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1st Editorial Decision 20 August 2018 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the two referees who agreed to evaluate your study. As you will see below, the reviewers think 
that the presented method seems potentially useful for the analysis of single-cell RNA-seq data. 
They raise however a series of concerns, which we would ask you to address in a major revision.  
 
Some of the more fundamental issues raised are the following:  
 
- Reviewer #1 mentions that a more extensive comparison to existing approaches needs to be 
included. During our pre-decision cross-commenting process (in which the reviewers are given the 
chance to make additional comments, including on each other's reports), this reviewer emphasized 
that demonstrating concrete advantages over state-of-the-art existing approaches is particularly 
important.  
 
- Reviewer #2 strongly suggests providing the software in a form that is easy to install and use, so 
that it can be easily adopted by others.  
 
- Reviewer #2 also refers to the need to address a series of technical concerns.  
 
All other issues raised need to be convincingly addressed. Please feel free to contact me in case you 
would like to discuss in further detail any of the issues raised by the reviewers.  
 
 
REFEREE REPORTS 
--------------------------------------------------------  
 
Reviewer #1:  
 
Levitin et al describe a novel method for the identification of gene modules from single-cell RNA-
seq data. Their method is based on an adaptation of Poisson factorization and does not require prior 
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normalization. They have compared their approach to PCA, NMF, factor analysis and ZIFA. 
Additionally, they have applied their approach to scRNA-seq of a glioma cell line, to demonstrate its 
use.  
The method developed is novel. However, the availability of many competing methods with similar 
performances diminish the interest in the authors' approach. I would ask the authors to consider the 
following:  
1. scHPF has not been vetted against all relevant competing methods. In particular, ZINB 
(https://www.nature.com/articles/s41467-017-02554-5 ) provides the functionality of the authors 
approach and should be compared to their method. Likewise scvis 
(https://www.nature.com/articles/s41467-018-04368-5 ) should also be compared. There are actually 
many, many other methods for dimensionality reduction and I ask the authors to at least compare to 
these two using some of the tests that are described in those papers. A complete evaluation would 
include some of the best of other competing approaches.  
2. The comparisons that the authors make to other methods are not adequate. One of the problems 
with PCA and other approaches is that the first component often correlates with some technical 
variable (such as number reads, #aligned, duplication rate, etc. ) The authors should correlate the 
first 1-2 components of the reduced representation of their data to such technical variables and 
demonstrate superior performance to competing methods.  
3. Following up on this, the authors should assess the ability of scHPF to recover the true underlying 
low-dimensional signal and clustering structure based on simulated and/or experimental data. See 
Figure 7 of the ZINB paper and Figure 2 of the scvis papers for examples.  
4. The only comparison of their novel method to competing methods is done in their Figure 2. 
However, the results of this comparison are not compelling as competing methods seem to have 
similar performances.  
5. The held-out test set seems somewhat arbitrary. I understand the rationale for holding out such a 
small percentage as test (4%), but it seems that this procedure should then be repeated for different 
subsets of 4%. This would yield error bars for Figure 2A and clear up question 4.  
6. The survival analysis is not satisfactory. Typically, above median and below median expression is 
used to divide subjects into groups. The 1.5 and -1.5 thresholds seem arbitrary, ignore a large 
portion of the population and seem cherry-picked to produce the desired outcome.  
7. Other approaches for identifying useful gene modules have not been considered as competing 
approaches, such as single-cell co-expression network clustering.  
 
 
 
Reviewer #2:  
 
Levitin et al. present scHPF, an updated version of HPF tailored specifically to single-cell RNA-seq 
data.  
Let me first say that you have picked exactly the right reviewer. I am likely the only one on Earth 
who has personally studied nearly every line of code of the original HPF C++ implementation, 
personally implemented a Python version of the algorithm, and tested it on a wide range of single-
cell RNA-seq datasets. Yet I have had no prior interaction with the authors on this subject.  
 
Needless to say, I think HPF (and therefore scHPF) is a highly significant advance for scRNA-seq. 
It solves several challenges:  
 
* It decomposes scRNA-seq datasets into highly interpretable components  
* Both cells and genes are allowed to be (potentially) composites of multiple components, in 
agreement with the observation that genes participate in different gene-modules depending on 
context, and that cell identity is often modular  
* It uses arguably the right noise model (gamma-poisson mixtures, equivalent to the negative 
binomial), resulting in very accurate fits to real data  
* Empirically, it is able to compress a large amount of information into a small number of 
components. E.g. from 2000 genes to 64 components with very little loss of information (as judged 
by posterior predictive samples)  
* It operates on sparse matrices and converges rapidly, so that it can be applied to today's very large 
scRNA-seq datasets (unlike some competing algorithms)  
 
scHPF will have many important applications, including  
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* As dimensionality reduction before e.g. KNN graph construction, or tSNE projection  
* Tο discover functional gene modules  
* For separation of distinct aspects of cellular dynamics prior to lineage inference (e.g. cell cycle 
from maturation)  
* Potentially to remove components related to technical artefacts (e.g. IEG expression or sex-
specific gene expression)  
 
The present manuscript adds only minor algorithmic improvements over the original HPF paper. But 
beyond that it adds:  
* A Python implementation on top of TensorFlow (for parallel computation and potentially 
exploiting GPUs)  
* Extensive example applications to real-world scRNA-seq datasets  
 
I have a few minor issues with the presentation, some more significant concerns about the code, and 
some suggestions for improvements or additional applications:  
1. I think the argument for why the gamma-poisson is a suitable model for scRNA-seq data 
(assuming UMIs) is strong. You may want to cite [Comparative Analysis of Single-Cell RNA 
Sequencing Methods - 
ScienceDirect](https://www.sciencedirect.com/science/article/pii/S1097276517300497) (Fig. 5B) as 
well as some of the papers cited in the first part of the Result section in [K-nearest neighbor 
smoothing for high-throughput single-cell RNA-Seq data | 
bioRxiv](https://www.biorxiv.org/content/early/2018/04/09/217737).  
2. "We generated posterior predictive samples from scHPF by sampling latent representations theta 
and beta from the variational posterior and taking the inner product." but this results in real numbers, 
not integers. I assume you then drew a Poisson sample?  
3. In heterogeneous scRNA-seq data, consisting of disparate cell types, zeros are often inflated 
(simply because the genes are not expressed in all cell types). HPF accounts nicely for this due to 
the sparsity of the components. However, I think you should also account for it when plotting: 
instead of using a linear color scale, zeros should be plotted qualitatively differently. This greatly 
helps interpret the plots. I like to plot zeros in very light gray (so that the cells are visible but 
onobtrusive) and non-zeros on a linear scale using the perceptually uniform viridis scale. Here's a 
slightly hacky way to generate such a color scale:  
 
import matplotlib.colors as colors  
import matplotlib.pyplot as plt  
zviridis = colors.LinearSegmentedColormap.from_list("zviridis", [(0.9, 0.9, 0.9, 1)] + 
list(plt.cm.viridis(np.arange(1000) / 1000)), N=1001)  
 
4. The code is currently quite messy. There is a mixture of unrelated concerns: file I/O, feature 
selection, training, etc. which makes it hard to use the algorithm in any other way than as a 
command-line tool. I would strongly suggest isolating the algorithm itself into a class that roughly 
follows the scikit-learn API (which can be as simple as having a fit() method). That would make it 
much easier to integrate scHPF in software pipelines.  
5. It would be nice to have a pip installable package that pulls in all the requirements 
(dependencies). pip can also be configured to automatically create and make available a command-
line tool, so that you could run "schpf" from anywhere.  
6. The documentation says that the input file should be whitespace-delimited, but the code requires 
tab-delimited. It also doesn't allow a trailing tab. Generally speaking, ad-hoc file formats are very 
error-prone and force users to spend time writing file generators and parsers, which is super-boring.  
7. It would be better if the user could supply data in some well-defined format. I would suggest 
allowing loom files as input and to store the result back in the same loom file, in the form of 
attributes (e.g. "theta" on the cells). Loom allows attributes to be 2D matrices. Loom files are 
compatible with many popular pipelines including Seurat, scope and scanpy. See loompy.org.  
8. Did you try using the HPF factors as input to tSNE? In my experience, that works really well, and 
much better than using the raw matrix (obviously) or the commonly used top PCA components (less 
obviously). One possible advantage over your current approach is that the tSNE becomes 
independent of clustering.  
9. Can a fitted HPF model be used to project additional data into the latent space? This is useful in 
many situations, for example for RNA velocity when there is a need to project extrapolated cell 
states. In my own HPF implementation, I achieved this by holding beta fixed while learning a new 



Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 4 

theta from the new data. This works, but I'm not sure if it's technically sound.  
10. Validation and test data is not used in the ordinary sense. Instead, they represent held-out 
datapoints (subsets of the training data that are set to zero). Doesn't this affect the fitting? I.e. if a 
large fraction (say 50%) of the input data is used for validation, then the training data will be 
distorted. I guess this is fine, but should maybe be pointed out, and you might want to give a 
proposal as to the fractions that are suitable for test and validation.  
11. One way that HPF gets stuck in a local maximum, is by merging factors. In other words, it tends 
to find multiple near-identical factors, with near-identical beta and theta matrices. I suppose once 
two factors merge, they cannot diverge because locally they are alrady optimal. The result is in 
effect a reduction in the total number of factors, which may be fine of course. In my own code, I 
tried identifying redundant factors, and reinitializing them to a random state, but this did not help. 
Are redundant factors an indication that there is no more variance to be found?  
12. The hyperparameters are a bit confusingly named. For example, c is used to index the cells, and 
is also a hyperparameter, distinct from c'. I realize this is how it was done in the HPF paper, so 
maybe not a good idea to change now, but it would be helpful if you point out that c has double 
meaning.  
13. Interestingly, your TensorFlow version is ~25% slower than my pure-python (numpy) version, 
even though TensorFlow uses all four of my cores, whereas numpy uses only one. It may be worth 
investigating if e.g. the datatypes matter (float64 vs float32 or even float16), if there's excessive 
copying of arrays somewhere, or something else.  
 
In summary, I am very much in favor of publication, but to maximize impact, the software should be 
re-architected to be easy to install and use, both as a command-line tool and as a component in a 
larger pipeline. 
 
 
1st Revision - authors' response 16 November 2018 

Response to Reviewer Comments for MSB-18-8557, De novo Gene Signature Identification 
from Single-Cell RNA-Seq with Hierarchical Poisson Factorization 
 
Reviewer comments appear below in italics with point-by-point responses.  Modifications to the 
manuscript appear in purple text below and in the revised manuscript. 
 
REVIEWER 1 
 
Levitin et al describe a novel method for the identification of gene modules from single-cell RNA-seq 
data. Their method is based on an adaptation of Poisson factorization and does not require prior 
normalization. They have compared their approach to PCA, NMF, factor analysis and ZIFA. 
Additionally, they have applied their approach to scRNA-seq of a glioma cell line, to demonstrate its 
use.  
The method developed is novel. However, the availability of many competing methods with similar 
performances diminish the interest in the authors' approach. 
We agree that there are many competing methods, and we have improved the manuscript in 
response to specific comments below to better highlight the unique advantages of scHPF.  
Importantly, the much of the paper focuses on the application of scHPF to scRNA-seq of 
radiographically localized human glioma surgical specimens taken from different regions of the 
same tumor. So, the example application provided in this study is considerably more sophisticated 
and relevant than “scRNA-seq of a glioma cell line”.  

1) scHPF has not been vetted against all relevant competing methods. In particular, ZINB 
(https://www.nature.com/articles/s41467-017-02554-5 ) provides the functionality of the 
authors approach and should be compared to their method. Likewise scvis 
(https://www.nature.com/articles/s41467-018-04368-5 ) should also be compared. There 
are actually many, many other methods for dimensionality reduction and I ask the authors 
to at least compare to these two using some of the tests that are described in those papers. 
A complete evaluation would include some of the best of other competing approaches.  

We have conducted a formal benchmarking analysis of scHPF against the two methods 
suggested by the reviewer (ZINB-WaVE and scvis). scHPF outperforms both methods on 



Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 5 

multiple fronts as detailed below and in the revised manuscript. However, based on the 
manuscripts reporting these two techniques, neither is actually a directly “competing 
method”. scHPF is designed for de novo gene signature identification, which means that it 
takes genome-wide raw count data as input (to the extent that is possible given the limited 
sensitivity of scRNA-seq, typically >10,000 genes) and attempts to factorize it into the 
major transcriptional programs underlying a cellular population. This task is not 
demonstrated in any of the examples shown in the report of ZINB-WaVE (Risso et al, 
Nature Communications, 2018). Instead, the authors first identify the top ~1,000 highly 
variable genes in the data by external means (which are likely representative of 
subpopulation markers) followed by ZINB-WaVE dimensionality reduction. This means 
that no weight is assigned for any of the resulting components for genes that do not meet 
this initial variability criterion (~95% of genes). As we will describe below, when you 
actually compare the performance of ZINB-WaVE to that of scHPF on a much larger data 
matrix (filtered only to exclude genes expressed in (~0.1% of cells), ZINB-WaVE gives 
very inconsistent results, fails to recapitulate basic clustering of highly dissimilar cellular 
lineages, and is prohibitively computationally expensive. The case of scvis is even more 
extreme, because scvis is principally a visualization tool that is optimized, as the authors 
state in their abstract, for producing “interpretable two-dimensional representations of high-
dimensional single-cell RNA-sequencing data”. So there is no expectation that scvis is 
going to take genome-wide data as input and produce higher dimensional decompositions 
(e.g. >2-factor) of scRNA-seq data like scHPF. 
To benchmark the predictive performance of ZINB-WaVE and scvis on held-out test data, 
we used the procedure described in our original submission across 2-3 datasets. In the 
original submission, we tested PCA, NMF, FA, ZIFA, and scHPF with three different 
normalization methods on a >4,000-cell PBMC data set from 10x Genomics, a >3,000-cell 
MARS-seq microglial dataset from Matcovitch et al, and a ~10,000-cell glioma 
neurosphere dataset that we generated internally on our microwell array platform. While 
we tested scvis with all three datasets and normalization methods, we tested ZINB-WaVE 
without normalization (the most appropriate input type for both scHPF and ZINB-WaVE) 
only with the first two datasets due to prohibitive computing costs.  As shown in Fig. 2a of 
the revised manuscript, ZINB-WaVE slightly outperforms scHPF on the PMBC dataset and 
very substantially under-performs scHPF on the microglial dataset. In fact, on the 
microglial dataset, ZINB-WaVE performs worse than any of the methods we tested on any 
dataset in terms of predictive performance. We repeated this same test for scvis across all 
three datasets and normalization methods, and found that scHPF significantly outperformed 
scvis in all cases (see figure below). 
Because ZINB-WaVE slightly outperformed scHPF on the PBMC dataset, we decided to 
more carefully examine the resulting factors. While ZINB-WaVE exhibited good predictive 
performance, this does not necessarily translate into an interpretable representation of the 
underlying biology. We first applied a conventional clustering pipeline to the PBMC 
dataset (identification of highly variable genes followed by Louvain community detection) 
and, as expected, identified all of the major PBMC types including monocytes, dendritic 
cells, T cells, and B cells. As shown in Fig. EV3 of the revised manuscript, the factors 
obtained using scHPF are in excellent agreement with the conventional clustering results. 
Indeed, each of the major clusters has an associated dominant factor, and there are 
relationships between the factors associated with related cell types (like natural killer cells 
and effector memory CD8 T cells or among the three monocyte/myeloid lineages 
represented). Conversely, the factors obtained using ZINB-WaVE do not exhibit the same 
close relationship to the basic cell types in the data. While there are dominant factors for 
monocytes and B cells, the smaller clusters do not relate to the ZINB-WaVE factors in a 
straightforward way. 
Finally, we compared all of the methods to scHPF in terms of computational expense 
(Table 1, copied below). We found ZINB-WaVE to be extremely computationally 
expensive in terms of both computing time and memory usage compared to scHPF. Taken 
together with the issues described above and the fact that ZINB-WaVE was not really 
designed to perform the same computational task as scHPF, we feel that our work with 
scHPF is an important and unique contribution. As for scvis, we feel that its performance 
for this application is so poor that we would rather not show the results in our manuscript.  
We feel that it would be unfair to the authors of scvis who were very specific in their 
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original report as to the intended application of the algorithm, which is different from what 
we are doing here. 

 
The above figure does not appear in the revision. A) is the mean squared error ratio 
between scvis and scHPF for predictive performance across three normalization conditions 
and three datasets. scHPF outperforms scvis in all cases. B) is the posterior predictive 
check results comparing the true CV distribution for cells and genes to the results of 
scHPF, ZIFA, factor analysis, PCA, and scvis. The performance of scvis is so poor that it is 
often difficult to plot the results on the same graph. For lograte normalization, we couldn’t 
even obtain the final distribution due to numerical overflow errors. This is not a criticism of 
scvis, which is not meant for this application 

 
 

Table 1: Runtime and peak memory consumption at different levels of parallelization for 
ZINB-WaVE and scHPF on the PBMC dataset with K=10. ZINB-WaVE’s high memory 
consumption precluded running it with more than 2 threads on this dataset.   
 
Revisions to main text: 
We compared scHPF’s predictive performance to that of PCA, NMF and Factor Analysis 
(FA), as well as two methods developed specifically for scRNA-seq: Zero Inflated Factor 
Analysis (ZIFA) (Pierson & Yau, 2015) and Zero-Inflated Negative Binomial-based 
Wanted Variation Extraction (ZINB-WaVE) (Risso et al, 2018). 
ZINB-WaVE was applied directly to molecular counts. We did not apply ZINB-WaVE to 
the nearly 10,000-cell TS543 dataset due to the method’s prohibitive computational cost 
(Table 1). With only one exception, scHPF had the best predictive performance on held-
out test data across all datasets and normalizations (Figure 2a). scHPF’s superior 
performance was robust across a range of values for 𝐾, the number of factors (Extended 
Figure 2). Notably, while ZINB-WaVE had better predictive performance than scHPF on 
PBMCs, it had the highest mean squared error of any method on the Matcovitch et al. 
dataset.  

 Parallelization Runtime Peak Memory  
ZINB-WaVE  1 vCPU 442.58 min.  (7.38 hours) 17.8 Gb 
ZINB-WaVE  2 vCPU 237.76 min.  (3.96 hours) 31.5 Gb 
scHPF 2 vCPU 10.66 min. 1.6 Gb 
scHPF 8 vCPU 6.13 min. 1.6 Gb 
scHPF 16 vCPU 2.47 min 1.7 Gb 
scHPF (10 trials) 8 vCPU 52.90 min. 1.6 Gb 
scHPF (10 trials) 16 vCPU 36.45 min. 1.6 Gb 
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Because scHPF and ZINB-WaVE performed comparably in terms of predictive 
performance on the PBMC dataset, we carefully examined their respective factorizations in 
terms of computational expense and biological interpretability. For a single initialization 
with 𝐾 = 10, training ZINB-WaVE took 7.38 hours and had a peak memory consumption 
of 17.8 Gb (Table 1). Using two threads reduced ZINB-WaVE’s runtime to just under four 
hours, but nearly doubled its memory consumption to 31.5 Gb. In contrast, our scHPF 
implementation took 2.5-10.7 minutes, depending on the number of threads available, and 
~1.6 Gb of memory (Table 1). scHPF’s superior performance is in part due to optimized 
compilation and automatic parallelization with the Python Numba library (Lam et al, 2015). 
In addition, unlike ZINB-WaVE, scHPF only needs to consider nonzero matrix entries 
during training (Methods), which imparts a considerable theoretical advantage over 
methods that must iterate through (and in some cases store) every matrix entry. 
Finally, we compared the interpretability of scHPF and ZINB-WaVE’s low dimensional 
representations of cells in the PBMC data. Clustering using a conventional pipeline 
identified all of the major PBMC types including monocytes, dendritic cells, T cells, and B 
cells (Methods, Fig EV3a). scHPF factors were in excellent agreement with clustering 
results (Figure EV3b,c). Each major cell type had an associated dominant factor and there 
were relationships between factors associated with related cell types. In contrast, factors 
obtained using ZINB-WaVE did not exhibit the same close relationship to basic cell types 
in the data. While there were dominant factors for monocytes and B cells, smaller clusters 
did not relate to ZINB-WaVE factors in an interpretable way.  

 
2) The comparisons that the authors make to other methods are not adequate. One of the 

problems with PCA and other approaches is that the first component often correlates with 
some technical variable (such as number reads, #aligned, duplication rate, etc. ) The 
authors should correlate the first 1-2 components of the reduced representation of their 
data to such technical variables and demonstrate superior performance to competing 
methods. 

We agree that the relationship between the scHPF factors and certain technical variables 
should be investigated.  However, we disagree that correlation with technical variables is a 
disadvantage of PCA or any dimensionality reduction technique. In our opinion, the PCA’s 
ability to identify technical variables that dominate the structure of a dataset is among its 
principal advantages and most common applications. Similarly, if we were to identify 
scHPF factors that correlate strongly with technical variables, we could eliminate those 
factors from downstream analysis to produce a less biased result. We assessed the 
correlation between the scHPF factors that we identified for the high-grade glioma (HGG) 
tissue data set and three technical variables of particular relevance to scRNA-seq – number 
of molecules detected per cell, number of genes detected per cell, and number of reads per 
molecule for each cell (duplication rate). We note that, unlike PCA where each component 
can be weighted and ranked by its eigenvalue, scHPF does not have a “first 1-2 
components”, and so we made this assessment across all factors. We found that most 
factors were essentially uncorrelated with these technical variables and some factors had 
modest correlation (see Appendix Fig. S4 in the revised manuscript). Importantly, 
correlation with technical variables like number of molecules or genes detected per cell 
does not always indicate a technical artifact in scRNA-seq. For example, we tend to detect 
more molecules and genes in cells that are physically larger or in clusters associated with 
multiplets. Interestingly, the two factors with modest correlation with number of molecules 
detected per cell corresponded to endothelial cells (most likely the largest cell type in the 
data set) and cell cycle control (enriched in mitotic figures on the verge of becoming two 
cells). 
Revisions to text: 
Cell’s scHPF scores were largely uncorrelated with technical variables (Appendix Figure 
S4); however, two factors associated with physically larger cell types (dividing and 
endothelial) were modestly correlated with the number of molecules and genes per cell. 
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3) Following up on this, the authors should assess the ability of scHPF to recover the true 
underlying low-dimensional signal and clustering structure based on simulated and/or 
experimental data. See Figure 7 of the ZINB paper and Figure 2 of the scvis papers for 
examples. 

We agree that it is important to assess the ability of scHPF to recover the true underlying 
low-dimensional signal (e.g. clustering structure). In the original manuscript, we 
investigated this extensively in Fig. 3 and Fig. S6 (now Fig. EV4) for the glioma tissue 
data set.  We showed a direct comparison between conventional clustering analysis of the 
data and the scHPF factors, which corresponded very well. In addition, we showed how the 
top-ranked genes in the scHPF factors corresponded to markers of the expected cell types 
in the glioma specimen (Fig. S6, now EV4). In the revised manuscript, we show additional 
examples of this including Fig. EV3, which compares the agreement between scHPF 
factors and conventional clustering for PBMCs to that obtained for ZINB-WaVE as 
described in greater detail above in response to 1). 
Revisions to text: 
Finally, we compared the interpretability of scHPF and ZINB-WaVE’s low dimensional 
representations of cells in the PBMC data. Clustering using a conventional pipeline 
identified all of the major PBMC types including monocytes, dendritic cells, T cells, and B 
cells (Methods, Fig EV3a). scHPF factors were in excellent agreement with clustering 
results (Figure EV3b,c). Each major cell type had an associated dominant factor and there 
were relationships between factors associated with related cell types. In contrast, factors 
obtained using ZINB-WaVE did not exhibit the same close relationship to basic cell types 
in the data. While there were dominant factors for monocytes and B cells, smaller clusters 
did not relate to ZINB-WaVE factors in an interpretable way.  
 

4) The only comparison of their novel method to competing methods is done in their Figure 2. 
However, the results of this comparison are not compelling as competing methods seem to 
have similar performances. 

We respectfully disagree with this assessment and the claim that “competing methods seem 
to have similar performance” and that  “the only comparison… is done in their Figure 2”. 
In Fig. 2A of the original manuscript, scHPF consistently outperforms competing methods, 
but typically only by ~20% in terms of the mean-squared error summary statistic for 
predictive performance. However, as shown in Fig. 2B-C, this result can be deceiving 
when it comes to posterior predictive checks of the underlying noise distribution (computed 
here as coefficient of variation or CV) both at the cell- and gene-levels. The noise 
distribution is of paramount importance in scRNA-seq, because it is the basis on which the 
major sources of variability in the underlying cellular population are identified by 
comparison to overall technical noise. Indeed, for the cell-level CV distribution, the KS-
statistic (which assesses the dissimilarity between the true and predicted distributions) is 3-
9-fold higher across all competing methods (Fig. 2B, left) with all samples included and 6-
9-fold higher when negative samples are rectified (Fig. 2C, left). Similarly, for gene-level 
CV distributions, we find the KS-statistic to be 2-12-fold higher with all samples included 
for all methods except FA with log-rate normalization (Fig. 2B, right) and 3-29-fold higher 
with negative samples rectified for all methods (Fig. 2C, right).  We think these large 
deviations for the posterior predictive checks and the consistent performance of scHPF 
make for a compelling comparison. We made further comparisons to competing methods in 
Fig. S2,3 (now Fig. EV2 and Appendix Fig. 1) with additional datasets and across many 
values of K in the supplement. Importantly, while we have added a figure showing the 
mean-squared error comparison for ZINB-WaVE to Fig. 2A, we could not produce the CV 
distribution comparisons for ZINB-WaVE because it is not a generative model. This is 
discussed in detail in response to comment 1). 

5) The held-out test set seems somewhat arbitrary. I understand the rationale for holding out 
such a small percentage as test (4%), but it seems that this procedure should then be 
repeated for different subsets of 4%. This would yield error bars for Figure 2A and clear 
up question 4. 
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We agree that it would be valuable to provide error bars for Fig. 2A in the manner 
suggested by the reviewer. We now provide this information in Fig. 2A in the revised 
manuscript. 
Revisions to text: 
Error bars show standard error of the mean across three train/validation/test splits 
(Methods). 
 

6) The survival analysis is not satisfactory. Typically, above median and below median 
expression is used to divide subjects into groups. The 1.5 and -1.5 thresholds seem 
arbitrary, ignore a large portion of the population and seem cherry-picked to produce the 
desired outcome. 

We respectfully disagree that “typically, above median and below median expression is 
used to divide subjects in to groups”.  We assert that this approach would preclude the 
analysis of many common and important phenotypic distributions in a population.  For 
example, consider the case that the phenotype is overexpression of a gene-of-interest, and 
that this phenotype is relatively rare.  Specifically, consider that its distribution across 
patients is X = (0,0,1,1,1,1,1,1,1,1,1,2,2,2,1000,1000), where the patients with 1000 counts 
are of particular interest. The median of X is 1, and so the two groups would be X1 = 
(0,0,1,1,1,1,1,1,1,1,1) and X2 = (2,2,2,1000,1000), creating a situation where most of the 
subjects in the “high expression” group, X2, do not have the phenotype-of-interest. 
In reality, there is usually a competition between statistical power and the threshold chosen 
for effect size. Selecting a threshold such to isolate “elite” subjects with a very high effect 
size will typically result in lower statistical power.  To demonstrate this principal and to 
provide a broader range of effect size thresholds to demonstrate the robustness of our 
findings, we generated Appendix Fig. 6 for the revised manuscript which shows how the 
statistical significance of the originally reported survival difference varies with the effect 
size threshold: 
At very high effect size thresholds (t=1.8), the survival difference between depleted and 
enriched groups becomes insignificant because the group sizes are too small for there to be 
sufficient statistical power. At very low effect size thresholds (t=1.2), we are no longer 
actually comparing subjects with the phenotype of interest to subjects without it. The 
threshold is low enough that many subjects in the “high expression” group actually exhibit 
low expression of the gene signature, and the survival difference is also not significant. At 
intermediate values of the threshold, we observe a significant survival difference, and at all 
values of the threshold, we observe a survival difference in the same direction.  
Importantly, for all thresholds tested, comparison of the high expression “enriched” group 
to the remaining patients gives a statistically significant survival difference.   
Revisions to text: 
Restricting the analysis to glioblastoma (GBM), we identified patients enriched and 
depleted for the top genes in each factor (Methods, Appendix Figure S6 for analysis of 
sensitivity to effect size thresholds).   
Appendix Figure S6: Kaplan-Meir curves show survival differences in TCGA for donors 
enriched (red), not enriched (purple), and depleted (blue) for the 25 top scoring genes in 
astrocyte-like factor 1 (Methods) at different effect size cutoffs. Median survival difference 
(Med. SD) increases as the effect size cutoff (t) for inclusion in enriched and depleted 
cohorts increases. Statistical power decreases as effect size increases and treatment groups 
become smaller. 

 
7) Other approaches for identifying useful gene modules have not been considered as 

competing approaches, such as single-cell co-expression network clustering. 

We agree that single-cell co-expression network clustering is an important class of 
analytical techniques particularly for inferring regulatory relationships between genes, but 
these methods really do not perform the same task as scHPF. Because of transcript drop-out 
and noise, the main issues that scHPF has been developed to overcome, co-expression 
network clustering is very technically challenging with scRNA-seq data as discussed in, for 
example, Crow et al, Genome Biology, 2016 and Crow and Gillis, Trends in Genetics, 
2018. The scope of computational methods for analyzing scRNA-seq data is vast, and so 
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we limited our benchmarking and comparisons to methods we thought were most directly 
analogous to scHPF (i.e. matrix factorization methods). 

 
 
REVIEWER 2 
 
Levitin et al. present scHPF, an updated version of HPF tailored specifically to single-cell RNA-seq 
data.  
Let me first say that you have picked exactly the right reviewer. I am likely the only one on Earth 
who has personally studied nearly every line of code of the original HPF C++ implementation, 
personally implemented a Python version of the algorithm, and tested it on a wide range of single-
cell RNA-seq datasets. Yet I have had no prior interaction with the authors on this subject.  
 
Needless to say, I think HPF (and therefore scHPF) is a highly significant advance for scRNA-seq. 
It solves several challenges:  
 
* It decomposes scRNA-seq datasets into highly interpretable components  
* Both cells and genes are allowed to be (potentially) composites of multiple components, in 
agreement with the observation that genes participate in different gene-modules depending on 
context, and that cell identity is often modular  
* It uses arguably the right noise model (gamma-poisson mixtures, equivalent to the negative 
binomial), resulting in very accurate fits to real data  
* Empirically, it is able to compress a large amount of information into a small number of 
components. E.g. from 2000 genes to 64 components with very little loss of information (as judged 
by posterior predictive samples)  
* It operates on sparse matrices and converges rapidly, so that it can be applied to today's very 
large scRNA-seq datasets (unlike some competing algorithms)  
 
scHPF will have many important applications, including  
* As dimensionality reduction before e.g. KNN graph construction, or tSNE projection  
* Tο discover functional gene modules  
* For separation of distinct aspects of cellular dynamics prior to lineage inference (e.g. cell cycle 
from maturation)  
* Potentially to remove components related to technical artefacts (e.g. IEG expression or sex-
specific gene expression)  
 
The present manuscript adds only minor algorithmic improvements over the original HPF paper. 
But beyond that it adds:  
* A Python implementation on top of TensorFlow (for parallel computation and potentially 
exploiting GPUs)  
* Extensive example applications to real-world scRNA-seq datasets  
We agree with this synopsis and appreciate the encouraging comments. 

1) I think the argument for why the gamma-poisson is a suitable model for scRNA-seq data 
(assuming UMIs) is strong. You may want to cite [Comparative Analysis of Single-Cell 
RNA Sequencing Methods - 
ScienceDirect](https://www.sciencedirect.com/science/article/pii/S1097276517300497) 
(Fig. 5B) as well as some of the papers cited in the first part of the Result section in [K-
nearest neighbor smoothing for high-throughput single-cell RNA-Seq data | 
bioRxiv](https://www.biorxiv.org/content/early/2018/04/09/217737).  

We agree with this assessment and appreciate the suggested references, which we have 
added to the manuscript. 
Revisions to text: 
Previous work suggests that the Gamma-Poisson mixture distribution is an appropriate 
noise model for scRNA-seq data with unique molecular identifiers (UMIs) (Wagner et al, 
2018; Ziegenhain et al, 2017). 
 

2) "We generated posterior predictive samples from scHPF by sampling latent 
representations theta and beta from the variational posterior and taking the inner 
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product." but this results in real numbers, not integers. I assume you then drew a Poisson 
sample? 
 
We appreciate your catching this mistake.  Indeed, we did draw a Poisson sample and have 
modified the manuscript accordingly.  
 
Revisions to text: 
 
We generated posterior predictive samples from scHPF by sampling latent representations 
𝜃! and 𝛽! from the variational posterior and using their inner product as the rate of Poisson, 
from which we sampled counts.   
 

3) In heterogneous scRNA-seq data, consisting of disparate cell types, zeros are often inflated 
(simply because the genes are not expressed in all cell types). HPF accounts nicely for this 
due to the sparsity of the components. However, I think you should also account for it when 
plotting: instead of using a linear color scale, zeros should be plotted qualitatively 
differently. This greatly helps interpret the plots. I like to plot zeros in very light gray (so 
that the cells are visible but onobtrusive) and non-zeros on a linear scale using the 
perceptually uniform viridis scale. Here's a slightly hacky way to generate such a color 
scale:  
 
import matplotlib.colors as colors  
import matplotlib.pyplot as plt  
zviridis = colors.LinearSegmentedColormap.from_list("zviridis", [(0.9, 0.9, 0.9, 1)] + 
list(plt.cm.viridis(np.arange(1000) / 1000)), N=1001)  

We understand your suggestion. However, the reason we did not do this is because the low 
values coloring the plots to which you refer are not actually zero and instead span a range 
of small values, and so we are hesitant to represent them all with a single color that is offset 
from the continuous colormap. 
 

4) The code is currently quite messy. There is a mixture of unrelated concerns: file I/O, 
feature selection, training, etc. which makes it hard to use the algorithm in any other way 
than as a command-line tool. I would strongly suggest isolating the algorithm itself into a 
class that roughly follows the scikit-learn API (which can be as simple as having a fit() 
method). That would make it much easier to integrate scHPF in software pipelines.  
 
We agree with this assessment and have made a significant effort to overhaul the code in 
terms of its organization, computational performance, ease-of-use, and easy-of-installation. 
This will be described in more detail below, but we have taken your specific suggestion of 
enabling integration following the scikit-learn API. 
 

5) It would be nice to have a pip installable package that pulls in all the requirements 
(dependencies). pip can also be configured to automatically create and make available a 
command-line tool, so that you could run "schpf" from anywhere.  
 
We completely agree with this suggestion and have created a pip-installable package. 
 

6) The documentation says that the input file should be whitespace-delimited, but the code 
requires tab-delimited. It also doesn't allow a trailing tab. Generally speaking, ad-hoc file 
formats are very error-prone and force users to spend time writing file generators and 
parsers, which is super-boring.  
 
We thank the reviewer for pointing out this discrepancy, which we have rectified in the 
new version of the code.  
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7) It would be better if the user could supply data in some well-defined format. I would 
suggest allowing loom files as input and to store the result back in the same loom file, in 
the form of attributes (e.g. "theta" on the cells). Loom allows attributes to be 2D matrices. 
Loom files are compatible with many popular pipelines including Seurat, scope and 
scanpy. See loompy.org.  

We thank the reviewer for this suggestion and have enabled the use of loom files as input to 
preprocessing in the new version of the code. 

8) Did you try using the HPF factors as input to tSNE? In my experience, that works really 
well, and much better than using the raw matrix (obviously) or the commonly used top PCA 
components (less obviously). One possible advantage over your current approach is that 
the tSNE becomes independent of clustering.  
 
We agree – HPF factors do serve as highly effective input for both tSNE and UMAP as we 
now demonstrate in Fig. EV5. 
 
Revisions to text: 

In addition, we could use scHPF’s factorization as a low-dimensional input to t-Distributed 
Stochastic Neighbor Embedding (t-SNE) (Maaten & Hinton, 2008) or Uniform Manifold 
Approximation and Projection (UMAP) (McInnes et al, 2018) to produce visualizations 
that were consistent with conventional clustering (Figure EV5). Taken together, these 
results show that scHPF captures the major features identified by standard analyses of this 
dataset.  
 
 

9) Can a fitted HPF model be used to project additional data into the latent space? This is 
useful in many situations, for example for RNA velocity when there is a need to project 
extrapolated cell states. In my own HPF implementation, I achieved this by holding beta 
fixed while learning a new theta from the new data. This works, but I'm not sure if it's 
technically sound.  
 
Yes – a fitted HPF model can be used to project additional data into the latent space as you 
describe. We have added this functionality in the new version of the code. 
 

10) Validation and test data is not used in the ordinary sense. Instead, they represent held-out 
datapoints (subsets of the training data that are set to zero). Doesn't this affect the fitting? 
I.e. if a large fraction (say 50%) of the input data is used for validation, then the training 
data will be distorted. I guess this is fine, but should maybe be pointed out, and you might 
want to give a proposal as to the fractions that are suitable for test and validation.  
 
We agree that if a large fraction of the input data was used for validation, then this 
procedure could certainly affect the fit. In the benchmarking analyses we conducted, we 
held out only 4% of the data. Importantly, in actual applications of scHPF, we do not 
actually use a validation set to assess performance, so this is not an issue. 
 

11) One way that HPF gets stuck in a local maximum, is by merging factors. In other words, it 
tends to find multiple near-identical factors, with near-identical beta and theta matrices. I 
suppose once two factors merge, they cannot diverge because locally they are alrady 
optimal. The result is in effect a reduction in the total number of factors, which may be fine 
of course. In my own code, I tried identifying redundant factors, and reinitializing them to 
a random state, but this did not help. Are redundant factors an indication that there is no 
more variance to be found?  
 
We have observed the issue to which you are referring. We find that it occurs in scRNA-
seq datasets when, per the inference algorithm in the original HPF paper, phi is calculated 
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from the variational distributions for theta and beta during as the first step of the first 
iteration of training. As described in our expanded inference section, skipping this step 
during the first training iteration (or equivalently performing it as the last update) and 
instead initializing phi from a Dirichlet avoids “factor merging”. This may be because the 
randomness introduced when initializing theta and beta’s variational distributions is small 
compared to the randomness introduced by randomly initializing phi. 
 
Revisions to text: 

For scRNA-seq data, we have found that 𝜙!"’s update order (relative to the other 
variational parameters) can affect symmetry breaking. In particular, performing (3) as the 
first step of the first iteration (before (1) and (2)) can result in redundant factors with 
similar weights across cells and genes.  
 

12) The hyperparameters are a bit confusingly named. For example, c is used to index the 
cells, and is also a hyperparameter, distinct from c'. I realize this is how it was done in the 
HPF paper, so maybe not a good idea to change now, but it would be helpful if you point 
out that c has double meaning.  
 
We agree and have revised the manuscript to eliminate this problem. 
 

13) Interestingly, your TensorFlow version is ~25% slower than my pure-python (numpy) 
version, even though TensorFlow uses all four of my cores, whereas numpy uses only one. 
It may be worth investigating if e.g. the datatypes matter (float64 vs float32 or even 
float16), if there's excessive copying of arrays somewhere, or something else.  

We agree that our TensorFlow implementation of scHPF is slow. We have rewritten our 
code and produced a new version using Numba that is dramatically faster. We have added a 
detailed assessment of computational performance to the manuscript (Table 1). 
Revisions to text: 
Because scHPF and ZINB-WaVE performed comparably in terms of predictive 
performance on the PBMC dataset, we carefully examined their respective factorizations in 
terms of computational expense and biological interpretability. For a single initialization 
with 𝐾 = 10, training ZINB-WaVE took 7.38 hours and had a peak memory consumption 
of 17.8 Gb (Table 1). Using two threads reduced ZINB-WaVE’s runtime to just under four 
hours, but nearly doubled its memory consumption to 31.5 Gb. In contrast, our scHPF 
implementation took 2.5-10.7 minutes, depending on the number of threads available, and 
~1.6 Gb of memory (Table 1). scHPF’s superior performance is in part due to optimized 
compilation and automatic parallelization with the Python Numba library (Lam et al, 2015). 
In addition, unlike ZINB-WaVE, scHPF only needs to consider nonzero matrix entries 
during training (Methods), which imparts a considerable theoretical advantage over 
methods that must iterate through (and in some cases store) every matrix entry. 
 

 
2nd Editorial Decision 18 December 2018 

Thank you for sending us your revised manuscript. We have now heard back from the two referees 
who were asked to evaluate your study. As you will see below, they think that the study has 
significantly improved as a result of the performed revision. They raise however a few remaining 
issues, which we would ask you to address in a minor revision.  
 
Reviewer #1 is concerned about the validity of the survival analysis, which seems to be based on 
comparing patients with extreme expression levels of the signature. We would ask you to clarify 
how this analysis was performed and amend the related conclusions accordingly.  
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REFEREE REPORTS  
----------------------------------------------------------------------------  
 
Reviewer #1:  
 
The authors have done a thorough job in addressing my concerns with the original manuscript. The 
method proposed is novel, is competitive with status quo approaches in terms of analysis quality, 
and significantly outperforms status quo approaches in terms of time and memory costs (which is 
very important for scaling to emerging scRNA-seq "big data"). The use of stereotactic biopsies of 
human gliomas is commendable, and those novel data will provide an important resource. The 
manuscript, code and novel data will be of broad interest to the readership of MSB, as scRNA-seq is 
being widely adopted and their approach scales well and is therefore useful for meta-analysis.  
 
My only lingering concern is the survival analysis. The approach taken by the authors is atypical. 
Most analyses of this type would divide the population into two cohorts (typically above and below 
median expression). When the authors tried that approach their signature was no longer significant. 
To achieve significance the authors need to use a threshold of at least 1.4. But, this results in 
153/177 patients being excluded from consideration. Therefore their signature only correlates with 
survival when comparing the most extreme cases and disregarding the vast majority of the 
population. Even if this approach is considered valid, how can the authors be sure that there is 
sufficient statistical power in a comparison of 10 vs. 11 cases? I've never seen it done this way and I 
find the conclusion of the signature being prognostic to be somewhat misleading.  
 
I would ask that the authors remove the survival analysis from the manuscript and abstract. I think 
the manuscript is strong enough on its own without it. If the authors feel strongly that the survival 
analysis should be retained, then I would ask that this portion of the manuscript specifically be 
reviewed by an epidemiologist to assess the correctness of this approach.  
 
Minor: Maybe I couldn't find it, but the authors should include a statement of informed consent and 
IRB approval for the use of patient-derived tissues.  
 
 
Reviewer #2:  
 
The authors have adequately addressed all my questions and I have only one remaining concern:  
 
In Fig. EV4, a couple of the factor designations are questionable, or not well supported:  
 
The "pericytic" factor is probably more accurately described as "fibroblast" or perhaps "VLMC", 
given those collagens and Decorin. They likely also have Lum, Col1a2 and Pdgfra which are 
common in fibroblasts and VLMCs.  
 
The "OPC-like" factor is marked by Olig1 (which is normally expressed in the whole 
oligodendrocyte lineage, not just OPCs) and Dll3 (which is specific to OPCs but also some 
neurons). More canonical markers would be Pdgfra and Cspg4, if those are indeed present in the 
factor. If they are not, I would doubt the designation as OPC-like. 
 
Additional correspondence with the authors    11 January 2019 
I would propose writing a response to the comment of reviewer #1on the Kaplan-Meier plots and 
explaining in better detail how the analysis was done. If the way the analysis was performed can be 
clarified and if there are convincing arguments that the conclusions are justified, then I would see no 
reason to remove it. That being said, I do not think that removing it from the manuscript would be a 
major issue.  
 
We noticed that the patients are split into “enriched”, “depleted” and “intermediate” in terms of the 
expression of the signature, but the intermediate group is not shown at all in the Figure 4 plots. I 
would like to ask you if you could send us an edited figure in which all three groups are shown. I 
think that it would be useful to see this group in comparison to the other two (e.g. does it fall 
between the “enriched” and “depleted” groups?). 
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2nd Revision - authors' response 15 January 2019 

REVIEWER 1 
 
My only lingering concern is the survival analysis. The approach taken by the authors is atypical. 
Most analyses of this type would divide the population into two cohorts (typically above and below 
median expression). When the authors tried that approach their signature was no longer significant. 
To achieve significance the authors need to use a threshold of at least 1.4. But, this results in 
153/177 patients being excluded from consideration. Therefore their signature only correlates with 
survival when comparing the most extreme cases and disregarding the vast majority of the 
population. Even if this approach is considered valid, how can the authors be sure that there is 
sufficient statistical power in a comparison of 10 vs. 11 cases? I've never seen it done this way and I 
find the conclusion of the signature being prognostic to be somewhat misleading.  
 
We disagree with the reviewer’s assessment of our survival analysis on multiple points: 

1) The approach that we took to divide TCGA cohort into groups is common, at least for gene 
expression data. For example, the cBIO Portal, a widely used web-based application for 
analyzing gene expression and clinical outcome from TCGA data(Cerami et al., 2012), also 
uses a z-score threshold for gene expression to divide patients into groups(Gao et al., 
2013).  This same approach of identifying sub-sets of patients based on an average 
expression threshold has been used in multiple studies to correlate gene expression with 
patient survival across the glioma cohort from TCGA(Flavahan et al., 2016; Patel et al., 
2014). 

 
2) There is a good rationale for not using the median expression level of a gene or gene 

signature to divide patient cohorts into phenotypically distinct groups. As mentioned in the 
previous rebuttal, it is easy to conceive of scenarios where the median-level approach 
would be problematic. For example, consider the case that the phenotype is overexpression 
of a gene-of-interest, and that this phenotype is relatively rare.  Specifically, consider that 
its distribution across patients is X = (0,0,1,1,1,1,1,1,1,1,1,2,2,2,1000,1000), where the 
patients with 1000 counts are of particular interest. The median of X is 1, and so the two 
groups would be X1 = (0,0,1,1,1,1,1,1,1,1,1) and X2 = (2,2,2,1000,1000), creating a 
situation where most of the subjects in the “high expression” group, X2, do not have the 
phenotype-of-interest (namely high expression of X). 

 
3) We disagree that our “signature only correlated with survival when comparing the most 

extreme cases and disregarding the vast majority of the population”.  In Figure 4G, we 
showed a comparison between the two most extreme groups – the 10 patients with 
enrichment of our signature and the 11 patients with depletion. However, in Figure 4H, we 
also showed a comparison between the 10 patients with enrichment and all 151 remaining 
patients. In this analysis, where the results of our test are also highly significant, we do not 
disregard ANY patient in the cohort. All 161 patients are included in the analysis in Figure 
4H. We have now added the population of patients that are neither enriched nor depleted in 
the gene signature to Figure 4G, which have a median survival that falls between those of 
the enriched and depleted patients and is significantly different from the enriched patients.  

 
Minor: Maybe I couldn't find it, but the authors should include a statement of informed consent and 
IRB approval for the use of patient-derived tissues.  
We included this statement in the “Author Checklist” which was included with our submission. We 
will add this statement to the Methods section as requested.  We will add the following statement 
indicating IRB approval for the use of these specimens: 
“Tissue was procured from de-identified patients who provided written informed consent to 
participate in these studies through a protocol approved by the Columbia Institutional Review Board 
(IRB-AAAJ6163).” 
We do not have consent to share the WGS data for this patient under the IRB protocol and will state 
this I in the Methods section as well under the subheading “Whole-genome sequencing”. 
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REVIEWER 2 
 
In Fig. EV4, a couple of the factor designations are questionable, or not well supported:  
 
The "pericytic" factor is probably more accurately described as "fibroblast" or perhaps "VLMC", 
given those collagens and Decorin. They likely also have Lum, Col1a2 and Pdgfra which are 
common in fibroblasts and VLMCs.  
 
The "OPC-like" factor is marked by Olig1 (which is normally expressed in the whole 
oligodendrocyte lineage, not just OPCs) and Dll3 (which is specific to OPCs but also some 
neurons). More canonical markers would be Pdgfra and Cspg4, if those are indeed present in the 
factor. If they are not, I would doubt the designation as OPC-like. 
We agree with the Reviewer that additional markers are needed to further support the designation of 
these cell types in Fig. EV4.  To address, we have created Appendix Table S2 which has a longer 
list of genes associated with each factor.  This list shows that additional genes such as OLIG2 and 
PDGFRA are associated with the OPC-like factor, supporting this assignment.  Furthermore, we also 
associate PDGFRB, which is a marker of pericytes with the factor assigned as “pericytes”. 
 
 
 
Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., 
Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for 
exploring multidimensional cancer genomics data. Cancer discovery 2, 401-404. 
 
Flavahan, W.A., Drier, Y., Liau, B.B., Gillespie, S.M., Venteicher, A.S., Stemmer-Rachamimov, 
A.O., Suva, M.L., and Bernstein, B.E. (2016). Insulator dysfunction and oncogene activation in IDH 
mutant gliomas. Nature 529, 110-114. 
 
Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., 
Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical 
profiles using the cBioPortal. Science signaling 6, pl1. 
 
Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., Cahill, D.P., 
Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-cell RNA-seq highlights intratumoral 
heterogeneity in primary glioblastoma. Science (New York, NY) 344, 1396-1401. 
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Do	the	data	meet	the	assumptions	of	the	tests	(e.g.,	normal	distribution)?	Describe	any	methods	used	to	assess	it.

Is	there	an	estimate	of	variation	within	each	group	of	data?

Is	the	variance	similar	between	the	groups	that	are	being	statistically	compared?
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authorship	guidelines	in	preparing	your	manuscript.		

PLEASE	NOTE	THAT	THIS	CHECKLIST	WILL	BE	PUBLISHED	ALONGSIDE	YOUR	PAPER
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a	specification	of	the	experimental	system	investigated	(eg	cell	line,	species	name).

Each	figure	caption	should	contain	the	following	information,	for	each	panel	where	they	are	relevant:

2.	Captions

The	data	shown	in	figures	should	satisfy	the	following	conditions:

Source	Data	should	be	included	to	report	the	data	underlying	graphs.	Please	follow	the	guidelines	set	out	in	the	author	ship	
guidelines	on	Data	Presentation.

a	statement	of	how	many	times	the	experiment	shown	was	independently	replicated	in	the	laboratory.

Any	descriptions	too	long	for	the	figure	legend	should	be	included	in	the	methods	section	and/or	with	the	source	data.

Please	ensure	that	the	answers	to	the	following	questions	are	reported	in	the	manuscript	itself.	We	encourage	you	to	include	a	
specific	subsection	in	the	methods	section	for	statistics,	reagents,	animal	models	and	human	subjects.		

In	the	pink	boxes	below,	provide	the	page	number(s)	of	the	manuscript	draft	or	figure	legend(s)	where	the	
information	can	be	located.	Every	question	should	be	answered.	If	the	question	is	not	relevant	to	your	research,	
please	write	NA	(non	applicable).

B-	Statistics	and	general	methods

the	assay(s)	and	method(s)	used	to	carry	out	the	reported	observations	and	measurements	
an	explicit	mention	of	the	biological	and	chemical	entity(ies)	that	are	being	measured.
an	explicit	mention	of	the	biological	and	chemical	entity(ies)	that	are	altered/varied/perturbed	in	a	controlled	manner.

the	exact	sample	size	(n)	for	each	experimental	group/condition,	given	as	a	number,	not	a	range;
a	description	of	the	sample	collection	allowing	the	reader	to	understand	whether	the	samples	represent	technical	or	
biological	replicates	(including	how	many	animals,	litters,	cultures,	etc.).

1.	Data

the	data	were	obtained	and	processed	according	to	the	field’s	best	practice	and	are	presented	to	reflect	the	results	of	the	
experiments	in	an	accurate	and	unbiased	manner.
figure	panels	include	only	data	points,	measurements	or	observations	that	can	be	compared	to	each	other	in	a	scientifically	
meaningful	way.
graphs	include	clearly	labeled	error	bars	for	independent	experiments	and	sample	sizes.	Unless	justified,	error	bars	should	
not	be	shown	for	technical	replicates.
if	n<	5,	the	individual	data	points	from	each	experiment	should	be	plotted	and	any	statistical	test	employed	should	be	
justified

YOU	MUST	COMPLETE	ALL	CELLS	WITH	A	PINK	BACKGROUND	ê

In	Appendix	Figure	S6,	we	show	a	power	analysis	of	the	significance	of	a	survival	difference	
between	glioblastoma	patients	as	a	function	of	the	effect	size	in	the	enrichment	of	a	gene	
signature.	We	did	not	conduct	an	a	priori	power	analysis.
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No	samples	were	excluded.
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N/A

N/A

N/A

definitions	of	statistical	methods	and	measures:
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C-	Reagents

In	Fig.	4G,H	and	Appendix	Fig.	S6,	we	used	a	logrank	test	(Kaplan-Meier)	to	assess	a	survival	
difference	among	glioblastoma	patients	in	The	Cancer	Genome	Atlas	dataset.		In	Appendix	Fig.	S5,	
we	use	a	Mann-Whitney	U-test	to	assess	the	difference	between	cell	score	distributions	between	
cells	sampled	from	two	different	regions	of	a	tumor.

We	assessed	the	validity	of	the	logrank	test	by	testing	the	assumption	that	censorship	was	
independent	of	survival.	The	survival	distributions	for	censored	and	uncensored	data	were	not	
significantly	different	based	on	the	Mann-Whitney	U-test	(p=0.093)	which	only	assumes	that	the	
censored	and	uncensored	patients	are	independent	of	each	other.		For	the	application	of	the	
Mann-Whitney	U-test	in	Appendix	Fig.	S5,	the	assumptions	of	the	test	are	satisifed	because	the	
cells	in	the	two	groups	were	sampled	in	independent	experiments.

Yes.

The	variance	between	groups	for	the	survival	data	are	dissimilar,	but	similar	variance	is	not	an	
assumption	of	the	logrank	statistical	test.	The	variance	between	groups	for	the	regional	
comparison	of	cell	scores	by	the	Mann-Whitney	U-test	are	also	dissimilar,	but	again,	similar	
variance	is	not	an	assumptoin	of	the	test.



6.	To	show	that	antibodies	were	profiled	for	use	in	the	system	under	study	(assay	and	species),	provide	a	citation,	catalog	
number	and/or	clone	number,	supplementary	information	or	reference	to	an	antibody	validation	profile.	e.g.,	
Antibodypedia	(see	link	list	at	top	right),	1DegreeBio	(see	link	list	at	top	right).

7.	Identify	the	source	of	cell	lines	and	report	if	they	were	recently	authenticated	(e.g.,	by	STR	profiling)	and	tested	for	
mycoplasma	contamination.

*	for	all	hyperlinks,	please	see	the	table	at	the	top	right	of	the	document

8.	Report	species,	strain,	gender,	age	of	animals	and	genetic	modification	status	where	applicable.	Please	detail	housing	
and	husbandry	conditions	and	the	source	of	animals.

9.	For	experiments	involving	live	vertebrates,	include	a	statement	of	compliance	with	ethical	regulations	and	identify	the	
committee(s)	approving	the	experiments.

10.	We	recommend	consulting	the	ARRIVE	guidelines	(see	link	list	at	top	right)	(PLoS	Biol.	8(6),	e1000412,	2010)	to	ensure	
that	other	relevant	aspects	of	animal	studies	are	adequately	reported.	See	author	guidelines,	under	‘Reporting	
Guidelines’.	See	also:	NIH	(see	link	list	at	top	right)	and	MRC	(see	link	list	at	top	right)	recommendations.		Please	confirm	
compliance.

11.	Identify	the	committee(s)	approving	the	study	protocol.

12.	Include	a	statement	confirming	that	informed	consent	was	obtained	from	all	subjects	and	that	the	experiments	
conformed	to	the	principles	set	out	in	the	WMA	Declaration	of	Helsinki	and	the	Department	of	Health	and	Human	
Services	Belmont	Report.

13.	For	publication	of	patient	photos,	include	a	statement	confirming	that	consent	to	publish	was	obtained.

14.	Report	any	restrictions	on	the	availability	(and/or	on	the	use)	of	human	data	or	samples.

15.	Report	the	clinical	trial	registration	number	(at	ClinicalTrials.gov	or	equivalent),	where	applicable.

16.	For	phase	II	and	III	randomized	controlled	trials,	please	refer	to	the	CONSORT	flow	diagram	(see	link	list	at	top	right)	
and	submit	the	CONSORT	checklist	(see	link	list	at	top	right)	with	your	submission.	See	author	guidelines,	under	
‘Reporting	Guidelines’.	Please	confirm	you	have	submitted	this	list.

17.	For	tumor	marker	prognostic	studies,	we	recommend	that	you	follow	the	REMARK	reporting	guidelines	(see	link	list	at	
top	right).	See	author	guidelines,	under	‘Reporting	Guidelines’.	Please	confirm	you	have	followed	these	guidelines.

18.	Provide	accession	codes	for	deposited	data.	See	author	guidelines,	under	‘Data	Deposition’.

Data	deposition	in	a	public	repository	is	mandatory	for:
a.	Protein,	DNA	and	RNA	sequences
b.	Macromolecular	structures
c.	Crystallographic	data	for	small	molecules
d.	Functional	genomics	data	
e.	Proteomics	and	molecular	interactions

19.	Deposition	is	strongly	recommended	for	any	datasets	that	are	central	and	integral	to	the	study;	please	consider	the	
journal’s	data	policy.	If	no	structured	public	repository	exists	for	a	given	data	type,	we	encourage	the	provision	of	
datasets	in	the	manuscript	as	a	Supplementary	Document	(see	author	guidelines	under	‘Expanded	View’	or	in	
unstructured	repositories	such	as	Dryad	(see	link	list	at	top	right)	or	Figshare	(see	link	list	at	top	right).

20.	Access	to	human	clinical	and	genomic	datasets	should	be	provided	with	as	few	restrictions	as	possible	while	
respecting	ethical	obligations	to	the	patients	and	relevant	medical	and	legal	issues.	If	practically	possible	and	compatible	
with	the	individual	consent	agreement	used	in	the	study,	such	data	should	be	deposited	in	one	of	the	major	public	access-
controlled	repositories	such	as	dbGAP	(see	link	list	at	top	right)	or	EGA	(see	link	list	at	top	right).

21.	As	far	as	possible,	primary	and	referenced	data	should	be	formally	cited	in	a	Data	Availability	section.	Please	state	
whether	you	have	included	this	section.

Examples:
Primary	Data
Wetmore	KM,	Deutschbauer	AM,	Price	MN,	Arkin	AP	(2012).	Comparison	of	gene	expression	and	mutant	fitness	in	
Shewanella	oneidensis	MR-1.	Gene	Expression	Omnibus	GSE39462
Referenced	Data
Huang	J,	Brown	AF,	Lei	M	(2012).	Crystal	structure	of	the	TRBD	domain	of	TERT	and	the	CR4/5	of	TR.	Protein	Data	Bank	
4O26
AP-MS	analysis	of	human	histone	deacetylase	interactions	in	CEM-T	cells	(2013).	PRIDE	PXD000208

22.	Computational	models	that	are	central	and	integral	to	a	study	should	be	shared	without	restrictions	and	provided	in	a	
machine-readable	form.		The	relevant	accession	numbers	or	links	should	be	provided.	When	possible,	standardized	
format	(SBML,	CellML)	should	be	used	instead	of	scripts	(e.g.	MATLAB).	Authors	are	strongly	encouraged	to	follow	the	
MIRIAM	guidelines	(see	link	list	at	top	right)	and	deposit	their	model	in	a	public	database	such	as	Biomodels	(see	link	list	
at	top	right)	or	JWS	Online	(see	link	list	at	top	right).	If	computer	source	code	is	provided	with	the	paper,	it	should	be	
deposited	in	a	public	repository	or	included	in	supplementary	information.

23.	Could	your	study	fall	under	dual	use	research	restrictions?	Please	check	biosecurity	documents	(see	link	list	at	top	
right)	and	list	of	select	agents	and	toxins	(APHIS/CDC)	(see	link	list	at	top	right).	According	to	our	biosecurity	guidelines,	
provide	a	statement	only	if	it	could.

F-	Data	Accessibility

G-	Dual	use	research	of	concern

D-	Animal	Models

E-	Human	Subjects

N/A

N/A

The	TS543	cell	line	is	a	patient-derived	primary	tumor	cell	line	that	was	validated	by	RNA-seq	for	
amplification	of	PDGFRA	(the	driver	alteration	found	in	the	patient's	tumor)	and	tested	for	
mycoplasma	contamination.

N/A

N/A

N/A

Columbia	University	Medical	Center	Internal	Review	Board

Informed	consent	was	obtained	from	all	subjects	and	experiments	conformed	to	the	principles	set	
in	the	WMA	Declaration	of	Helsinki	and	the	Department	of	Health	and	Human	Services	Belmont	
Report.

See	above.

We	have	included	data	references	as	per	the	Molecular	Systems	Biology	formatting	requirements.

The	source	code	for	scHPF	is	provided	in	a	public	GitHub	repository:	
https://github.com/simslab/scHPF

No.

We	cannot	release	the	whole	genome	sequencing	data	from	the	patient	under	study	here.

N/A

N/A

N/A

The	single-cell	RNA-seq	data	were	depoisted	in	the	Gene	Expression	Omnibus	under	accession	
GSE116621.

See	above.


