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SUPPORTING MATERIALS AND METHODS 

Experimental methods 

Adaptation protocol 

One way to assess the submodality composition of a neuron is to measure its response to a skin 

indentation (1). Indeed, SA1 fibers are the only ones to respond during the sustained portion of the 

indentation whereas RA and PC fibers are the only ones to respond during the offset of the indentation. 

To the extent that a cortical neuron exhibits both of these properties, we can infer that it receives 

convergent input from multiple classes of tactile fibers. With this in mind, we measured the response of 

cortical neurons to a probe indented into the skin. Specifically, we indented the drum-mounted load cell 

(a cylinder of diameter 7 mm, see above) vertically into the skin to the 15 g reference point, and held 

the indentation for 500 ms, before removing it from the skin (5 mm/s indentation/removal speed). This 

indentation was repeated 60 times, with an inter-trial interval of 500 ms. We completed this protocol 

for 94 neurons (28, 57, and 9 from areas 3b, 1, and 2, respectively).  

Spatial receptive fields 

To systematically measure the spatial receptive field of individual cortical neurons, we designed a 3D-

printed random dot array following a previously described approach (2) (truncated cones: 0.5 mm dot 

height, 1 mm base diameter, 0.5 mm top diameter, 10 dots/cm2, dots uniformly distributed, 5 cm x 16 

cm). The random dot pattern was scanned over the skin 100 times but, after each scan, the drum was 

stepped 400 microns along its axis of rotation. A full uninterrupted protocol was completed (~10 

minutes), for 72 neurons (27, 37, and 8 from areas 3b, 1, and 2, respectively). 

Analysis 

Adaptation index 

For data from the indented probe protocol, we measured the trial-by-trial firing rate over stimulus 

epochs: 1) background activity, measured between 1 s and 500 ms before the probe was indented into 

the skin, 2) sustained response activity, measured during the 500 ms hold period, and 3) offset response 

activity, measured between 100 and 300 ms after the probe started lifting off the skin. We report that a 

neuron has a significant sustained/offset response if its texture elicited firing rate was significantly 

different from baseline (two-sided t-test for sustained/offset-baseline, significant if p<0.05). To quantify 

the relative magnitude of the sustained and offset responses, we calculated the fraction of the 

combined sustained and offset responses that was carried by the offset response:  

𝑓𝑜 =
|𝑟𝑜 − 𝑟𝑏|

|𝑟𝑜 − 𝑟𝑏| + |𝑟𝑠 − 𝑟𝑏|
 

where 𝑟𝑜 is the firing rate at the offset, 𝑟𝑠 is the firing rate during the sustained phase, and 𝑟𝑏 is the 

baseline firing rate.  

Binary classification and dimensionality 

The dimensionality of the cortical population response estimated from PCA comprises components that 

reliably carry texture information and components that do not. To estimate the components of the 

dimensionality that contribute to the texture representation, we adapted a method from (3) that 

www.pnas.org/cgi/doi/10.1073/pnas.1818501116116



2 
 

assesses the number of informative dimensions by quantifying the ability of the population 

representation to perform arbitrary linear binary classifications of the state space (in this case textures). 

The idea is, to the extent that the texture set can be arbitrarily split into D categories, the neural space 

comprises D dimensions relevant to texture coding. First, we randomly select N neurons and T textures. 

We choose one (of the 2T possible ways) of splitting the T textures into two groups, and test whether a 

binary classifier could successfully discriminate between the two groups using the N-dimensional 

population response. Specifically, we train a support vector machine with a linear kernel (with the 

fitcsvm() function in Matlab) on four randomly selected responses to each texture (out of five, without 

replacement), each yielding an N-dimensional vector of firing rates. We then use the remaining left-out 

response from each cell to build a single N-dimensional test vector for each texture, which is used to 

test the performance of the binary classifier. Performance is averaged over 50 repetitions of the trial-

shuffling procedure, to get a mean performance for this set of cells and texture groups. If this mean 

performance is greater than 75%, we count this binary classification as “implementable” by the 

population response. The functions in Fig. 3B represent the proportion of “implementable” conditions, 

measured over 500 random selections of cells and texture groupings. Data are fit with sigmoids:  

𝑝(𝑇) = exp(−(𝑇 𝛽⁄ )𝛼) 

and the intersection of this curve p(T) = 0.95 is taken as the critical value T* for each population size. A 

population that can successfully classify T* textures has an effective dimensionality of T*-1. Thus, in Fig. 

3C, we report the dimensionality for a population size N as D = max(T*-1, 0).  

This method of measuring dimensionality provides a lower bound on the true dimensionality of the 

neural representation (3). To verify this, we generated representations of texture with an imposed 

dimensionality (by projecting the neuronal response onto a subset of principal components), and then 

measured the dimensionality of these new texture responses using the binary classification metric (see 

SI Appendix, Fig. S2E-I). Specifically, to create an N-dimensional space of texture responses, we 

constructed new responses by deriving each neuron’s mean firing rate from the first N principal 

components. To obtain single trial responses, we subtracted the raw mean firing rate for each texture 

from each single-trial response and added the corresponding mean reconstructed from the lower-

dimensional representation. Thus, the trial-to-trial variability in the responses of individual neurons to 

individual textures was preserved, but the dimensionality of the population response was reduced to N. 

Simulating noise correlations 

We sought to test the impact on texture classification and neural dimensionality of noise correlations – 

absent from neuronal responses because they were measured non-simultaneously – by simulating the 

effects of noise correlations using a resampling technique. First, for each texture, we generated a set of 

5 population response vectors (across all 141 cells) using data from its 5 repeated presentations. These 

repetitions were ordered from highest to lowest firing rate, such that the first population vector 

contained the highest firing rate response for each individual cell, the second vector contained the 

second highest rate response, etc. Repeating this procedure across all textures created a set of 

population vectors (5x59) with a very high level of mean noise correlation (rsc=0.74). To bring this value 

to physiologically relevant levels (rsc=0.1-0.2, cf. ref. (4)), we repeatedly looped over each cell/texture 

combination (10 times) and randomly swapped two of the repetitions between population vectors with 

a set probability (p = 0.15, 0.2, 0.26 and 0.8). This resulted in sets of population vectors with 

physiologically relevant levels of mean noise correlation (rsc=0.22, 0.14, 0.08 and 0.001, respectively).  
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To perform our texture classification with these resampled neuronal responses, we repeated the 

classification procedure described above with only one difference: performance was only calculated 

using each of the 5 population vectors with targeted correlations as the “single trial response,” rather 

than using randomly selected responses on each shuffle. When applicable, responses were still averaged 

over 100 randomly selected groups of cells at each group size. We also recalculated our dimensionality 

analyses using these resampled data sets. Rather than using the random shuffling procedure, we 

iterated over each of the 5 simulated population vectors as the “left out response.” Each point in SI 

Appendix, Fig. S2G represents the mean number of “implementable” texture sets, averaged over 300 

random texture groupings. 

Spatial receptive fields 

To characterize the spatial receptive field of each cortical neuron, we adopted an approach described in 

detail in ref. (2). In brief, we first binned spiking responses to the receptive field protocol (see above) in 

100-micron (1.25 ms) bins. The 100 runs – each corresponding to the response during one scan of the 

random dot pattern, each scan radially displaced from the previous one by 400 microns – were 

combined into a neural image (spatial even plot, cf. ref. (5)), which was then cross-correlated with a 

reconstruction of the stimulus (binned into 100x100 micron bins) to find an optimal alignment. Then, we 

used a spike-triggered average (STA) of the stimulus to find the mean stimulus values that were spatially 

aligned to any given spike.  

To calculate receptive field properties, we first smoothed the STA with a 0.3 mm std. dev. Gaussian 

filter. Next, all bins with an absolute amplitude less than 20% of the RF’s peak amplitude were set to 

zero. Finally, we required 1) that every non-zero bin have at least two of the four adjacent bins be 

nonzero and 2) that isolated regions of the RF have areas of at least 0.7 mm2. Bins that did not meet 

these criteria were set to zero. To calculate excitatory & inhibitory area, we summed the area occupied 

by bins in the RF with positive/negative values, respectively. To calculate the scanning distance between 

excitatory and inhibitory subfields, we first found the center-of-mass for the excitatory and inhibitory 

bins in each RF, and then calculated the distance between them along the scanning direction.  
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SUPPORTING FIGURES 

 

Figure S1. Texture responses are similar across cortical fields. A| Cumulative distribution of texture 

classification performance based on the responses of individual neurons for Brodmann’s areas 3b, 1, and 

2 (red, blue, and green, respectively). B| Texture classification performance of groups of neurons in each 

area as a function of group size (as in Figure 2). Each dot denotes a random sample, the line denotes the 

mean at each group size. Classification performance is largely similar across areas. C| Cumulative scree 

plot (proportion of variance explained) for the first 15 principal components within each cortical area. In 

all three areas, the bulk of the response variance is explained by only a few PCs. D| Normalized SA1 

afferent regression coefficient vs. normalized PC afferent regression coefficient for each neuron in areas 

3b (red), 1 (blue), and 2 (green) . Note that the most strongly PC-like neurons are located in areas 1 and 

2. E| Perceived roughness of individual textures is plotted against the first principal component of 

cortical responses in area 3b (r=0.88, red), area 1 (r=0.86, blue), and area 2 (r=0.87, green). The best fit 

lines for all three areas lie on top of each other. F| Correlation between roughness and the first principal 

component vs. the number or cells included in the principal components analysis. Dots denote the 

performance of random samples of neurons, traces denote the mean within each area for each sample 

size.  
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Figure S2. Texture classification and dimensionality estimation are robust to noise correlations. A| 

Texture classification performance vs. group size with varying levels of simulated noise correlations (rsc 

ranging from 0.0 to 0.22, see Methods). Classification is relatively insensitive to noise correlation. B| 

Variance of each principal component (plotted in logarithmic units), shown for the cortical population 

response (in grey) and for the simulated noise in the low (black) and high (red) correlation cases. As 

mean noise correlations increase, noise variance shifts away from smaller principal components of the 

texture response, and onto the first principal component. As a result, these noise correlations lead to 

additional low-variance dimensions rising above the noise variance floor.  C| Pairwise texture 

classification using individual principal components (as in Figure 3C) with simulated noise correlations. 

Again, classification is largely unaffected by noise correlations. D| Texture classification based on low-
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variance subsets of the principal components (as in Figure 3D) with simulated noise correlations. The 

dimensionality of the texture representation increases as the level of noise correlation increases, 

consistent with the falling noise floor illustrated in Figure S3B. E| The fraction of implementable binary 

classifications vs. the number of textures included in the classification (plotted in black). We can split 

almost any collection of 22 textures (~95% of groups, dotted line) into two arbitrary groups and 

distinguish those groups (performance > 0.75) with a binary classifier. From this analysis, we estimate 

the population representation of texture (for these 141 cells) to be at least 21-dimensional. Results from 

the same analysis, performed on subsets of cells, are shown in shades of grey (from left to right, N=1, 2, 

17, 35, 70, 105). F| Number of dimensions estimated from the binary classification analysis vs. the 

number of cells used in the analysis. Dimensionality is still rapidly rising with group size up to 141, 

suggesting that the population representation of texture is larger than 21-dimensional across the full 

cortical population. G| The fraction of implemented binary classifications vs. number of textures 

included in the analysis (as in Figure S3E) with simulated noise correlations. Consistent with Figure S3B, 

the dimensionality of the texture representation increases for as the level of noise correlation increases. 

H| Fraction of the number of implementable binary classifications vs. number of textures for different 

projections of the full subspace onto low-dimensional subspaces (N=2, 6, 10, 16, 20, 23, 27 principal 

components, ranging from light grey to black). In all cases, the measured dimensionality from the binary 

classification analysis acts as a lower bound on the true dimensionality of the neural space (consistent 

with (3)). I| Estimated dimensionality of the space vs. the true dimensionality of the generated 

subspace. Each point's location along the ordinate corresponds to the intersection of the fitted sigmoid 

curve with the 95% threshold. The grey line represents the unity slope. Every point lies below this line, 

illustrating that the dimensionality analysis underestimates the underlying dimensionality of the neural 

space. 
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Figure S3. Cortical neurons exhibit signatures of their afferent input.  A-C| Spiking responses of 3 

different neurons to a probe indented into the skin for 500 ms (60 repetitions). Peri-stimulus time 

histograms of the spiking responses are shown in black. Many neurons which, according to the multiple 

regression, receive dominant input from SA1 (A), RA (B), or PC (C) fibers still exhibit both a sustained 

response and an off response, suggesting convergent input from the three classes of tactile fibers. D| 

Fraction of the combined sustained and offset response carried by the offset response for SA1-like 

(green, N=53), RA-like (blue, N=45), or PC-like (orange, N=23) neurons. Error bars denote the standard 

deviation of fractions across cells. While SA1 fibers exhibit no offset responses (1), most SA1-like 

neurons exhibit strong offset responses (p<0.05 for 93% of SA1-like neurons, paired-sample t-test). 

Similarly, while RA and PC fibers produce essentially no sustained response (1), many RA-like and PC-like 

neurons produce robust sustained responses (p<0.05 83%, and 68% of RA-like and PC-like neurons, 
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paired-sample t-test). Overall, 65/94 (69%) of neurons exhibited significant modulation in both their 

offset and sustained responses, and, of the remaining 29, ten yielded two or more significant weights in 

the multiple regression (F-test, as in the main text). Thus, in total, 75/94 (80%) neurons displayed 

submodality convergence by one or both of these measures. E| The mean absolute value of the Fourier 

transform of the spiking responses of SA1-like cells (green, cells with SA1 coefficient > 0.5, N=53) and 

PC-like cells (orange, cells with PC regression coefficient > 0.5, N=23) to six different textures. PC-like 

cells exhibit texture-evoked phase locking to frequencies between 50-200 Hz. 
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Figure S4. Spatial receptive fields of somatosensory neurons. A| Patch of the random dot pattern used 

to obtain spatial receptive fields. B| Spatial event plot of the spiking response of a cortical neuron to the 

stimulus patch. A spike-triggered average of the stimulus over this response was used to calculate a 

spatial receptive field. C| Example receptive fields from 12 example neurons: 6 are SA1-like (left, cells 

with SA1 coefficient > 0.5) and 6 are PC-like (right, cells with PC regression coefficient > 0.5, N=23). The 

top left RF was obtained from an SA1-like neuron whose response is shown in panel S4B. White regions 

are excitatory, black regions are inhibitory.  D| Location of the inhibitory center relative to the excitatory 

center, for all of the measured spatial receptive fields (N=72). Inhibitory subfields were spatially offset 

from excitatory ones. Most inhibition is located behind the excitatory subfield horizontally (i.e., 

temporally lagged). E| Histogram of excitatory-inhibitory subfield distance across all measured cells. 

Inhibition was generally located 2-4 mm behind excitation. F| The combined excitatory and inhibitory 
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area of cortical receptive fields is similar for the two cortical populations (p=0.71, two-sided t-test). G| 

Average modulation depth (distance between the max and min values of the RF) for the two cortical 

populations. SA1-like cells show a more strongly modulated response to spatial structure than do PC-like 

cells (p<0.05, two-sided t-test), which is consistent with the greater sensitivity of SA1-like neurons to 

coarse spatial features.  
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Figure S5. Coding of texture at different spatial scales. A| Surface profiles of custom-made 3D-printed 

textures designed to probe the interaction of coarse and fine features. We parametrically combined 

three coarse textural features (columns left to right: blank, 7 mm dots, 5 mm grating) with three “fine” 

ones (rows top to bottom: blank, 0.5 mm grating, 1 mm grating). B| Mean firing rate of SA1-like (SA1 

regression coefficient > 0.5, N=53) and PC-like (PC regression coefficient > 0.5, N=23) neurons evoked by 

all nine textures (arranged as in A). C| Top: Mean firing rate of SA1-like (green) and PC-like (orange) 

neurons evoked by textures without and with coarse structure: Textures 1-3 do not have coarse 

structure, textures 4-9 do. Bottom: Mean firing rate of SA1-like (green) and PC-like (orange) neurons 

evoked by textures without and with fine structure: Textures 1, 4, and 7 do not have fine structure, the 

others do. Error bars denote the standard errors across cells and textures. SA1-like neurons increase 

their firing rates when coarse structure is present, while PC-like neurons increase their firing rates when 

fine structure is present. D| Mean discriminability (d’) based on firing rate responses for all possible 
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pairings of textures, for SA1-like and PC-like neurons. SA1-like responses cannot distinguish surfaces 

with the same coarse component but differing in the fine component (4 and 6, e.g.), but readily 

distinguish textures with different coarse components (4 and 8, e.g.). Conversely, PC-like responses 

cannot distinguish surfaces with the same fine components (6 and 9, e.g.) but readily distinguish 

surfaces with different fine components (4 and 6, e.g.). Thus, SA1-like neurons are more sensitive to 

coarse structure than are PC-like neurons, and PC-like neurons are more sensitive to fine structure than 

are SA1-like neurons. 
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SUPPORTING TABLE 

Velvet [P] Silk, metallic 
(silk/metal) [P] 

500 micron grating 
[*] 

Upholstery, yellow 
[P] 

Red fabric dots 
(backing) 

Computer paper Thin corduroy [P] Upholstery, onyx Wool, blend [P] Embossed dots, 5 
mm spacing 
(plastic) [P†] 

Microsuede 
(polyester) [P†] 

Organza [P] Chiffon [P†] Dots, 7.7 mm 
spacing [*] 

Upholstery, fuzzy 

Satin [P†] Possum fur 1 mm grating [*] Upholstery, beach 
mat 

Receptive field 
mapping dots (2nd 
half) 

Sueded cuddle 
(polyester) [P] 

Foam drapery tape 
[P] 

Upholstery, red 
grating 

Upholstery, tan Upholstery, green 

Rabbit fur, long 
hair 

Thick corduroy [P] Fabric grating, wide 
spacing  

Leather dot pattern 5 mm grating [*] 

Vinyl (20 gauge) [P] Wool/rayon felt [P] Stretch denim 
(cotton/Lycra) [P†] 

Wrapping paper 
(bumpy) 

Hucktowel (cotton) 
[P†] 

Careerwear flannel 
(cotton) [P] 

Butcher paper Faux croc skin Ruffled fabric  Receptive field 
mapping dots (1st 
half)  

Parchment paper Nylon (200 denier) 
[P†] 

Upholstery, gridded Red fabric dots 
(front) 

Embossed dots, 4 
mm spacing 
(plastic) [P†] 

Sting ray skin Denim (cotton) [P] Silk, crinkled [P] Dots, 7.7 mm / 500 
micron grating 
overlay [*] 

5 mm grating / 1 
mm grating overlay 
[*] 

Snowflake fleece 
fuzz (polyester) [P] 

Rabbit fur, short hair Upholstery, 
Sunbrella 

Dots, 7.7 mm / 1 
mm grating overlay 
[*] 

5 mm grating / 500 
micron grating 
overlay [*] 

Acrylic (Blank) [*] Wool gabardine [P] Lizard skin Bumpy polyester  

 

Table S1. Texture set. The 59 textures are ordered by their score along the first principal component 
(predictive of perceived roughness), sorted from low to high by column, then by row. The 24 textures 
common between the peripheral (6) and cortical experiments are marked with “[P].” Textures that were 
3D printed to disambiguate the effects of coarse and fine structure (pictured in Supplementary Figure 11 
and used for Figure 5) are marked with “[*].” Textures used to create the spiking rasters in Figure 1 are 
marked with “[†].”   
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