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Supplementary item  
 

Descriptive title  

Supplementary Figure 1 Quantitative mapping of chromatin accessibility using digital 
DNaseI; Chromatin accessibility baseline is not significantly 
altered by long-term culture in charcoal-stripped media 

Supplementary Figure 2 DNaseI-seq and GR ChIP-seq measurements are highly 
reproducible 

Supplementary Figure 3 GR occupancy is concentrated in regions of pre-hormone 
accessible chromatin; Fraction of genome in accessible chromatin 
as a function of digital DNaseI sequencing read depth 

Supplementary Figure 4 GR occupancy and DNaseI sensitivity at pre-programmed vs. re-
programmed GR occupancy sites and induced DHSs 

Supplementary Figure 5 Genomic distribution of DHSs vs. GR occupancy sites in 
mammary cells; Pre-hormone DNaseI-seq and post-hormone GR 
ChIP-seq tag density distributions in different genomic annotation 
compartments 

Supplementary Figure 6 Clustering of post-hormone GR occupancy sites 
Supplementary Figure 7 GR occupancy site clusters are poorly correlated with 

transcriptional regulation of nearby genes; Consensus GRBEs do 
not vary significantly between accessible vs. inaccessible 
chromatin whether GR-bound or unbound 

Supplementary Figure 8 Targeting of GR occupancy to accessible chromatin pituitary cells; 
Generalization of Chromatin Context Coefficient (CCC) across 
cell types 

Supplementary Figure 9 Motifs enriched in GR occupancy sites that contain a canonical 
GRBE; Motifs enriched in GR occupancy sites that lack a 
canonical GRBE 

Supplementary Figure 10 Occupancy of AP-1 and HNF-3 motifs by their cognate factors; 
Motif co-occurrence does not predict GR occupancy 

  
Supplementary Table 1 DNaseI sensitive regions in the baseline (pre-hormone) state in the 

murine mammary adenocarcinoma cell line, 3134; DNase I 
sensitive regions in post dexamethasone-treated 3134 cells 

Supplementary Table 2 DNaseI hypersensitive sites (DHSs) in the baseline (pre-hormone) 
state in the murine mammary adenocarcinoma cell line, 3134 



Supplementary Table 3 DNaseI hypersensitive sites (DHSs) in post dexamethasone-treated 
3134 cells 

Supplementary Table 4 GR occupancy sites in the murine mammary adenocarcinoma cell 
line, 3134 (FDR 0%) 

Supplementary Table 5 Expression analysis of mammary (3134) and pituitary (AtT-20) 
cells 

Supplementary Table 6 GRBE sequence classes with greater than 50 instances in the 
genome. Chromatin Context Coefficient (CCC) classes in the 
murine genome 

Supplementary Table 7 DNaseI sensitive regions in the baseline (pre-hormone) state in the 
murine pituitary cell line, AtT-20; DNase I sensitive regions in the 
post-hormone state in the murine pituitary cell line, AtT-20 

Supplementary Table 8 DNaseI hypersensitive sites (DHSs) in the baseline (pre-hormone) 
state in the murine pituitary cell line, AtT-20 

Supplementary Table 9 DNaseI hypersensitive sites (DHSs) post-hormone in AtT-20 cells 
Supplementary Table 10 GR occupancy sites in the murine pituitary cell line, AtT-20 (FDR 

0%) 
Supplementary Notes Analysis of high-throughput sequencing data 
 

 

SUPPLEMENTARY TABLES 

 

SUPPLEMENTARY TABLE 1.  DNase I sensitive regions in the baseline (pre-hormone) and 

post-hormone (dexamethasone treated) states in the murine mammary adenocarcinoma 

cell line, 3134.  Columns:  Chr,start,stop. 

 

SUPPLEMENTARY TABLE 2.  DNase I hypersensitive sites (DHSs) in the baseline (pre-

hormone) state in the murine mammary adenocarcinoma cell line, 3134.  Columns:  

Chr,start,stop.  

 

SUPPLEMENTARY TABLE 3.  DNase I hypersensitive sites (DHSs) in post 

dexamethasone-treated 3134 cells.  Columns:  Chr,start,stop.     

 

SUPPLEMENTARY TABLE 4.  GR occupancy sites (FDR 0%) in the murine mammary 

adenocarcinoma cell line, 3134.  Columns:  Chr,start,stop. 

 



SUPPLEMENTARY TABLE 5.  Expression analysis (Affymetrix mouse exon array 1.0) of 

mammary (3134) and pituitary (AtT-20) cells. Columns:  Gene ID, log2 ratios of expression at 

0h, 2h, 4h and 8h (post-dexamethasone treatment), gene symbol.     

 

SUPPLEMENTARY TABLE 6.  GRBE sequence classes with greater than 50 instances in 

the genome. Chromatin Context Coefficient (CCC) classes in the murine genome.  mCCC = 

CCC values in computed from mammary (3134) cells.  pCCC = CCC values computed from 

pituitary (AtT-20) cells.  Columns:  Class logo, -log p of the GRBE, mCCC, pCCC and number 

of genomic instances.  

 

SUPPLEMENTARY TABLE 7.  DNase I sensitive regions in the baseline (pre-hormone) and 

post-hormone (dexamethasone treated) states in the murine pituitary cell line, AtT-20.  

Columns:  Chr,start,stop.  

 

 

SUPPLEMENTARY TABLE 8.  DNase I hypersensitive sites (DHSs) in the baseline (pre-

hormone) state in the murine pituitary cell line, AtT-20. Columns:  Chr,start,stop. 

 

SUPPLEMENTARY TABLE 9.  DNase I hypersensitive sites (DHSs) post-hormone in AtT-

20 cells. Columns:   Chr,start,stop.     

 

SUPPLEMENTARY TABLE 10.  GR occupancy sites in the murine pituitary cell line, AtT-

20 (FDR 0%).  Columns:  Chr,start,stop.  



SUPPLEMENTARY NOTES 

 

Gene expression (exon array) analysis.  RNA was extracted from cells either vehicle 

treated or treated with 100 nM hormone (dexamethasone, Dex) for 0h, 2h, 4h or 8h. 3134 

and AtT-20 RNA for microarray analysis was prepared via standard manufacturer 

protocols (Qiagen, Valencia, Ca) using cells resuspended in Trizol reagent (Invitrogen, 

Carlsbad, Ca).  RNA from untreated and dex treated cells were labeled with biotin-CTP 

using manufacturer’s recommendations (Affymetrix, Santa Clara, Ca).  Biotinylated RNA 

was then used to hybridize mouse exon 1.0 ST arrays.  Probe-level CEL files were processed 

through Affymetrix Expression Console using RMA summarization and median 

normalization methods.  CHP files were generated based on core annotation confidence for 

exons.  For gene-level expression values, expression summary value for each gene was 

obtained by taking the trimmed mean of all exon-level expression log intensities that were 

between the upper and lower quartiles (from half the exons around the median log 

intensity, see Supplementary Table 5).  

 

De novo motif discovery and motif matching.  We used the well-established MEME 

algorithm33 to search for motifs in the top 500 GR ChIP peaks (150 bp width).  GR peaks are 

defined as either pre- or re-programmed peaks.  DNase I sensitive sites in Dex- and Dex+ 

samples which overlapped peaks in Dex+ GR ChIP samples were designated pre-programmed 

GR peaks while DNase I sensitive regions in Dex+ but not Dex- samples which overlapped 

peaks in Dex+ GR ChIP samples were defined as re-programmed GR peaks.  The sequence was 

repeat masked prior to searching.  Settings of a minimum and maximum motif size of 8 bp and 

40 bp respectively with a maximum of 100 motifs were used for the search.  The resulting motifs 

were searched against the Transfac database using Tomtom to identify known motifs.  Unknown 

motifs with MEME e-values < 10-3 were further screened by comparing average p-values for 

sites within DNase I sensitive regions that overlapped GR ChIP peaks with DNase I sensitive 

regions that did not overlap GR ChIP peaks. Stronger motifs, those with lower p-values, < 10-4 , 

in the GR ChIP peaks vs DNase I sensitive regions alone were considered candidates for further 

analysis.  These motifs were used to scan  pre-programmed DNase I sensitive regions sites using 

MAST with a p-value cutoff of 10-3. The logo for the motifs identified in 3134 and AtT-20 are in 



Figure 4 and Supplementary Figure 7d.  

 

Classification of glucocorticoid receptor binding element  (GRBE) classes.  MEME was 

applied to 3134 GR ChIP-Seq data in order to discover enriched motifs within GR bound regions 

in an unbiased fashion.  The input for MEME was genomic sequences that correspond to the top 

500 GR ChIP peaks of width 150 bp each.  The most highly enriched sequence pattern 

conformed to a previously known palindromic Glucocorticoid Receptor Binding Element (GRBE 

motif).  A 15-mer position weight matrix for a GR binding motif was constructed from this 

MEME output.  We scanned the repeat-masked mouse genome for sequence matches to the 

GRBE motif by applying the algorithm MAST33 with the GRBE position weight matrix as input.  

All matches with the MAST position p-value less than 0.001 were identified, based on the 

default random sequence model.  Their genomic coordinates and DNA sequences were retrieved 

for subsequent classification.  We then grouped the individual 15-mer instances (~2.2 million) 

into motif sequence classes based on their nucleotide usage at non-degenerate positions of the 

GRBE motif.  For this purpose, motif positions 3, 7, 8, 9, and 13 had little information content 

and were considered degenerate.  There were  2,866 GRBE sequence classes that had at least  50 

GRBE occurrences genome-wide (Supplementary Table 6).  

 

Computation of Chromatin Context Coefficient (CCC).    To ensure statistical validity in 

assessing the effect of chromatin context, we identified 2,866  GRBE classes with 50 or 

more genomic instances (range: 50 -7,385), of which 1,100 were statistically well-defined.   

For each GRBE class, CCC is defined as the ratio of [the proportion of GR binding to a specific 

GRBE sequence in open chromatin] relative to [the proportion of GR binding to the same GRBE 

sequence in closed chromatin] (Figure 2c).  In this schema, high values of CCC represent high 

chromatin context-dependence of GR binding, while low values indicate GRBEs that are 

relatively insensitive to local chromatin context.  The latter category represents sites that have 

the potential to escape the dominant effect of the chromatin structural landscape, and initiate 

local remodeling.  Notably, no CCC values <1 were observed, demonstrating that GR binding 

was universally enhanced by residence of a specific GR recognition element within accessible 

chromatin prior to hormone.  

 



Filtering for sequence artifacts related to altered genomic copy numbers.  Sequencing 

artifacts derived from altered genomic copy numbers of specific elements or small regions (e.g., 

satellite sequences) are frequently observed in both DNase I and ChIP data, and typically 

manifest as a high concentration of tags in a small area.  We attempt to remove these artifacts in 

two ways.  First, we observe that satellite repeats are a significant source of artifacts, and we 

therefore simply mask satellite repeat regions from our final hotspot and peak sets.  Next, we 

apply a scanning procedure across the genome that identifies 50bp windows (each containing at 

least 5 mapped tags) that contain at least 80% of the tags in a 250bp surrounding window. A 

priori, 50bp is significantly smaller than the expected size of a bona fide GR binding event or a 

DNase I hypersensitive site. We mask all such flagged artifact regions from our final hotspot and 

peak sets. 

 

Replicate-concordant data sets.  We define replicate concordant sets for DNase I and GR ChIP 

as follows.  We use the generally more conservative definitions imposed by replicate 

concordance for the DNase I sets used in the CCC and aggregate plot (Figure 2 and 

Supplementary Figure 4) analyses.  For both GR ChIP and DNase I experiments, we generated 

two replicates for each condition (with and without Dex), for a total of four individual sets per 

experiment and tissue.  For DNase I, we define regions of replicate concordance within a fixed 

condition as the intersection of merged, minimally thresholded (z>=2) hotspots from each 

replicate. We then combine the tags from both replicates for that condition and call and score 

FDR-thresholded hotspots and peaks in the combined tag set.  An FDR-thresholded replicate 

concordant DNase I set is defined as the FDR-thresholded set in the combined dataset, 

intersected with the replicate concordant regions for that condition.  We do not restrict replicate 

concordant Dex- hotspots to those that overlap Dex+ hotspots.  For GR ChIP, we take a more 

conservative approach of thresholding both before and after taking intersections. For each 

condition we call FDR-thresholded peaks and hotspots in each replicate separately, and then 

define regions of replicate concordance as the intersection of merged hotspots at the FDR 0% 

level from both replicates.  We then enforce a specified degree of replicate concordance by 

further thresholding the results by density (sliding window tag counts), considering only FDR 

0% peaks from either replicate whose values are over a given absolute value, as follows. When 

each replicate is considered separately, we define the degree of replicate concordance as the 



percentage of each replicate’s density thresholded peaks that fall in the replicate concordant 

regions.  This percentage generally increases as the density threshold increases. We take as the 

99% replicate concordant set the peaks from the larger replicate thresholded by density at a level 

to achieve 99% replicate concordance by this measure. 

 

Calculation of enrichment p-values.  Throughout the text we provide p-values for the overlap 

of one set of genomic features with another.  In most instances we use the binomial distribution 

(R function pbinom) for these calculations. For the enrichment p-values in the GRBE/AP-

1/HNF3 motif analysis section, we use the one-sided tests for the relationship between two 

proportions (R function prop.test). 

 

Analysis of deep DNase-seq data vs. GR occupancy.  In 3134 cells, 71% of GR occupancy 

sites (5,865 sites) were localized within the 2.1% of the genome defined by pre-existing (i.e., 

pre-hormone or baseline) DNaseI sensitive regions (DNaseI hotspots; P<10-300 ).  However, we 

noticed that an additional 13% of GR sites were localized within 2kb around these regions. 

Because chromatin accessibility varies as a continuous function of genome position, and 

observed DNaseI sensitive regions exhibit >200-fold dynamic range in total tag counts between 

the weakest and strongest sites, we surmised that a sequencing depth of ~25 million uniquely 

mapping reads had significantly under-sampled the true accessible chromatin compartment.  To 

delineate accessible chromatin more completely, we sequenced both hormone-naïve and 

dexamethasone-treated DNaseI samples to a total depth of ~101 million uniquely mapping reads 

per condition, and recomputed sites of significantly elevated DNaseI sensitivity.and DHSs  

Deeper sequencing identified an additional 188,560 DHSs (276,050 vs 87,490, both at FDR 1%), 

and expanded annotation of significantly DNaseI sensitive regions (11.9% vs 2.1% of genome; 

Supplementary Table 1-3).  Comparing GR binding patterns with this more completely 

delineated accessible chromatin compartment revealed that 88.3% of GR binding sites localized 

within pre-hormone DNaseI sensitive regions (P<10-300).   

 

Identification of genomic clusters of GR occupancy sites..  The genomic regions exhibiting 

several GR binding sites in close proximity were retrieved by the following procedure.  We 

filtered out ChIP peaks with maximum tag density lower than 5 percentile of tag density values 



from all the peaks. The thresholded peaks were scanned from the beginning to the end of each 

chromosome and consecutive peaks within 25kb were considered to belong in a same cluster. 

The final set of GR binding clusters were defined to be those that have at least 3 peaks and are at 

least 2kb wide. 

 Cell type-specific and shared clusters were obtained by the following. The above 

algorithm was applied to the GR ChIP dataset from 3134 or AtT-20, and GR binding clusters 

were identified independently in each cell line. For 3134-specific clusters, we chose GR binding 

clusters identified in 3134 that are at least 1kb away from the nearest GR binding clusters found 

in AtT20. AtT20-specific clusters were obtained in a similar manner. Shared GR binding clusters 

were defined as those in 3134 that overlapped an AtT-20 GR binding cluster by more than 80% 

of their bp width. 

 

Comparison of gene expression profiles before and after hormone induction.  Comparison 

of the gene expression profiles of naïve and hormone-treated 3134 cells revealed 500 

differentially regulated genes (235 up-regulated at least 2-fold, and 265 down-regulated; 

Supplementary Table 5).  However, the average expression of genes near GR binding clusters 

(see methods for cluster definition) was not significantly altered (Supplementary Figure 7a-c). 

 

Statistical analyses of Chromatin Context Coefficients.  For each motif sequence class, we 

enumerated GRBEs within open or accessible chromatin (no) and those within closed or 

inaccessible chromatin (nc), using the pre-hormone DNase I dataset (o=open and c=closed).  

Within each category, GR bound GRBEs were counted (no
GR and nc

GR, respectively).  

Specifically, GRBEs within accessible chromatin were required to overlap hotspots thresholded 

to 0% FDR from the pre-hormone DNase I dataset.  GRBEs were considered within inaccessible 

chromatin if they did not overlap with any unthresholded, merged hotspot from the pre-hormone 

DNase I dataset.  GR-bound GRBEs were identified as those overlapping GR ChIP peaks.  Then 

we defined CCC = (no
GR /no ) / (nc

GR /nc).  Note that CCC is formally defined for classes with 

nonzero no.  CCC is infinity (Inf) if nc
GR = 0 and the other three counts are not.  

 We evaluated the statistical significance of the difference in GR bound proportions for 

closed and open chromatin by applying Fisher exact test to each submotif class.  For this, the 

following contingency table was considered for each submotif class: 



 

Chromatin  GR bound   GR unbound 

closed     nc
GR            nc - nc

GR 

open           no
GR            no - no

GR 

 

Fisher exact test was applied for each sequence class with the 2-sided null hypothesis of no 

chromatin effect on GR bound proportions.  The procedure identified all classes with CCC = 0 

(ie. no GR bound GRBEs within open chromatin) to have arisen by chance due to the small 

sample size of the set of GRBEs within open chromatin.  The implementation of these criteria 

restricted our analysis to 1100 statistically well-defined GRBE classes in 3134 (668 classes in 

AtT-20).  The other extreme CCC value of Inf (ie. no GR bound GRBEs within inaccessible 

chromatin), however, occurred for sub-motif classes whose contingency tables were highly 

significant by the Fisher exact test above.  Almost every nonzero CCC value was virtually 

identical to the inverse of the estimated odds ratio for the corresponding contingency table 

according to the Fisher exact test.  Therefore, we used the nonzero CCC values themselves in our 

comparison of the two cell lines.  

 

Comparison of Chromatin Context Coefficients from two cell types.  mCCC (mammary 

CCC ie. from 3134) was calculated from ChIP/DNase I-seq dataset for the mammary cell line 

3134, and pCCC (pituitary CCC ie. from AtT-20) was obtained using the dataset for the pituitary 

cell line, AtT-20.  Both versions of CCC could be formally defined for 579 classes (nonzero n0 in 

both 3134 and AtT-20).  Additional 7 classes for which mCCC = pCCC = 0 (i.e. statistically 

unreliable by Fisher exact test above) were filtered out from comparison.  A random permutation 

test was performed to assess the significance of the observed correlation between mCCC and 

pCCC.  Hundred random permutations of pCCC data were obtained by shuffling the class IDs of 

the pCCCs.  For each permutation, classes with nonzero finite CCC values in both 3134 and 

randomized AtT-20 datasets were chosen for correlation calculation at logscale.  The random 

occurrences of cases, where the correlation was greater than or equal to the observed, were 

counted for a p-value calculation (see Supplementary Figure 8e).  


