)piperidin-4-yl)-1 <i>H</i> -
benzo[d]imidazol-2(3 H)-one,	
(26)S36	
¹ HNMR spectrum of 4-Chloro-1-(1-(2-chlorobenzyl)piperidin-4-	yl)-1 <i>H</i> -benzo[<i>d</i>]imidazol-
2(3 <i>H</i>)-one, (29)	S37
¹ HNMR spectrum of 5-Chloro-1-(1-(2-chlorobenzyl)piperidin-4-	yl)-1 <i>H</i> -benzo[<i>d</i>]imidazol-
2(3 <i>H</i>)-one, (30)	S38
¹ HNMR spectrum of 6-Chloro-1-(1-(2-chlorobenzyl)piperidin-4-	yl)-1 <i>H</i> -benzo[<i>d</i>]imidazol-
2(3 <i>H</i>)-one, (31)	S39
¹ HNMR spectrum of 5-Chloro-1-(1-(4-bromo-2-fluorob	enzyl)piperidin-4-yl)-1 <i>H</i> -
benzo[d]imidazol-2(3 H)-one,	
(41)S40	

1	HNMR	spectrum	of	5,6-Dichloro-1-(1-(4-bromo-2-fluorobenzyl)piperidir	1-4-yl)-1 <i>H</i> -
be	enzo[d]imid	azol-2(3 <i>H</i>)-c	one,		
(4	4)			S41	
1	HNMR spe	ectrum of 5,0	6-Dic	chloro-1-(1-(4-bromobenzyl)piperidin-4-yl)-1 <i>H</i> -benzo[a	/]imidazol-
2((3 <i>H</i>)-one, (4	6)			S42
M	Iolecular Str	rings for all c	ompo	oounds	S43-S44
R	eferences				S45

Scheme S1. Synthetic route for the preparation of 4-chloro-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one (**29**) from isonipecotamide.

CONH₂

$$CI$$

$$CI$$

$$CS_2CO_3, KI, 100 °C,$$

$$3-pentanone$$

$$CI$$

$$R^2$$

$$R^3$$

$$R^4$$

$$NH_2$$

$$R_3$$

$$R_4$$

$$R_2$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_5$$

$$R_4$$

$$R_4$$

$$R_5$$

$$R_7$$

$$R_$$

1-(2-Chlorobenzyl)piperidin-4-one, (V)¹

A mixture of isonipecotamide (5.0 g, 39 mmol), Cs_2CO_3 (8.0 g, 24 mmol), potassium iodide (650 mg, 3.9 mmol), 3-pentanone (25 mL), and 2-chlorobenzyl chloride (6.1 mL, 47 mmol) was stirred for 5 h at 100 °C. The mixture was filtered hot and the filtercake was washed with acetone. The filtrate was concentrated and the resulting slurry was recrystallized in acetone to afford pure product **V** (7.2 g, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.2 Hz, 1H), 7.33 (dd, J = 7.8, 1.4 Hz, 1H), 7.23 (td, J = 6.8, 1.4 Hz, 1H), 7.17 (td, J = 7.6, 2.0 Hz, 1H), 5.59 (d, J = 41.2 Hz, 2H), 3.61 (s, 2H), 2.96 (dd, J = 8.8, 2.8 Hz, 2H), 2.21-2.10 (m, 2H), 1.87 (d, J = 10.8 Hz, 2H), 1.78 (qd, J = 12.4, 3.6 Hz, 2H); MS(m/z): [M + H] calc'd for $C_{13}H_{18}CIN_2O$ is 253.10, found 253.06.

N-(3-chloro-2-nitrophenyl)-1-(2-chlorobenzyl)piperidin-4-amine, (VII)

A mixture of bis(trifluoroacetoxy)iodobenzene (3.6 g, 8.4 mmol), **V** (2.0 g, 7.9 mmol), acetonitrile (20 mL), and water (15 mL) was heated at 65 °C overnight. Upon completion, the reaction mixture was quenched with $HCl_{(aq)}$ and extracted with diethyl ether. The aqueous layer was then saturated with K_2CO_3 and extracted with CH_2Cl_2 ; the combined organic layers were dried over Na_2SO_4 and concentrated to dryness. The crude product, 1-(2-chlorobenzyl)piperidin-4-amine (**VI**), was used without further purification (1.6 g). MS(m/z): [M + H] calc'd for $C_{12}H_{18}ClN_2$ is 225.11, found 224.89.

A mixture of **VI** (266 mg, 1.2 mmol), 2-chloro-6-fluoronitrobenzene (176 mg, 1.0 mmol), K_2CO_3 (276 mg, 2.0 mmol), and DMF (5 mL) was stirred at room temperature overnight under argon. The reaction mixture was quenched with water and the aqueous layer was extracted with CH_2Cl_2 ; the combined organic layers were dried over Na_2SO_4 and concentrated to dryness. Purification via silica gel chromatography afforded pure product **VII** (392 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 6.0 Hz, 1H), 7.36 (dd, J = 7.6, 1.2 Hz, 1H), 7.27-7.17 (m, 3H), 6.72 (dd, J = 6.4, 3.2 Hz, 1H), 5.76 (d, J = 6.8 Hz, 1H), 3.66 (s, 2H), 3.44-3.42 (m, 1H), 2.87 (d, J = 10.8 Hz, 2H), 2.32 (t, J = 10.8 Hz, 2H), 2.03 (d, J = 10.4 Hz, 2H), 1.64-1.57 (m, 2H); MS(m/z): MS(

${\bf 3-Chloro-} N^{l}\hbox{-}(1\hbox{-}(2\hbox{-}chlorobenzyl)piperidin-4-yl) benzene-1, 2\hbox{-}diamine, (VIII)$

A mixture of **VII** (114 mg, 0.3 mmol), ammonium chloride (16 mg, 0.3 mmol), iron powder (134 mg, 2.4 mmol), EtOH (3 mL), THF (1 mL), and water (0.5 mL) was stirred at 100 °C for 3 h. and

then filtered through a pad of Celite®. The pad was washed with MeOH and the filtrate was concentrated to dryness. Purification via silica gel chromatography afforded pure product **VIII** (70 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, J = 5.6 Hz, 1H), 7.35 (dd, J = 7.8, 1.4 Hz, 1H), 7.25 (td, J = 7.4, 1.2 Hz, 1H), 7.20 (td, J = 7.4, 2.0 Hz, 1H), 6.82-6.65 (m, 3H), 6.57 (dd, J = 7.8, 1.0 Hz, 1H), 3.66 (d, J = 2.4 Hz, 2H), 3.29 (tt, J = 12.8, 4.0 Hz, 1H), 2.91 (d, J = 10.0 Hz, 2H), 2.30 (t, J = 10.2 Hz, 2H), 2.08-2.04 (m, 2H), 1.57 (dd, J = 12.4, 10.4 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₈H₂₂Cl₂N₃ is 350.11, found 348.11.

1-(1-(2-Chlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (2)

A mixture of 1-(piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one (free base, 110 mg, 0.5 mmol), 2-chlorobenzaldehyde (0.2 g, 1.4 mmol), AcOH (drops), NaBH(OAc)₃ (0.3 g, 1.4 mmol), and DCE (5 mL) was stirred at room temperature overnight under argon. The reaction mixture was quenched with saturated NaHCO₃ and then extracted with CH₂Cl₂; the combined organic layers were dried over Na₂SO₄ and concentrated to dryness. Purification via silica gel chromatography afforded pure product **2** (78 mg, 45% yield). ¹H NMR (400 MHz, (CD₃)₂SO) δ 10.83 (s, 1H), 7.58 (dd, J = 7.6, 1.6 Hz, 1H), 7.44 (dd, J = 7.8, 1.4 Hz, 1H), 7.38-7.34 (m, 2H), 7.32-7.22 (m, 1H), 6.99-6.96 (m, 3H), 4.17 (tt, J = 12.2, 4.2 Hz, 1H), 3.63 (s, 2H), 2.97 (d, J = 11.6 Hz, 2H), 2.38 (qd, J = 12.2, 3.6 Hz, 2H), 2.22 (t, J = 11.0 Hz, 2H), 1.65 (dd, J = 12.0, 2.4 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₉H₂₁ClN₃O is 342.13, found 342.10; HPLC $t_R = 3.57$ min.

1-(1-(3-Chlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (3)

This compound was preared according to the procedure for compound **2** in 29% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 8.02 (s, 1H), 7.39-7.26 (m, 3H), 7.09-7.04 (m, 4H), 4.44-4.35 (m, 1H), 3.54 (s, 2H), 3.02 (d, J = 11.2 Hz, 2H), 2.48 (q, J = 8.8 Hz, 2H), 2.18 (t, J = 11.4 Hz, 2H), 1.80 (d, J = 11.2 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₉H₂₁ClN₃O is 342.13, found 342.15; HPLC t_R = 3.62 min.

1-(1-(4-Chlorobenzyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (4)²

$$\bigcap_{\mathsf{HN}} \mathsf{N} - \bigcap_{\mathsf{N}} \mathsf{C}$$

A mixture of 1-(piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one (20 mg, 0.06 mmol), 4-chlorobenzyl bromide (12 mg, 0.06 mmol), K₂CO₃ (28 mg, 0.2 mmol), NaI (9.0 mg, 0.06 mmol), and DMF (0.6 mL) was stirred at 90 °C for 24 h under argon. The reaction mixture was quenched with water and then extracted with EtOAc; the combined organic layers were dried over Na₂SO₄ and concentrated to dryness. Purification via silica gel chromatography afforded pure product 4 (8.0 mg, 39% yield), which was dissolved in a solution of methane sulfonic acid in EtOH (0.06 M, 0.4 mL, 0.02 mmol). The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product 4 in the form of a mesylate salt. ¹H

NMR mesylate (400 MHz, CD₃OD) δ 7.56-7.54 (m, 4H), 7.29-7.26 (m, 1H), 7.10-7.07 (m, 3H), 4.56 (tt, J = 12.4, 4.0 Hz, 1H), 4.39 (s, 2H), 3.66 (dd, J = 10.6, 1.8 Hz, 2H), 3.27-3.23 (m, 2H), 2.80 (qd, J = 13.4, 3.8 Hz, 2H), 2.72 (s, 3H), 2.09 (d, J = 14.8 Hz, 2H); MS(m/z): [M + H] calc'd for C₁₉H₂₀ClN₃O is 341.84, found 342.02; HPLC $t_R = 3.67$ min.

1-(1-(4-Methylbenzyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (5)

This compound was prepared according to the procedure for compound **2** in 59% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.31-7.28 (m, 3H), 7.16 (d, J = 8.0 Hz, 2H), 7.11-7.04 (m, 3H), 4.38 (tt, J = 12.6, 3.8 Hz, 1H), 3.58 (s, 2H), 3.08 (d, J = 10.0 Hz, 2H), 2.53-2.51 (m, 2H), 2.35 (s, 3H), 2.20 (t, J = 10.8 Hz, 2H), 1.81 (dd, J = 12.0, 2.0 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₄N₃O is 322.18, found 322.03; HPLC t_R = 3.59 min.

1-(1-(4-Bromobenzyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (6)

This compound was prepared according to the procedure for compound 2 in 56% yield. Methane sulfonic acid (17 μ L, 0.3 mmol) was added to a suspension of the product in EtOH (1 mL). The mixture was heated to 60 °C for 30 min. The solvent was

removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product $\bf 6$ in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.71 (dd, J = 6.4, 2.0 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.27-7.25 (m, 1H), 7.10-7.07 (m, 3H), 4.55 (tt, J = 12.2, 4.4 Hz, 1H), 4.37 (s, 2H), 3.66 (d, J = 12.4 Hz, 2H), 3.26-3.24 (m, 2H), 2.80 (qd, J = 13.4, 3.6 Hz, 2H), 2.72 (s, 3H), 2.08 (d, J = 12.8 Hz, 2H); MS(m/z): [M + H] calc'd for C₁₉H₂₁BrN₃O is 386.08, found 386.01; HPLC $t_R = 3.72$ min.

1-(1-(4-Methoxybenzyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (7)³

This compound was prepared according to the procedure for compound **2** in 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1H), 7.30-7.28 (m, 3H), 7.11-7.04 (m, 3H), 6.89 (dd, J = 6.8, 2.0 Hz, 2H), 4.41-4.35 (m, 1H), 3.82 (s, 3H), 3.55 (s, 2H), 3.07 (d, J = 10.0 Hz, 2H), 2.50 (d, J = 8.8 Hz, 2H), 2.18 (t, J = 10.0 Hz, 2H), 1.81 (dd, J = 12.2, 1.8 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₄N₃O₂ is 338.18, found 338.03; HPLC $t_R = 3.26$ min.

N-(4-((4-(2-oxo-2,3-dihydro-1H-benzo[d|imidazol-1-yl)-piperidin-1-yl)methyl)phenyl)acetamide, (8)

This compound was prepared according to the procedure for compound **2** in 34% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.42 (s, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.33-7.28 (m, 3H), 7.10-7.04 (m, 3H), 4.36 (tt, J = 12.6, 4.0 Hz, 1H), 3.54 (s, 2H), 3.03 (d, J = 11.6 Hz, 2H), 2.48 (q, J = 12.4 Hz, 2H), 2.16-2.12 (m, 5H), 1.79 (d, J = 10.4 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₁H₂₅N₄O₂ is 365.19, found 365.06; HPLC t_R = 3.09 min.

(4-((4-(2-oxo-2,3-dihydro-1*H*-benzo[*d*|imidazol-1-yl)-piperidin-1-yl)methyl)benzonitrile, (9)

A mixture of 1-(piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one (40 mg, 0.1 mmol), 4-cyanobenzyl bromide (24 mg, 0.1 mmol), K_2CO_3 (20 mg, 0.1 mmol), and acetonitrile (1.2 mL) was stirred at 80 °C for 24 h. Upon completion, the solvent was removed under reduced pressure. Purification via silica gel chromatography afforded pure product **9** (30 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 7.6 Hz, 1H), 7.28-7.27 (m, 1H), 7.11-7.05 (m, 3H), 4.40-4.34 (m, 1H), 3.62 (s, 2H), 3.00 (d, J

= 9.6 Hz, 2H), 2.50 (q, J = 11.6 Hz, 2H), 2.23 (t, J = 11.2 Hz, 2H), 1.83 (d, J = 10.0 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₁N₄O is 333.16, found 333.05; HPLC t_R = 3.29 min.

(4-((4-(2-oxo-2,3-dihydro-1*H*-benzo[*d*|imidazol-1-yl)-piperidin-1-yl)methyl)benzamide, (10)

Hydrogen peroxide (50%, 28 μL, 0.5 mmol) was added to a solution of compound **9** (16 mg, 0.05 mmol) and NaOH (3M, 17 μL, 0.05 mmol) in EtOH (2.5 mL). The reaction mixture was stirred overnight at room temperature and then concentrated to dryness. Purification via silica gel chromatography afforded pure product **10** (5.0 mg, 30% yield). ¹H NMR (400 MHz, (CD₃)₂SO) δ 10.96 (s, 1H), 8.05 (s, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.47 (s, 1H), 7.21 (d, J = 7.6 Hz, 1H), 6.96 (td, J = 7.6, 1.6 Hz, 2H), 6.91 (qd, J = 7.4, 1.6 Hz, 1H), 4.70 (s, 2H), 4.47 (tt, J = 12.4, 4.4 Hz, 1H), 3.68 (t, J = 11.6 Hz, 2H), 3.36 (d, J = 10.0 Hz, 2H), 2.97 (dd, J = 12.6, 9.6 Hz, 2H), 1.75 (d, J = 13.2 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₃N₄O₂ is 351.17, found 351.07; HPLC $t_R = 2.93$ min.

$1-(1-(3-Methoxybenzyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (11)^4$

O This compound was prepared according to the procedure for compound **2** in 92% yield. 1 H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.31-7.24 (m, 2H), 7.13-7.11 (m, 1H), 7.05 (t, J = 4.0 Hz, 2H), 6.96 (d, J = 6.8 Hz, 2H), 6.82 (dd, J = 7.6, 1.6 Hz, 1H),

4.39 (tt, J = 12.4, 4.0 Hz, 1H), 3.84 (s, 3H), 3.58 (s, 2H), 3.08 (d, J = 10.8 Hz, 2H), 2.52 (q, J = 12.0 Hz, 2H), 2.21 (t, J = 11.2 Hz, 2H), 1.81 (d, J = 10.4 Hz, 2H); MS(m/z): [M+H] calc'd for $C_{20}H_{24}N_3O_2$ is 338.18, found 338.08; HPLC $t_R = 3.38$ min.

1-(1-(3-(Trifluoromethoxy)benzyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (12)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

This compound was prepared according to the procedure for compound **2** in 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.32-7.28 (m, 3H), 7.16-7.12 (m, 2H), 7.08-7.06 (m, 2H), 4.40 (tt, J = 12.4, 4.0 Hz, 1H), 3.60 (s, 2H), 3.04 (d, J = 11.6 Hz, 2H), 2.51 (qd, J =12.6, 3.8 Hz, 2H), 2.22 (td, J =11.8, 2.0 Hz, 2H), 1.83 (dd, J = 12.0, 2.0 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₁F₃N₃O₂ is 392.15, found 392.06; HPLC t_R = 3.99 min.

1-(1-(3,4-Dichlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (13)

This compound was prepared according to the procedure for compound **2** in 13% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.49 (d J = 1.6 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.28 (dd, J = 6.0, 2.8 Hz, 1H), 7.22 (dd, J = 8.2, 1.8 Hz, 1H), 7.14-7.11 (m, 1H), 7.08-7.07 (m, 2H), 4.38 (tt, J = 12.4, 4.0 Hz, 1H), 3.51 (s, 2H), 3.01 (d, J = 11.6 Hz,

2H), 2.49 (qd, J = 12.4, 4.0 Hz, 2H), 2.20 (td, J = 11.8, 2.0 Hz, 2H), 1.82 (dd, J = 12.0, 2.4 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₉H₂₀Cl₂N₃O is 376.09, found 376.11; HPLC $t_R = 3.98$ min.

1-(1-(4-Chloro-2-Methylbenzyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (14)

This compound was prepared according to the procedure for compound **2** in 23% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.42 (s, 1H), 7.23 (d, J = 6.0 Hz, 2H), 7.17-7.05 (m, 5H), 4.38 (tt, J = 12.6, 4.0 Hz, 1H), 3.47 (s, 2H), 3.01 (d, J = 11.2 Hz, 2H), 2.44 (qd, J = 12.4, 3.8 Hz, 2H), 2.40 (s, 3H), 2.20 (t, J = 11.2 Hz, 2H), 1.80 (dd, J = 11.0, 2.0 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₃ClN₃O is 356.15, found 356.14; HPLC t_R = 3.73 min.

1-(1-(4-Bromo-2-fluorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (15)

This compound was prepared according to the procedure for compound **2** in 33% yield. ¹H NMR (400 MHz, CD₃OD) δ 7.40-7.35 (m, 4H), 7.06-7.04 (m, 3H), 4.30 (tt, J = 12.4, 4.4 Hz, 1H), 3.65 (d, J = 1.2 Hz, 2H), 3.09 (dd, J = 9.8, 1.8 Hz, 2H), 2.53 (qd, J = 12.8, 4.0 Hz, 2H), 2.29 (td, J = 12.2, 2.0 Hz, 2H), 1.76 (dd, J = 12.0, 2.4 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₉H₁₉BrFN₃O is 404.07, found 404.23; HPLC $t_R = 3.74$ min.

1-(1-(Phenyl)ethyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, $(16)^5$

This compound was prepared according to the procedure for compound 1 in 74% yield. ¹H NMR (400 MHz, (CD₃)₂SO) δ 10.80 (s, 1H), 7.34 (t, J = 3.0 Hz, 4H), 7.26-7.19 (m, 2H), 6.99-6.95 (m, 3H), 4.05 (tt, J = 12.6, 4.0 Hz, 1H), 3.53 (q, J = 6.8 Hz, 1H), 3.10 (d, J = 10.0 Hz, 1H), 2.89 (d, J = 9.6 Hz, 1H), 2.45-2.23 (m, 2H), 2.07 (td, J = 10.4, 2.4 Hz, 1H), 1.97 (td, J = 10.8, 2.0 Hz, 1H), 1.66 (d, J = 10.8 Hz, 1H), 1.58 (d, J = 10.4 Hz, 1H), 1.33 (d, J = 6.8 Hz, 3H); MS(m/z): [M + H] calc'd for C₂₀H₂₄N₃O is 322.18, found 321.96; HPLC t_R = 3.52 min.

1-(1-(2-Chlorophenyl)ethyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (17)⁶

A mixture of 1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one (20 mg, 0.06 mmol), 2'-chloroacetophenone (36 mg, 0.2 mmol), and Ti(O*i*Pr)₄ (0.2 mL, 0.6 mmol) was stirred at 50 °C for 24 h under argon and then was cooled to room temperature. A mixture of NaCNBH₃ (11 mg, 0.2 mmol) in EtOH (0.2 mL) was then added dropwise and the reaction mixture was stirred overnight at room temperature. Upon completion, the solvent was removed under reduced pressure. Purification via silica gel chromatography afforded pure product **17** (13 mg, 61% yield). ¹H NMR (400 MHz, CD₃OD) δ 7.66 (dd, J = 7.6, 1.6 Hz, 1H), 7.41 (dd, J = 8.0, 1.2 Hz, 1H), 7.38-7.33 (m, 2H), 7.26 (td, J = 7.6, 1.6 Hz, 1H), 7.09-7.04 (m,

3H), 4.29 (tt, J = 12.4, 4.0 Hz, 1H), 4.20 (q, J = 6.8 Hz, 1H), 3.49 (dt J = 12.0, 1.8 Hz, 1H), 3.02 (dd, J = 11.6, 2.8 Hz, 1H), 2.62 (qd, J = 12.6, 4.0 Hz, 1H), 2.46 (qd, J = 12.4, 4.0 Hz, 1H), 2.37 (td, J = 12.2, 2.4 Hz, 1H), 2.26 (td, J = 12.2, 2.4 Hz, 1H), 1.84 (dq, J = 12.8, 2.4 Hz, 1H), 1.69 (dq, J = 12.8, 2.4 Hz, 1H), 1.43 (d, J = 6.8 Hz, 3H); MS(m/z): [M+H] calc'd for C₂₀H₂₃ClN₃O is 356.15, found 356.10; HPLC $t_R = 3.57$ min.

1-(1-(4-Chlorophenyl)ethyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (18)⁷

Ti(O*i*Pr)₄ (0.3 mL, 1.0 mmol) was added to a solution of 1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one (free base, 0.1 g, 0.5 mmol) and 4′-chloroacetophenone (78 μL, 0.6 mmol) in THF (5 mL). The reaction mixture was stirred at 80 °C for 5 h under argon and then was cooled to room temperature. NaBH(OAc)₃ (0.3 g, 1.5 mmol) was then added and the reaction mixture was stirred overnight at room temperature. The reaction mixture was quenched with saturated NaHCO₃ and then was filtered through a pad of Celite®. The filtrate was concentrated to dryness and the aqueous layer was extracted with CH₂Cl₂; the combined organic layers were dried over Na₂SO₄ and concentrated to dryness. Purification via silica gel chromatography afforded pure product **18** (31 mg, 19% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.19 (td, J = 7.6, 1.2 Hz, 1H), 7.09-7.02 (m, 2H), 4.62-4.54 (m, 1H), 4.21-4.18 (m, 1H), 3.89 (d, J = 10.4 Hz, 1H), 3.52 (d, J = 12.8 Hz, 2H), 3.27 (qd, J = 11.6, 4.0 Hz, 1H), 2.78 (q, J = 10.4 Hz, 1H),

2.65 (q, J = 11.2 Hz, 1H), 1.97 (d, J = 6.8 Hz, 3H), 1.93-1.89 (m, 2H); MS(m/z): [M + H] calc'd for $C_{20}H_{23}ClN_3O$ is 356.15, found 355.92; HPLC $t_R = 3.76$ min.

1- $(1-(4-\text{Chlorophenyl})\text{propyl})\text{piperidin-4-yl}-1H-\text{benzo}[d|\text{imidazol-2}(3H)-\text{one}, (19)^7]$

This compound was prepared according to the procedure for compound **18** in 10% yield. ¹H NMR (400 MHz, (CD₃)₂SO) δ 10.79 (s, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.18 (dd, J = 4.2, 2.0 Hz, 1H), 6.99-6.94 (m, 3H), 4.57-4.45 (m, 1H), 3.97 (t, J = 12.2 Hz, 1H), 3.07 (dd, J = 10.8, 3.6 Hz, 1H), 2.92 (d, J = 9.2 Hz, 1H), 2.39-2.24 (m, 2H), 2.18 (t, J = 7.2 Hz, 1H), 2.02 (t, J = 11.6 Hz, 1H), 1.90-1.68 (m, 2H), 1.64-1.57 (m, 2H), 0.74 (t, J = 7.2 Hz, 3H); MS(m/z): [M+H] calc'd for C₂₁H₂₅ClN₃O is 370.16, found 370.10; HPLC t_R = 3.95 min.

$\textbf{1-(1-(4-Fluorophenyl)ethyl)piperidin-4-yl)-1} \textit{H-benzo}[\textit{d}] \textbf{imidazol-2(3}\textit{H})\textbf{-one}, (\textbf{20})^{7}$

This compound was prepared according to the procedure for compound **18** in 51% yield. ¹ H NMR (400 MHz, CDCl₃) δ 10.26 (s, 1H), 7.33 (dd, J = 8.4, 2.8 Hz, 2H), 7.29-7.28 (m, 1H), 7.13-7.01 (m, 5H), 4.31 (tt, J = 12.6, 4.0 Hz, 1H), 3.52 (q, J = 5.8

Hz, 1H), 3.20 (d, J = 10.4 Hz, 1H), 2.96 (d, J = 10.4 Hz, 1H), 2.54-2.37 (m, 2H), 2.18 (t, J = 11.2 Hz, 1H), 2.07 (t, J = 12.0 Hz, 1H), 1.84 (dd, J = 12.4, 1.6 Hz, 1H), 1.75 (dd, J = 12.4, 1.6 Hz, 1H), 1.40 (d, J = 6.4 Hz, 3H); MS(m/z): [M+H] calc'd for C₂₀H₂₃FN₃O is 340.17, found 339.96; HPLC $t_R = 3.41$ min.

1-(1-(4-Bromophenyl)ethyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (21)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

This compound was prepared according to the procedure for compound **17** in 88% yield. ¹H NMR (400 MHz, (CD₃)₂SO) δ 10.84 (s, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.20 (dd, J = 5.6, 2.4 Hz, 1H), 6.98-6.95 (m, 3H), 4.05 (tt, J = 12.2, 4.0 Hz, 1H), 3.54 (q, J = 6.8 Hz, 1H), 3.06 (d, J = 10.8 Hz, 1H), 2.86 (d, J = 10.0 Hz, 1H), 2.33 (qd, J = 12.2, 4.0 Hz, 2H), 2.06 (t, J = 10.8 Hz, 1H), 1.97 (t, J = 11.0 Hz, 1H), /1.65 (d, J = 10.4 Hz, 1H), 1.58 (d, J = 11.2 Hz, 1H), 1.30 (d, J = 6.8 Hz, 3H); MS(m/z): [M+H] calc'd for C₂₀H₂₃BrN₃O is 400.09, found 400.10; HPLC t_R = 3.93 min.

1-(1-(4-Methoxyphenyl)ethyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (22)

This compound was prepared according to the procedure for compound **18** in 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.20-7.18 (m, 2H), 7.00-6.96 (m, 4H), 6.80 (d, J = 7.2 Hz, 2H), 4.22-4.16 (m, 1H), 3.74 (s, 3H), 3.41 (q, J = 5.2 Hz, 1H), 3.10 (d, J = 10.0 Hz, 1H), 2.89 (d, J = 10.4 Hz, 1H), 2.40-2.28 (m, 2H), 2.08 (t, J = 12.2 Hz, 1H), 1.96 (t, J = 12.6 Hz, 1H), 1.77-1.65 (m, 2H), 1.31 (d, J = 5.6 Hz, 3H); MS(m/z): [M+H] calc'd for C₂₁H₂₆N₃O₂ is 352.19, found 351.98; HPLC $t_R = 3.56$ min.

1-(1-(4-Ethoxyphenyl)ethyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (23)

This compound was prepared according to the procedure for compound **18** in 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.89 (s, 1H), 7.29 (d, J = 8.8 Hz, 3H), 7.17-7.14 (m, 1H), 7.07-7.05 (m, 2H), 6.91 (d, J = 8.4 Hz, 2H), 4.34 (tt, J = 12.6, 4.0 Hz, 1H), 4.07 (q, J = 6.8 Hz, 2H), 3.55 (q, J = 6.6 Hz, 1H), 3.24 (d, J = 10.8 Hz, 1H), 3.04 (d, J = 10.8 Hz, 1H), 2.55 (qd, J = 12.0, 3.2 Hz, 1H), 2.45 (qd, J = 12.0, 3.2 Hz, 1H), 2.21 (t, J = 11.0 Hz, 1H), 2.10 (t, J = 11.0 Hz, 1H), 1.86 (dd, J = 12.4, 1.6 Hz, 1H), 1.78 (dd, J = 12.6, 1.8 Hz,

1H), 1.47-1.44 (m, 6H); MS(m/z): [M+H] calc'd for C₂₂H₂₈N₃O₂ is 366.21, found 365.96; HPLC $t_R = 3.64$ min.

1-(1-(4-(Isopropoxy)phenyl)ethyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (24)

$$\bigcap_{\text{HN}} \bigvee_{\text{O} \text{ (\pm)}} \bigvee_{\text{O}} \bigvee_{\text{O}}$$

This compound was prepared according to the procedure for compound 17 in 65% yield. ¹H NMR (400 MHz, CD₃OD) δ 7.38 (d, J = 8.8 Hz, 2H), 7.32-7.29 (m, 1H), 7.09-7.06 (m, 3H), 6.98 (d, J = 8.8 Hz, 2H), 4.63 (septet, J = 6.0 Hz, 1H), 4.40-4.37 (m, 1H), 4.16 (q, J = 7.2 Hz, 1H), 3.61 (d, J = 8.4 Hz, 1H), 3.35 (dd, J = 10.4, 3.2 Hz, 1H), 2.82-2.60 (m, 4H), 2.01-1.90 (m, 2H), 1.67 (d, J = 6.8 Hz, 3H), 1.32 (d, J = 6.0 Hz, 6H); MS(m/z): [M+H] calc'd for C₂₃H₃₀N₃O₂ is 380.23, found 379.94; HPLC t_R = 3.86 min.

1-(1-(1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)ethyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, $(25)^2$

$$\begin{array}{c|c}
 & O \\
 & N \\
 & O \\$$

This compound was prepared according to the procedure for compound 18 in 56% yield. Methane sulfonic acid (17 μL, 0.3 mmol) was added to a suspension of 25 in EtOH (1 mL). The mixture was heated to 60 °C for 30 min. The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was

frozen and then subjected to lyophilization overnight giving product **25** in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.29-7.26 (m, 1H), 7.10-7.06 (m, 4H), 7.01 (dd, J = 8.4, 2.4 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 4.51-4.41 (m, 2H), 4.28 (s, 4H), 3.84 (dd, J = 11.6, 2.2 Hz, 1H), 3.49 (dd, J = 11.6, 2.8 Hz, 1H), 3.14 (td, J = 13.0, 2.8 Hz, 1H), 3.04 (td, J = 13.0, 2.8 Hz, 1H), 2.88-2.77 (m, 2H), 2.72 (s, 3H), 2.12-2.01 (m, 2H), 1.77 (d, J = 6.8 Hz, 3H); MS(m/z): [M + H] calc'd for C₂₂H₂₆N₃O₃ is 380.19, found 379.87; HPLC t_R = 4.58 min.

$1-(1-(4-(Trifluoromethoxy)phenyl)ethyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, \\ (26)$

This compound was prepared according to the procedure for comopound **18** in 8% yield. ¹H NMR (400 MHz, (CD₃)₂SO) δ 10.82 (s, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 6.4 Hz, 1H), 7.00-6.96 (m, 3H), 4.07 (tt, J = 12.0, 4.0 Hz, 1H), 3.60 (q, J = 6.6 Hz, 1H), 3.07 (d, J = 10.4, 1H), 2.86 (d, J = 10.8 Hz, 1H), 2.33 (sextet d, J = 12.4, 3.8 Hz, 2H), 2.08 (t, J = 11.8 Hz, 1H), 2.00 (t, J = 10.8 Hz, 1H), 1.66 (d, J = 12.4 Hz, 1H), 1.59 (d, J = 10.8 Hz, 1H), 1.32 (d, J = 6.8 Hz, 3H); MS(m/z): [M + H] calc'd for $C_{21}H_{23}F_3N_3O_2$ is 406.17; found 405.96; HPLC t_R = 3.96 min.

1-(1-(4-Bromo-2-fluorophenyl)ethyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (27)

This compound was prepared according to the procedure for compound **18** in 7% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.30-7.22 (m, 3H), 7.08-7.06 (m, 3H), 4.30-4.23 (m, 1H), 3.91 (q, J = 6.4 Hz, 1H), 3.25 (d, J = 10.8 Hz, 1H), 2.97 (d, J = 10.8 Hz, 1H), 2.50 (qd, J = 12.2, 3.6 Hz, 1H), 2.37 (qd, J = 12.4, 3.2 Hz, 1H), 2.17 (t, J = 11.4 Hz, 1H), 2.02 (t, J = 11.6 Hz, 1H), 1.84 (d, J = 11.2 Hz, 1H), 1.74 (d, J = 12.0 Hz, 1H), 1.39 (d, J = 6.4 Hz, 3H); MS(m/z): [M+H] calc'd for C₂₀H₂₂BrFN₃O is 418.09, found 418.16; HPLC t_R = 3.94 min.

1-(1-(4-Chloro-2-fluorophenyl)ethyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (28)

$$\begin{array}{c|c} CI \\ \hline \\ HN \\ O \\ (\pm) \end{array}$$

This compound was prepared according to the procedure for compound **18** in 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.28-7.27 (m, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.13-7.04 (m, 4H), 4.32-4.26 (m, 1H), 3.94 (q, J = 6.8 Hz, 1H), 3.26 (d, J = 8.8 Hz, 1H), 2.99 (d, J = 8.8 Hz, 1H), 2.51 (d, J = 10.8 Hz, 1H), 2.40 (d, J = 10.8 Hz, 1H), 2.19 (t, J = 9.6 Hz, 1H), 2.03 (t, J = 10.6 Hz, 1H), 1.87 (t, J = 13.8

Hz, 1H), 1.76 (d, J = 11.6 Hz, 1H), 1.41 (d, J = 5.6 Hz, 3H); MS(m/z): [M+H] calc'd for $C_{20}H_{22}CIFN_3O$ is 374.14, found 374.09; HPLC $t_R = 3.71$ min.

4-Chloro-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (29)⁸

CDI (49 mg, 0.3 mmol) was slowly added to a solution of

VIII (70 mg, 0.2 mmol) in THF (4 mL). The reaction mixture was stirred overnight at room temperature under argon and then quenched with 10% HCl $_{\rm (aq)}$. The aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated to dryness. Purification via silica gel chromatography afforded pure product **29** (61 mg, 81% yield). 1 H NMR (400 MHz, CD₃OD) δ 7.71 (dd, J = 7.4, 1.8 Hz, 1H), 7.62 (dd, J = 8.0, 1.6 Hz, 1H), 7.57-7.47 (m, 2H), 7.22 (dd, J = 7.0, 1.8 Hz, 1H), 7.11-7.03 (m, 2H), 4.65-4.55 (m, 3H), 3.73 (d, J = 12.0 Hz, 2H), 3.43 (t, J = 12.2 Hz, 2H), 2.81 (d, J = 13.2 Hz, 2H), 2.09 (d, J =14.8 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₉H₂₀Cl₂N₃O is 376.09, found 376.20; HPLC t_R = 3.49 min.

5-Chloro-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (30)

This compound was prepared according to the procedure for compound **2** in 39% yield from 5-chloro-1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one. 1 H NMR (400 MHz, (CD₃)₂SO) δ 11.03 (s, 1H), 7.57 (dd, J = 7.6, 1.6 Hz, 1H), 7.44 (dd, J = 7.8, 1.4 Hz, 1H), 7.36 (td, J = 7.4, 1.4 Hz, 1H), 7.29 (td, J = 7.5, 2.0 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.01 (td, J = 9.6, 2.0 Hz, 2H), 4.16 (tt, J = 12.0, 4.4 Hz, 1H), 3.62 (s, 2H), 2.96 (d, J = 11.2 Hz, 2H), 2.34 (qd, J = 12.4, 3.4 Hz, 2H), 2.21 (t, J = 11.0 Hz, 2H), 1.65 (dd, J = 11.6, 2.0 Hz, 2H); MS(m/z): [M + H] calc'd for C₁₉H₂₀Cl₂N₃O is 376.09, found 376.00; HPLC t_R = 3.87 min.

6-Chloro-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (31)

This compound was prepared according to the procedure for compound **29** in 56% yield from 5-chloro- N^1 -(1-(2-chlorobenzyl)piperidin-4-yl)benzene-1,2-diamine. ¹H NMR (400 MHz, CD₃OD) δ 7.70 (dd, J = 7.4, 2.2 Hz, 1H), 7.63 (dd, J = 7.8, 1.4 Hz, 1H), 7.55 (td, J = 7.4, 2.0 Hz, 1H), 7.50 (td, J = 7.4, 1.6 Hz, 1H), 7.37 (d, J = 1.6 Hz, 1H), 7.08 (dd, J = 8.2, 2.2 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 4.61-4.55 (m, 3H), 3.74 (d, J = 12.4 Hz, 2H), 3.43 (t, J = 12.2 Hz, 2H), 2.78 (q, J = 12.0 Hz, 2H), 2.09 (d, J = 12.8 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₉H₂₀Cl₂N₃O is 376.09, found 376.13; HPLC t_R = 3.81 min.

7-Chloro-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (32)

This compound was prepared according to the procedure for compound **29** in 9% yield from 6-chloro- N^1 -(1-(2-chlorobenzyl)piperidin-4-yl)benzene-1,2-diamine. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.46 (t, J = 4.6 Hz, 1H), 7.40-7.38 (m, 2H), 7.06-7.00 (m, 4H), 5.23-5.16 (m, 1H), 4.55 (s, 2H), 3.81 (d, J = 8.0 Hz, 2H), 3.30 (t, J = 11.4 Hz, 2H), 2.94 (t, J = 10.8 Hz, 2H), 2.06 (d, J= 10.0 Hz, 2H); MS(m/z): [M+H] calc'd for $C_{19}H_{20}Cl_2N_3O$ is 376.09, found 376.13; HPLC t_R = 3.91 min.

5-Methyl-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1H-benzo[d|imidazol-2(3H)-one, (33) 8

This compound was prepared according to the procedure for compound **29** in 56% yield from 4-methyl- N^1 -(1-(2-chlorobenzyl)piperidin-4-yl)benzene-1,2-diamine. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.54 (d, J = 5.6 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.20-7.15 (m, 2H), 6.89-6.86 (m, 2H), 4.37-4.31 (m, 1H), 3.68 (s, 2H), 3.07 (d, J = 10.8 Hz, 2H), 2.45 (t, J = 12.0 Hz, 2H), 2.37 (s, 3H), 2.29 (t, J = 10.8 Hz, 2H), 1.80 (d, J = 13.2 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₃ClN₃O is 356.15, found 356.13; HPLC t_R = 3.74 min.

5-Bromo-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*|imidazol-2(3*H*)-one, (34)

This compound was prepared according to the procedure for compound **2** in 29% yield from 5-bromo-1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one.

¹H NMR (400 MHz, CD₃OD) δ 7.56 (dd, J = 7.4, 1.8 Hz, 1H), 7.42 (dd, J = 7.6, 1.6 Hz, 1H), 7.39-7.37 (m, 1H), 7.33 (td, J = 7.4, 1.8 Hz, 1H), 7.28 (td, J = 7.4, 1.8 Hz, 1H), 7.07-7.04 (m, 2H), 4.33 (tt, J = 12.2, 4.6 Hz, 1H), 3.75 (s, 2H), 3.14 (dd, J = 9.6, 2.0 Hz, 2H), 2.55 (qd, J = 12.6, 3.8 Hz, 2H), 2.36 (td, J = 12.2, 2.0 Hz, 2H), 1.76 (dd, J = 12.2, 2.6 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₉H₂₀BrClN₃O is 420.04, found 420.02; HPLC t_R = 3.91 min.

5-Fluoro-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (35)

This compound was prepared according to the procedure for compound **2** in 22% yield from 5-fluoro-1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one. ¹H NMR (400 MHz, CD₃OD) δ 7.55 (dd, J = 7.4, 1.8 Hz, 1H), 7.41 (dd, J = 7.8, 1.4 Hz, 1H), 7.35-7.25 (m, 3H), 6.84-6.78 (m, 2H), 4.30 (tt, J = 12.4, 4.4 Hz, 1H), 3.73 (s, 2H), 3.12 (dd, J = 9.6, 2.0 Hz, 2H), 2.50 (qd, J = 12.6, 3.6 Hz, 2H), 2.33 (td, J = 12.0, 2.0 Hz, 2H), 1.75 (dd, J = 12.2, 2.2 Hz, 2H); MS(*m/z*): [M+H] calc'd for C₁₉H₂₀ClFN₃O is 360.12, found 360.10; HPLC $t_R = 3.88$ min.

5-Methoxy-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (36)

This compound was prepared according to the procedure for compound **29** in 11% yield from 4-methoxy- N^1 -(1-(2-chlorobenzyl)piperidin-4-yl)benzene-1,2-diamine. ¹H NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 7.80 (dd, J = 5.4, 1.6 Hz, 1H), 7.49-7.46 (m, 1H), 7.43-7.37 (m, 3H), 6.65 (d, J = 8.4 Hz, 2H), 4.68-4.63 (m, 1H), 4.48 (s, 2H), 3.78 (s, 3H), 3.73 (d, J = 10.4 Hz, 2H), 3.01 (t, J = 12.0 Hz, 2H), 2.94 (t, J = 12.8 Hz, 2H), 1.98 (d, J = 12.0 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₃ClN₃O₂ is 372.14, found 372.11; HPLC t_R = 3.60 min.

5-(Trifluoromethoxy)-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (37)

This compound was prepared according to the procedure for compound **29** in 83% yield from 4-(trifluoromethoxy)- N^1 -(1-(2-chlorobenzyl)piperidin-4-yl)benzene-1,2-diamine. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.78 (t, J = 4.8 Hz, 1H), 7.52-7.40 (m, 4H), 6.98 (s, 1H), 4.73-4.68 (m, 1H), 4.50 (s, 2H), 3.75 (d, J = 11.2 Hz, 2H), 3.03 (t, J = 12.4 Hz, 2H), 2.91 (q, J = 12.0 Hz, 2H), 2.00 (d, J = 11.6 Hz, 2H); MS(m/z): [M+H] calc'd for $C_{20}H_{20}ClF_3N_3O_2$ is 426.11, found 426.13; HPLC t_R = 4.00 min.

5-(Methylsulfonyl)-1-(1-(2-chlorobenzyl)piperidin-4-yl)-1H-benzo[d|imidazol-2(3H)-one, (38)

This compound was prepared according to the procedure for compound **29** in 75% yield from 4-(methylsulfonyl)- N^1 -(1-(2-chlorobenzyl)piperidin-4-yl)benzene-1,2-diamine. ¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 8.03 (t, J = 8.8 Hz, 2H), 7.77 (dd, J = 8.4, 1.2 Hz, 1H), 7.70 (d, J = 1.6 Hz, 1H), 7.51-7.43 (m, 3H), 4.82-4.75 (m, 1H), 4.48 (s, 2H), 3.73 (d, J = 11.6 Hz, 2H), 3.19 (t, J = 13.6 Hz, 2H), 3.09 (q, J = 11.4 Hz, 2H), 3.04 (s, 3H), 2.03 (d, J = 12.0 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₃ClN₃O₃S is 420.11, found 420.12; HPLC t_R = 3.28 min.

$1-(1-(2-\text{Chlorobenzyl})\text{piperidin-4-yl})-2-\text{oxo-2,3-dihydro-1} \\ H-\text{benzo}[d]\text{imidazole-5-carbonitrile}, (39)$

This compound was prepared according to the procedure for compound **29** in 70% yield from 3-amino-4-((1-(2-chlorobenzyl)piperidin-4-yl)amino)benzonitrile. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1H), 7.52 (d, J = 3.6 Hz, 1H), 7.42-7.36 (m, 4H), 7.30-7.22 (m, 2H), 4.41-4.35 (m, 1H), 4.38 (s, 2H), 3.10 (d, J = 7.2 Hz, 2H), 2.44 (t, J = 10.0 Hz, 2H), 2.32 (t, J = 10.8 Hz, 2H), 1.83 (d, J = 10.8 Hz, 2H); MS(m/z): [M+H] calc'd for C₂₀H₂₀ClN₄O is 367.12, found 367.14; HPLC t_R = 3.50 min.

4-Chloro-1-(1-(4-bromo-2-fluorobenzyl) piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (40) 8

This compound was prepared according to the procedure for compound 17 in 35% yield from 4-chloro-1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one. Methane sulfonic acid (4.0 μ L, 0.06 mmol) was added to a suspension of 40 in EtOH (1 mL). The mixture was heated to 60 °C for 30 min. The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product 40 in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.61 (dd, *J* = 9.2, 1.2 Hz, 1H), 7.57 (dd, *J* = 3.8, 1.4 Hz, 2H), 7.20 (dd, *J* = 6.0, 2.8 Hz, 1H), 7.09-7.07 (m, 2H), 4.54 (tt, *J* = 12.2, 4.2 Hz, 1H), 4.45 (s, 2H), 3.71 (d, *J* = 12.8 Hz, 2H), 3.36-3.30 (m, 2H), 2.80 (qd, *J* = 3.4 Hz, 2H), 2.71 (s, 3H), 2.10 (d, *J* = 12.4 Hz, 2H); MS(*m/z*): [M+H] calc'd for C₁₉H₁₉BrClFN₃O is 438.03, found 437.99; HPLC t_R = 4.01 min.

5-Chloro-1-(1-(4-bromo-2-fluorobenzyl) piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (41) 8

This compound was prepared according to the procedure for compound 2 in 63% yield from 5-chloro-1-(piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one. Methane sulfonic acid (65 μ L, 1.0 mmol) was added to a suspension of 41 in EtOH (1 mL). The

mixture was heated to 60 °C for 30 min. The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product **41** in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.61 (dd, J = 8.8, 0.8 Hz, 1H), 7.57 (dd, J = 3.8, 1.4 Hz, 2H), 7.23 (dd, J = 7.6, 1.2 Hz, 1H), 7.10 (d, J = 2.0 Hz, 1H), 7.08 (d, J = 1.2 Hz, 1H), 4.53 (tt, J = 12.4, 4.0 Hz, 1H), 4.45 (s, 2H), 3.70 (d, J = 12.8 Hz, 2H), 3.36-3.29 (m, 2H), 2.79 (qd, J = 13.0, 3.4 Hz, 2H), 2.72 (s, 3H), 2.09 (d, J = 14.0 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₉H₁₉BrClFN₃O is 438.03, found 438.11; HPLC t_R = 3.66 min.

6-Chloro-1-(1-(4-bromo-2-fluorobenzyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (42) 8

for compound 17 in 32% yield from 6-chloro-1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one. Methane sulfonic acid (6.0 μ L, 0.1 mmol) was added to a suspension of 42 in EtOH (1 mL). The mixture was heated to 60 °C for 30 min. The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product 42 in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.61 (dd, J = 10.0, 1.2 Hz, 1H), 7.57 (dd, J = 3.6, 1.2 Hz, 2H), 7.36 (d, J = 2.0 Hz, 1H), 7.08 (dd, J = 8.4, 2.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 4.55 (tt, J = 12.4, 4.0 Hz, 1H), 4.45 (s, 2H), 3.71 (d, J = 12.4 Hz, 2H), 3.36-3.32 (m, 2H), 2.77 (qd, J = 13.0,

This compound was prepared according to the procedure

3.6 Hz, 2H), 2.72 (s, 3H), 2.10 (d, J = 14.8 Hz, 2H); MS(m/z): [M+H] calc'd for $C_{19}H_{19}BrClFN_3O$ is 438.03, found 437.96; HPLC $t_R = 4.08$ min.

4,6-Dichloro-1-(1-(4-bromo-2-fluorobenzyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (43)

This compound was prepared according to the procedure for compound 17 in 68% yield from 4,6-dichloro-1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one. A solution of methane sulfonic acid in EtOH (0.06 M, 1.0 mL, 0.06 mmol) was added to 43. The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product 43 in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.59-7.54 (m, 3H), 7.34 (d, *J* = 1.6 Hz, 1H), 7.13 (d, *J* = 5.0 Hz, 1H), 4.50 (tt, *J* = 12.4, 4.0 Hz, 1H), 4.36 (s, 2H), 3.62 (d, *J* = 12.4 Hz, 2H), 3.20 (t, *J* = 12.4 Hz, 2H), 2.79-2.72 (m, 5H), 2.05 (d, *J* = 12.4 Hz, 2H); MS(*m/z*): [M + H] calc'd for C₁₉H₁₈BrCl₂FN₃O is 471.99, found 472.10; HPLC t_R = 3.76 min.

5,6-Dichloro-1-(1-(4-bromo-2-fluorobenzyl) piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (44) 8

This compound was prepared according to the procedure for compound 2 in 31% yield from 5,6-dichloro-1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-

one. Methane sulfonic acid (13 μ L, 0.2 mmol) was added to a suspension of **44** in EtOH (1 mL). The mixture was heated to 60 °C for 30 min. The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product **44** in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.61 (dd, J = 9.0, 1.4 Hz, 1H), 7.56 (dd, J = 4.0, 2.0 Hz, 2H), 7.47 (s, 1H), 7.20 (s, 1H), 4.53 (tt, J = 12.4, 4.0 Hz, 1H), 4.45 (s, 2H), 3.70 (d, J = 12.8 Hz, 2H), 3.35-3.28 (m, 2H), 2.81-2.71 (m, 5H), 2.09 (d, J = 14.4 Hz, 2H); MS(m/z): [M+H] calc'd for C₁₉H₁₈BrCl₂FN₃O is 471.99, found 472.18; HPLC t_R = 4.00 min.

4,5,7-Trichloro-1-(1-(4-bromo-2-fluorobenzyl) piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (45)

This compound was prepared according to the procedure for compound 17 in 34% yield from 4,5,7-trichloro-1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one. A solution of methane sulfonic acid in EtOH (0.06 M, 1.0 mL, 0.06 mmol) was added to 45. The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product 45 in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.57-7.53 (m, 3H), 7.42 (s, 1H), 4.36 (s, 2H), 3.79 (tt, J = 11.4, 4.4 Hz, 1H), 3.57 (d, J = 12.8 Hz, 2H), 3.14 (td, J = 13.0, 2.2 Hz, 2H), 2.72 (s, 3H), 2.20 (d, J = 14.4 Hz, 2H), 1.87 (qd, J = 13.8, 3.6 Hz, 2H); MS(m/z): [M + H] calc'd for C₁₉H₁₇BrCl₃FN₃O is 505.95, found 505.77; HPLC $t_R = 4.51$ min.

5,6-Dichloro-1-(1-(4-bromobenzyl)piperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one, (46) 2,8

This compound was prepared according to the procedure for compound 17 in 42% yield from 5,6-dichloro-1-(piperidin-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one. Methane sulfonic acid (13 μ L, 0.2 mmol) was added to a suspension of 46 in EtOH (1 mL). The mixture was heated to 60 °C for 30 min. The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product 46 in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.71 (dd, J = 6.6, 1.6 Hz, 2H), 7.50 (dd, J = 6.6, 1.6 Hz, 2H), 7.48 (s, 1H), 7.19 (s, 1H), 4.52 (tt, J = 12.4, 4.0 Hz, 1H), 4.37 (s, 2H), 3.63 (d, J = 12.8 Hz, 2H), 3.25 (td, J = 13.0, 2.4 Hz, 2H), 2.80-2.69 (m, 5H), 2.08 (d, J = 14.8 Hz, 2H); MS(m/z): [M + H] calc'd for C₁₉H₁₉BrCl₂N₃O is 454.00, found 454.23; HPLC t_R = 3.76 min.

5,6-Dichloro-1-(1-(4-bromobenzyl)azepan-4-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one, (47)

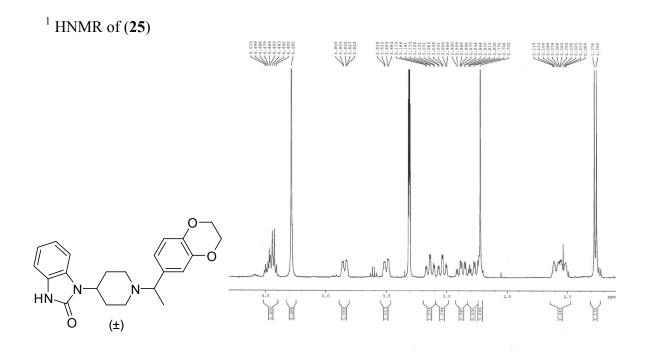
This compound was prepared according to the procedure for compound **4** in 71% yield from 5,6-dichloro-1-(azepan-4-yl)-1H-benzo[d]imidazol-2(3H)-one. A solution of methane sulfonic acid in EtOH (0.06 M, 1.0 mL, 0.06 mmol) was added to **47**. The solvent was removed under reduced pressure and the residue was dissolved in 1:1 water/acetonitrile. The solution was frozen and then subjected to lyophilization overnight giving product **47** in the form of a mesylate salt. ¹H NMR mesylate (400 MHz, CD₃OD) δ 7.67 (d, J = 1.6 Hz, 2H), 7.49 (t, J = 8.0 Hz, 3H), 7.19 (s, 1H), 4.58-4.51 (m, 1H), 4.40 (s, 2H), 3.66-3.61 (m, 1H), 3.43 (m, 3H), 2.78-2.70 (m, 4H), 2.38-2.30 (m, 1H), 2.23-2.09 (m, 3H), 2.04-2.02 (m, 1H); MS(m/z): [M+H] calc'd for C₂₀H₂₁BrCl₂N₃O is 468.02, found 468.05; HPLC t_R = 3.87 min.

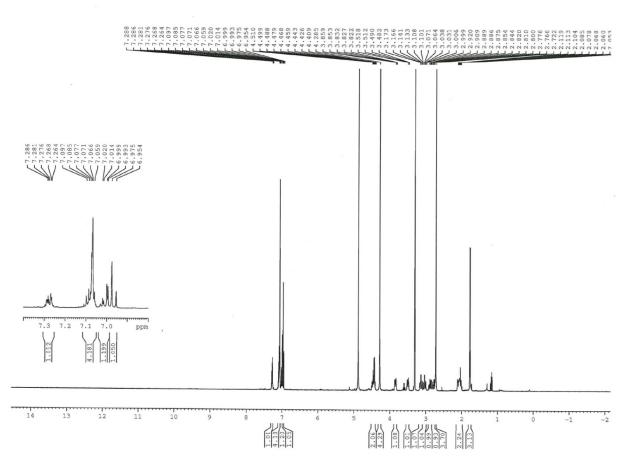
(R)-5,6-dichloro-1-(1-(4-bromobenzyl)pyrrolidin-3-yl)-1H-benzo[d|imidazol-2(3H)-one, (48)

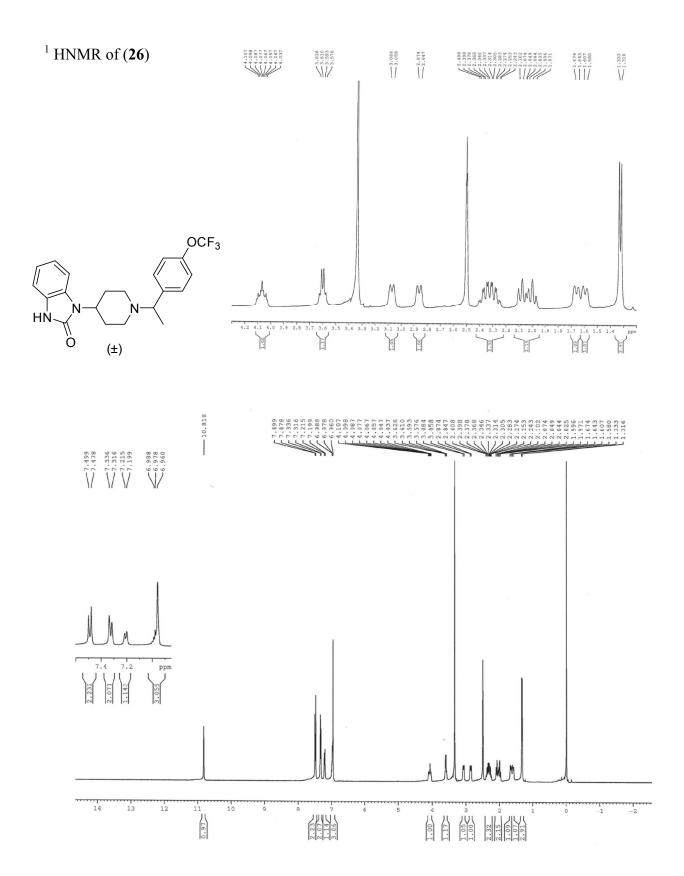
This compound was prepared according to the procedure for compound **9** in 62% yield from (R)-5,6-dichloro-1-(pyrrolidin-3-yl)-1H-benzo[d]imidazol-2(3H)-one. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 8.19 (s, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.12 (s, 1H), 5.16-5.12 (m, 1H), 3.76 (d, J = 12.8 Hz, 1H), 3.50 (d, J = 12.8 Hz, 1H), 3.24 (t, J = 8.0 Hz, 1H), 2.96 (d, J = 10.0 Hz, 1H), 2.51 (t, J =

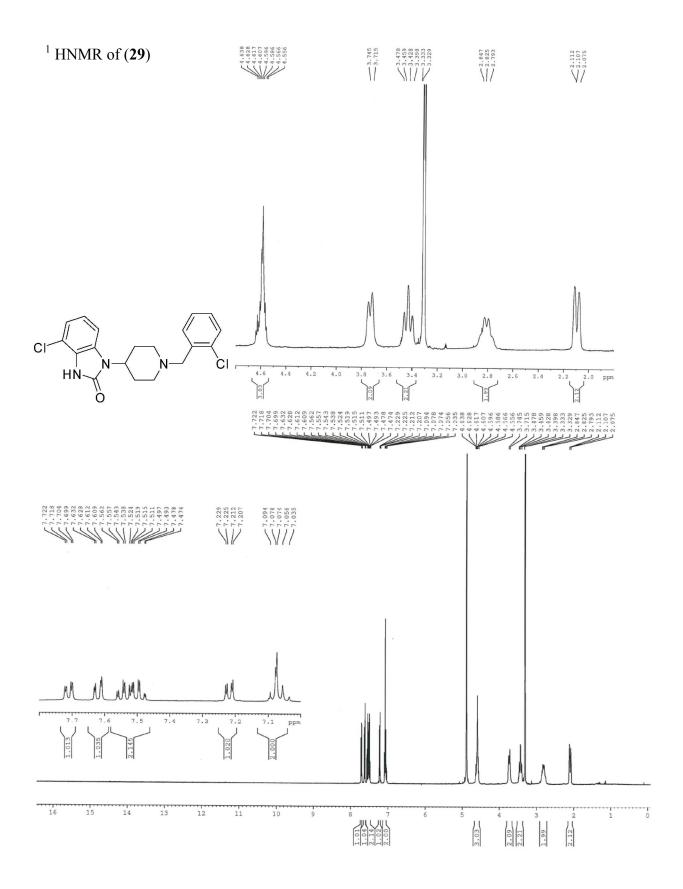
10.0 Hz, 1H), 2.37-2.25 (m, 2H), 2.04 (t, J = 9.8 Hz, 1H); MS(m/z): [M+H] calc'd for $C_{18}H_{17}BrCl_2N_3O$ is 439.99, found 439.96; HPLC $t_R = 4.26$ min.

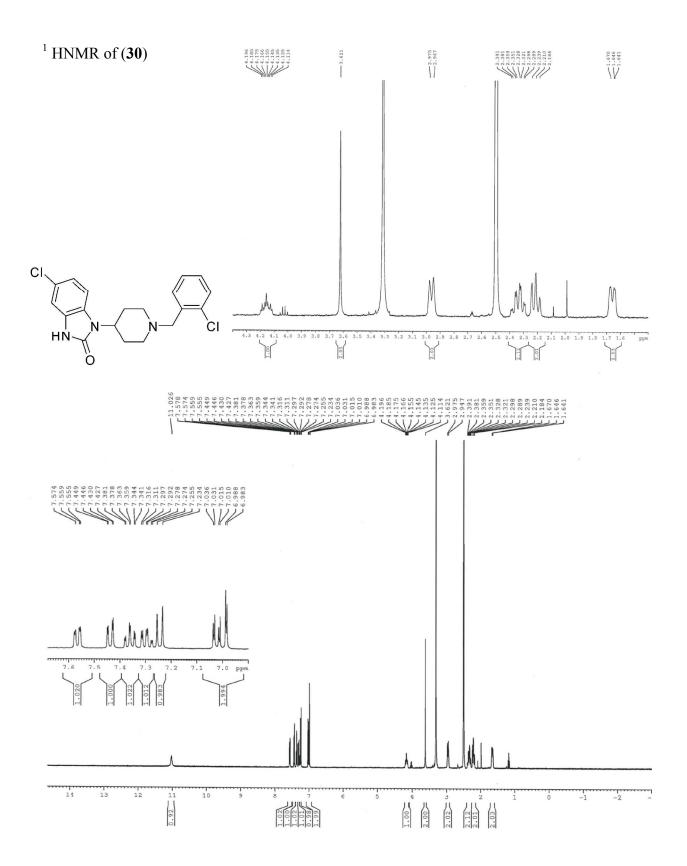
(S)-5,6-dichloro-1-(1-(4-bromobenzyl)pyrrolidin-3-yl)-1H-benzo[d|imidazol-2(3H)-one, (49)

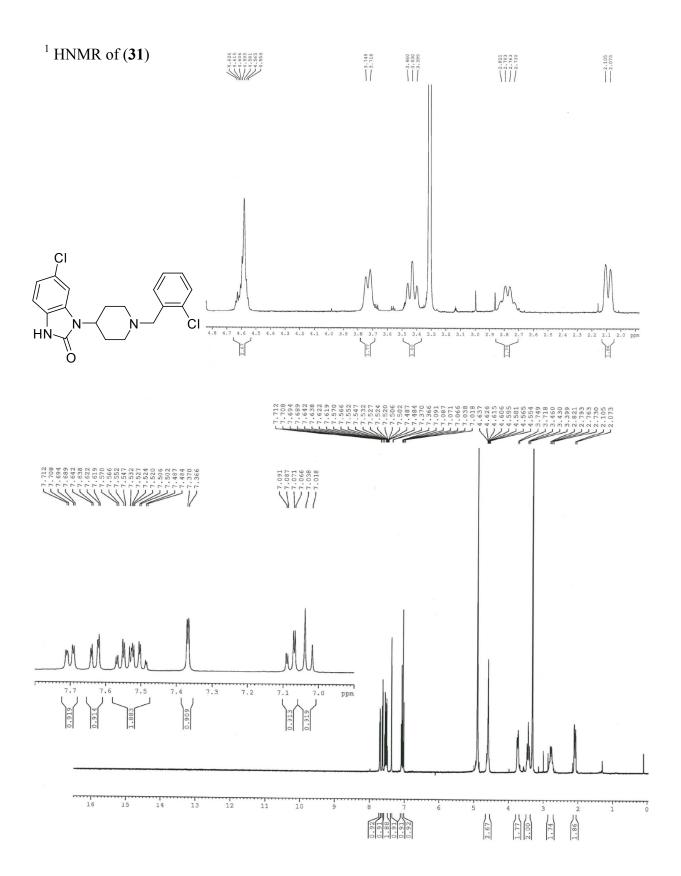

This compound was prepared according to the procedure for compound **9** in 61% yield from (*S*)-5,6-dichloro-1-(pyrrolidin-3-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one. ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 8.19 (s, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.15 (s, 1H), 5.15 (tt, *J* = 10.4, 3.6 Hz, 1H), 3.76 (d, *J* = 12.8 Hz, 1H), 3.51 (d, *J* = 12.8 Hz, 1H), 3.25 (t, *J* = 12.4 Hz, 1H), 2.96 (d, *J* = 10.4 Hz, 1H), 2.52 (t, *J* = 9.6 Hz, 1H), 2.37-2.26 (m, 2H), 2.08-1.98 (m, 1H); MS(*m/z*): [M+H] calc'd for C₁₈H₁₆BrCl₂N₃O is 439.99, found 439.99; HPLC t_R = 3.29 min.

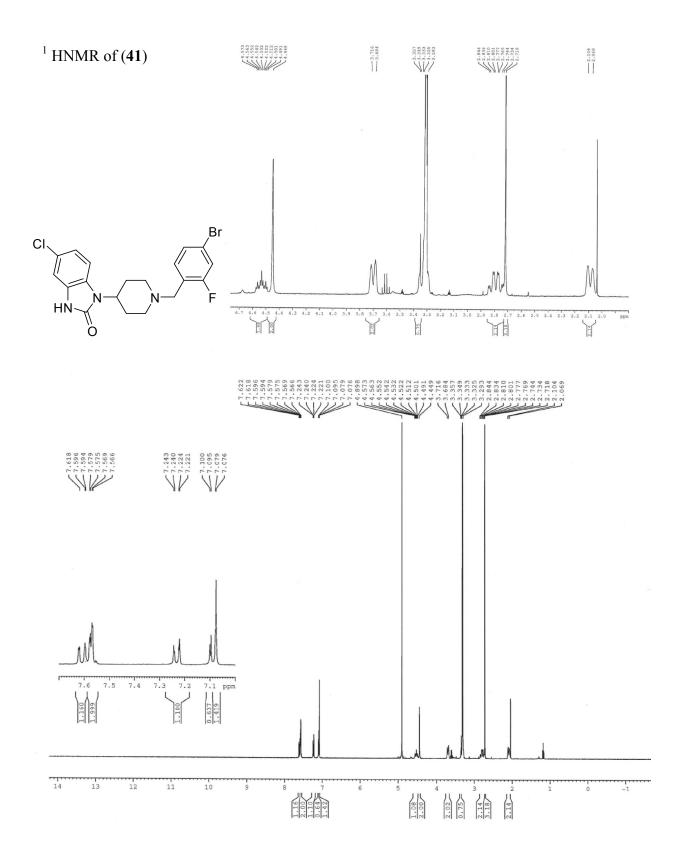

(R)-1-(1-(4-bromobenzyl)piperidin-3-yl)-5,6-dichloro-1H-benzo[d]imidazol-2(3H)-one, (50)

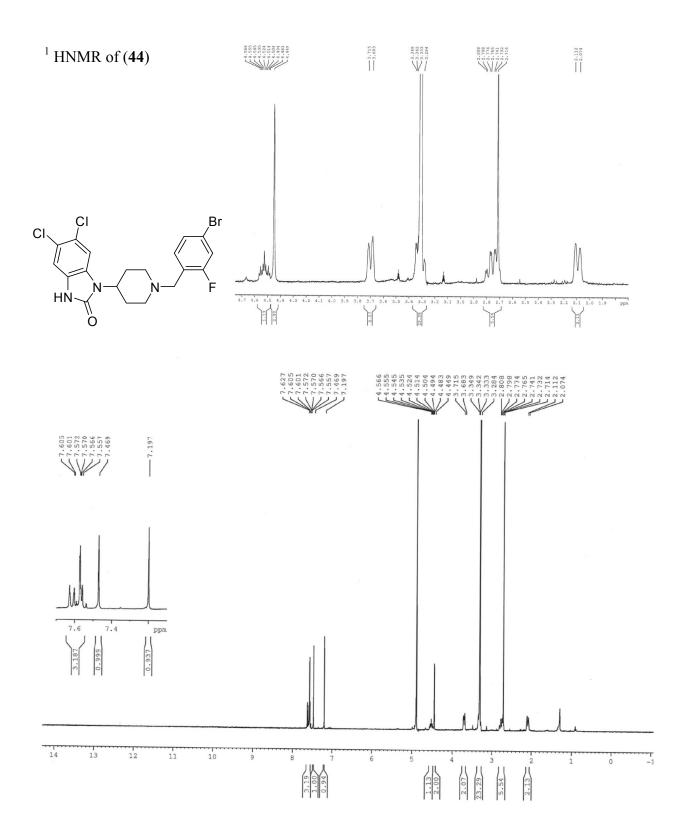

This compound was prepared according to the procedure for compound **9** in 36% yield from (R)-5,6-dichloro-1-(piperidin-3-yl)-1H-benzo[d]imidazol-2(3H)-one. ^{1}H NMR (400 MHz, CD₃OD) δ 7.47 (d, J = 8.4 Hz, 2H), 7.44 (s, 1H), 7.28 (d, J = 8.4 Hz, 2H), 7.16 (s, 1H), 4.38 (tt, J = 11.6, 4.0 Hz, 1H), 3.59 (s, 2H), 2.90 (d, J = 11.2 Hz, 2H), 2.74 (t, J = 10.6 Hz, 1H), 2.26-2.16 (m, 2H), 1.87 (dd, J = 11.6, 2.2 Hz, 2H), 1.79-1.78 (m, 1H); MS(m/z): [M+H] calc'd for C₁₉H₁₉BrCl₂N₃O is 454.00, found 454.04; HPLC t_R = 4.24 min.

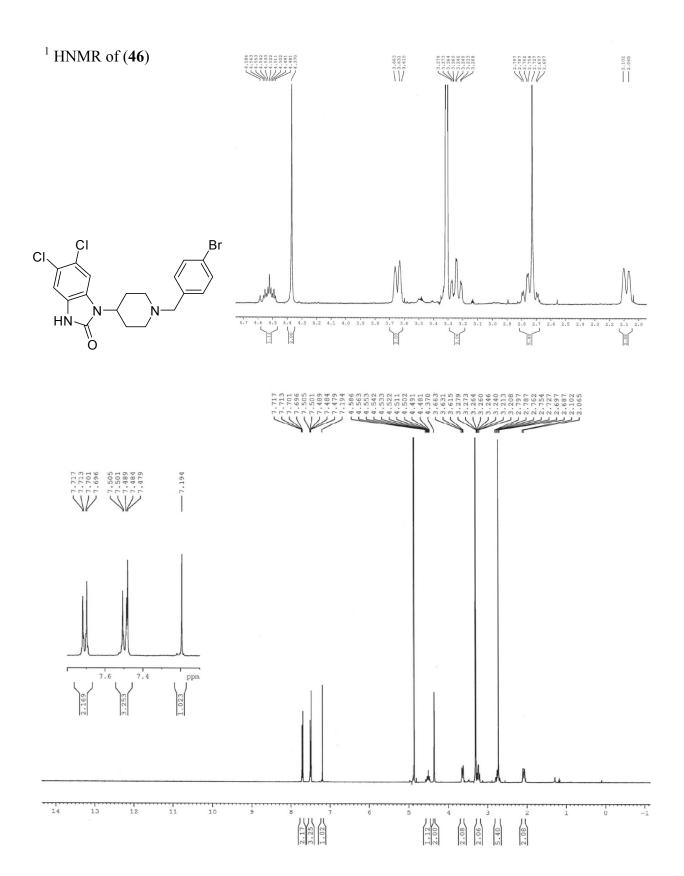

(S)-1-(1-(4-bromobenzyl)piperidin-3-yl)-5,6-dichloro-1<math>H-benzo[d]imidazol-2(3H)-one, (51)


This compound was prepared according to the procedure for compound **9** in 42% yield from (*S*)-5,6-dichloro-1-(piperidin-3-yl)-1*H*-benzo[*d*]imidazol-2(3*H*)-one. ¹H NMR (400 MHz, CD₃OD) δ 7.47 (d, J = 8.4 Hz, 2H), 7.43 (s, 1H), 7.28 (d, J = 8.4 Hz, 2H), 7.16 (s, 1H), 4.38 (tt, J = 12.0, 3.8 Hz, 1H), 3.59 (s, 2H), 2.90 (d, J = 11.6 Hz, 2H), 2.74 (t, J = 11.0 Hz, 1H), 2.26-2.12 (m, 2H), 1.87 (dd, J = 12.2, 2.2 Hz, 2H), 1.79-1.69 (m, 1H); MS(m/z): [M+H] calc'd for C₁₉H₁₉BrCl₂N₃O is 454.00, found 454.00; HPLC t_R = 4.14 min.









Molecular Strings

Compound	Smiles
1	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC=CC=C4)CC3
2	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
3	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC(Cl)=CC=C4)CC3
4	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC=C(C1)C=C4)CC3
5	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC=C(C)C=C4)CC3
6	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC=C(Br)C=C4)CC3
7	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC=C(OC)C=C4)CC3
8	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC=C(NC(C)=O)C=C4)CC3
9	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC=C(C#N)C=C4)CC3
10	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC=C(C(N)=O)C=C4)CC3
11	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC(OC)=CC=C4)CC3
12	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC(OC(F)(F)F)=CC=C4)CC3
13	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=CC(Cl)=C(Cl)C=C4)CC3
14	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=C(C)C=C(C1)C=C4)CC3
15	O=C1NC2=C(C=CC=C2)N1C3CCN(CC4=C(F)C=C(Br)C=C4)CC3
16	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=CC=CC=C4)CC3
17	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=C(Cl)C=CC=C4)CC3
18	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=CC=C(C1)C=C4)CC3
19	O=C1NC2=C(C=CC=C2)N1C3CCN(C(CC)C4=CC=C(C1)C=C4)CC3
20	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=CC=C(F)C=C4)CC3
21	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=CC=C(Br)C=C4)CC3
22	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=CC=C(OC)C=C4)CC3
23	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=CC=C(OCC)C=C4)CC3
24	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=CC=C(OC(C)C)C=C4)CC3
25	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=CC(OCCO5)=C5C=C4)CC3

26	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=CC=C(OC(F)(F)F)C=C4)CC3
27	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=C(F)C=C(Br)C=C4)CC3
28	O=C1NC2=C(C=CC=C2)N1C3CCN(C(C)C4=C(F)C=C(C1)C=C4)CC3
29	O=C1NC2=C(C=CC=C2Cl)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
30	O=C1NC2=C(C=CC(Cl)=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
31	O=C1NC2=C(C=C(Cl)C=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
32	O=C1NC2=C(C(Cl)=CC=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
33	O=C1NC2=C(C=CC(C)=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
34	O=C1NC2=C(C=CC(Br)=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
35	O=C1NC2=C(C=CC(F)=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
36	O=C1NC2=C(C=CC(OC)=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
37	O=C1NC2=C(C=CC(OC(F)(F)F)=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
38	O=C1NC2=C(C=CC(S(=O)(C)=O)=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
39	O=C1NC2=C(C=CC(C#N)=C2)N1C3CCN(CC4=C(Cl)C=CC=C4)CC3
40	O=C1NC2=C(C=CC=C2Cl)N1C3CCN(CC4=C(F)C=C(Br)C=C4)CC3
41	O=C1NC2=C(C=CC(C1)=C2)N1C3CCN(CC4=C(F)C=C(Br)C=C4)CC3
42	O=C1NC2=C(C=C(Cl)C=C2)N1C3CCN(CC4=C(F)C=C(Br)C=C4)CC3
43	O=C1NC2=C(C=C(Cl)C=C2Cl)N1C3CCN(CC4=C(F)C=C(Br)C=C4)CC3
44	O=C1NC2=C(C=C(Cl)C(Cl)=C2)N1C3CCN(CC4=C(F)C=C(Br)C=C4)CC3
45	O=C1NC2=C(C(Cl)=C2Cl)N1C3CCN(CC4=C(F)C=C(Br)C=C4)CC3
46	O=C1NC2=C(C=C(Cl)C(Cl)=C2)N1C3CCN(CC4=CC=C(Br)C=C4)CC3
47	O=C1NC2=C(C=C(Cl)C(Cl)=C2)N1C3CCN(CC4=CC=C(Br)C=C4)CCC3
48	O=C1NC2=C(C=C(Cl)C(Cl)=C2)N1[C@@H]3CCN(CC4=CC=C(Br)C=C4)C3
49	O=C1NC2=C(C=C(Cl)C(Cl)=C2)N1[C@H]3CCN(CC4=CC=C(Br)C=C4)C3
50	O=C1NC2=C(C=C(Cl)C(Cl)=C2)N1[C@@H]3CCCN(CC4=CC=C(Br)C=C4)C3
51	O=C1NC2=C(C=C(Cl)C(Cl)=C2)N1[C@H]3CCCN(CC4=CC=C(Br)C=C4)C3

References

³ Yoshihisha, A.; Toshiaki, K.; Tomohisa, M.; Kenji, A.; Naoko, M.; Yumiko, Y.; Takashi, W.;

¹ Shum, P. W.; Peet, N. P.; Weintraub, P. M.; Le, T. B.; Zhao, Z.; Barbone, F.; Cashman, B.; Tsay, J.; Dwyer, S.; Loos, P. C.; Powers, E. A.; Kropp, K.; Wright, P. S.; Bitonti, A.; Dumont, J.; Borcherding, D. R. The Design and Synthesis of Purine Inhibitors of CDK2.III. *Nucleosides, Nucleotides and Nucleic Acids* **2001**, *20*, 1067-1078.

² Schmid, C. L.; Kennedy, N. M.; Ross, N. C.; Lovell, K. M.; Yue, Z.; Morgenweck, J.; Cameron, M. D.; Bannister, T. D.; Bohn, L. M. Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics. *Cell* **2017**, *171*, 1165-1175.

Masaki, T.; Toyokazu, H. Compounds Having both of Opioid μ Receptor Agonist Activity and Dopamine D2 Receptor Antagonist Activity as Remedies for Pain. WO 2,000,038,720 A1, **1999**.

⁴ Poulain, R.; Horvath, D.; Bonnet, B.; Eckhoff, C.; Chapelain, B.; Bodinier, M. C.; Déprez, B. From Hit to Lead. Combining two Complementary Methods for Focused Library Design. Application to Mu-Opioid Ligands. *J. Med. Chem.* **2001**, *44*, 3378-3390.

⁵ Morini, C. C.; Maguire, P. A.; Loew, G. H. Molecular Determinants of Mu Receptor Recognition for the Fentanyl Class of Compounds. *Molec. Pharmacol.* **1992**, *41*, 185-196.

⁶ Kawamoto, H.; Ozaki, S.; Itoh, Y.; Miyaji, M.; Arai, S.; Nakashima, H.; Kato, T.; Ohta, H.; Iwasawa, Y. Discovery of the First Potent and Selective Small Molecule Opioid Receptor-like (ORL1) Antagonist: 1-[(3*R*,4*R*)-1-Cylcooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2*H*-benzimidazole-2-one (J-113397). *J. Med. Chem.* **1999**, *42*, 5061-5063.

⁷ Janssen, P. A. J. Benzimidazolinypiperdines. U.S. Patent 3,318,900, **1967**.

⁸ Bannister, T. D.; Bohn, L. M.; Schmid, C. L. Benzimidazolones as Signaling-Biased Mu-Opioid Receptor Agonists and their Preparation. U.S. Patent 62,308,333, **2017**.