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Finding the critical bond portions. Critical bond portions for2

a network with N levels are computed from simulation data3

for each level by choosing all points in bond portion space4

for which the network is fully connected on the other N − 15

levels, and the stiffness is non-zero. For one and two levels,6

we then fit a plot of stiffness vs. the bond portion of interest7

to an equation of the form of Eq. 1 from the main text. For8

one-level networks, we sampled bond portions from 0.6 to 1.09

in increments of 0.2. For two level networks, we sampled bond10

portion space from 0.55 to 1.0 in increments of 0.05 along11

both the large-scale and small-scale directions. Owing to the12

computational expense of simulated three-level networks, we13

sampled bond portion space from 0.8 to 1.0 in increments of14

0.1 for all levels. As 0.8 appeared to be below the critical bond15

portion for the small scale, we also simulated a network with16

bond portions of 1.0, 1.0 and 0.85 on the large, medium, and17

small scales, respectively, so as to have at least three points18

above the threshold of vanishing stiffness. From here, data for19

stiffness vs. bond portion for three level networks were fit to20

a line of the form21

K(p) = a · p+ k0 [S13]22

and the x-intercept of this line was taken to be the critical23

bond portion. Our analysis is shown schematically in Fig. S1.24

Analytical prediction of hierarchical robustness. First, we con-25

sider a nominal point far from any boundary in bond portion26

space. For N levels, we define an excess bond portion pe,i for27

each level, with 1 ≤ i ≤ N :28

pe,i = pi − pc,i [S14]29

Now let the deviation from the nominal excess bond on30

the ith level be δi, with each δi identically and independently31

distributed according to a distribution Pi with zero mean32

and standard deviation σi, such that the total probability33

distribution function for a set of displacements {δ1, . . . , δN} is34

P =
N∏

i=1

Pi (δi) [S15]35

Referring to Eq. 4 in the main text, we define the reduced36

stiffness37

K̄ = K

k
∏N

i=1 (1− pc,i)
[S16]38

With this definition we now find the expected deviation in the39

stiffness of a network with N hierarchical levels. The mean of40

K̄ is41

a. b.

c. d.

e. f.

Fig. S1. Panel a illustrates the determination of the critical bond portion for one level.
Panels b and c demonstrate the determination of the critical bond portion for the large
and small-scale critical connectivities for the two-level case, and panels d-e illustrate
determination of critical connectivity for the large, medium and small scales for the
three-level case.
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〈
K̄
〉

=
∫
· · ·
∫ ( N∏

i=1

(pe,i + δi)

)
P (δ1, . . . , δN ) dδ1 · · · dδN

[S17]

=
N∏

i=1

pe,i [S18]

while the mean square stiffness is42

〈
K̄2〉 =

∫
· · ·
∫ ( N∏

i=1

(
δi + pe,i

)2
)
P (δ1, · · · , δN ) dδi · · · dδN

[S19]

=
N∏

i=1

σ2
i + p2

e,i [S20]

The standard deviation in stiffness is then43

∆K̄ =

√√√√ N∏
i=1

(
σ2

i + p2
e,i

)
−

N∏
i=1

p2
e,i [S21]44

Here it has been assumed that pe,i � σi for all i, so inte-
gration can be carried out with the assumption that Eq. 4
in the main text holds for all values δi that contribute appre-
ciably to the integral. In the special case in which the excess
bond portion is the same on each length scale, and each bond
portion has the same standard deviation, Eq. (S21) reduces
to √

(σ2 + p2
e)N − p2N

e

, with pe = K̄1/N . The relative error in stiffness then scales45

with N as46

∆K̄
K̄

=
√

(σ2 + p2
e)N − p2N

e

pN
e

[S22]

=

√(
1 + σ2

p2
e

)N

− 1 [S23]

≈
√
Nσ

pe
[S24]

or47

∆K̄
K̄
≈
√
Nσ

K̄1/N
[S25]48

where the last approximation holds when σ � pe. For a49

target K̄, this functional form predicts the optimal number of50

levels to be51

N∗ = b−2 ln
(
K̄
)
c [S26]52

Accounting for Other Types of Error Distributions. As men- 53

tioned in the main text, we also accounted for two additional 54

classes of distributions of random errors in assembly. In the 55

first case, we still presume the errors to be independent on 56

each scale and normally distributed, but we allow the standard 57

deviation of error in bond portion at the smallest length scale 58

to be different from the standard deviation for all other scales. 59

For an N -level network, suppose N − 1 levels exhibit random 60

errors with standard deviation σa, while the remaining level 61

exhibits random errors in bond portion with standard devia- 62

tion σb. In this case, the probability distribution function for 63

the N -dimensional vector of errors, ~δ, should take the form 64

P
(
~δ
)

= 1
(2π)2/N σN−1

a σb

exp

{
− 1

2σ2
a

∏
i 6=2

δ2
i −

δ2
2

2σ2
b

}
[S27] 65

We consider once more a point in bond portion space with 66

the same excess bond portion on each level, and that this 67

excess bond portion is much greater than either σa or σb. A 68

straightforward modification to the above derivation for a 69

constant standard deviation yields 70

K̄

∆K̄
=

√
σ2

b

K̄2/N
+ (N − 1) σ2

a

K̄2/N
+ (N − 1)

σ2
aσ2

b

K̄4/N
[S28] 71

We consider the greatest value for σb for an N -level network 72

such that the relative variation in stiffness is no greater than 73

the relative deviation in stiffness for a single-level network 74

with a bond portion distribution of width σa. Equating the 75

right-hand sides of Eq. (S25) and Eq. (S28) yields 76

σb

σa
= K̄2/N

√
1
K̄2
− N − 1
K̄2/n

√
1

K̄2/N + (N − 1)σ2
a

[S29] 77

We show this behavior for the case in which the product 78

of excess bond portions is fixed at 0.1, and at all levels of 79

structure but the second, the standard deviation of the error 80

in bond portion is 0.001 (Fig. S2a). The ratio of the maximum 81

standard deviation on the second level such that the overall 82

relative variation in stiffness remains less than or equal to that 83

for a one-level network is plotted vs. the number of levels of 84

hierarchy. 85

We can use the foregoing discussion to explore the marginal 86

benefit of adding another level of hierarchy, by first considering 87

a lattice with N − 1 levels of structure, each of which has an 88

identical distribution of bond portions with standard deviation 89

σa. If this lattice, in turn, is used to construct each large- 90

scale bond in an N -level lattice, we may identify the largest 91

standard deviation of bond portion, σN , on the large scale 92

such that the relative fluctuation in stiffness of the overall 93

structure is not increased by the addition of another level. 94

Note first that Eq. (S28) gives the relative fluctuation for the 95

N -level lattice when σb is replaced by σN . Equating this result 96

to formula Eq. (S25), applied to an N − 1-level lattice, yields 97

σN

σa
=

√
(N − 1)

(
K̄2/N(N−1) − 1

)
1 + (N − 1)σ2

aK̄−2/N
[S30] 98

We show this behavior in Fig. S2b for the case K̄ = 0.1, 99

σa = 0.001. 100
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a.

b.

Fig. S2. a. The ratio of the standard deviation of bond portion on the ‘new’ level to
the standard deviation of bond portion for the ‘original’ hierarchical levels at which the
variation in stiffness of the new structure is equal to the variation in stiffness of the
one level structure. The new level can always be assembled with a higher variation
in bond portion. The effect saturates at a large number of levels, and allows for a
striking amount of imprecision in assembly. b. The ratio of the standard deviation of
the N th level to that of the other N − 1 levels, such that adding the N th level does
not increase the relative variation in stiffness.

Fig. S3. The relative error is plotted against the number of hierarchical levels for
cases in which the product of excess bond portions is 0.1, and the diagonal elements
of the covariance matrix are 10−6, and ρ is varied from 0.0 to 0.5.

We also consider the case in which the errors in bond portion 101

on different structural levels are identically distributed, but 102

correlated. For a network with N structural levels, we consider 103

an N ×N covariance matrix Σ which takes the form 104

Σi,j =
{
σ2, i = j

ρσ2, i 6= j
[S31] 105

It can be shown that

|Σ| = σN [1 + (N − 1) ρ] (1− ρ)N−1

In this case, the probability distribution function for a 106

vector of bond portion errors ~δ is given by 107

P
(
~δ
)

= 1
(2π)N/2 |Σ|

exp
[
−1

2
~δT Σ−1~δ

]
[S32] 108

To illustrate this point, we show a plot of relative error in 109

stiffness vs. number of levels, with fixed σ and varying coupling 110

strength ρ (Fig. S3). While large correlations between errors 111

eventually cause ∆K̄
K̄

to increase, we find that having more 112

than one level of structure always decreases ∆K̄
K̄

. 113

In view of the results of these alternative investigations, we 114

anticipate that protection against fluctuation in stiffness is a 115

generic benefit of structural hierarchy, and does not depend 116

sensitively on the precise details of the distribution of errors 117

in assembly. 118

Varying the Large-Scale Bond Length and Width. Our model 119

is liable to fail if the width of a large-scale bond is either 120

too great or too small in comparison with the length of the 121

bond. We first consider the case in which bonds are too wide; 122

here, the network ceases to behave as a structure with two, 123

disparate length scales, and appears more like a sheet with 124

small perforations. This is because our hierarchical networks 125

may be viewed as single-scale triangular lattices with holes 126

removed from them. It may be shown that, for large bonds 127

of length l and width w, each of these holes is an equilateral 128

triangle with side length s given by 129

s = l − w
√

3 [S33] 130
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A. B.

Fig. S4. The discrepancy between the displacement fields with and without a hole
for a. a hole of length 5 and b. a hole of length 10. Here, we show annular sections
taken from networks with overall dimensions of 200 by 200 bonds.

If each small bond has a length a, large bonds are nl small131

bonds long, and large bonds have r rows of small-scale bonds,132

Eq. (S33) is equivalent to133

s = a

[
nl −

3 (r − 1)
2

]
[S34]134

We now seek the region over which the addition of a hole135

to an otherwise unbroken sheet has an appreciable affect upon136

the displacement field of a sheet under tensile strain, with137

the top and bottom pinned in the y direction, but free to138

relax in the x direction. We begin with a reference network,139

with overall dimensions of 200 by 200, in units of small-scale140

bond length, with no hole, and apply a strain of 0.05% in the141

vertical direction. We then apply this same strain to networks142

with holes in their centers, with hole side lengths varying from143

2 to 15, in units of small-scale bond length. In each case, we144

subtract the displacement field at each point in the reference145

network from the displacement field in a network with a hole,146

omitting those points removed by the formation of the hole.147

In seeking the region within which a hole has appreciably148

altered the mechanics of the network, we apply the following149

criterion: if the magnitude of the discrepancy between the150

displacement field in the presence of a hole and the displace-151

ment field in the absence of the hole is at least the applied152

strain times the small-scale bond length, the point lies within153

the “region of influence” of the hole. That is, if ~uref is the154

reference displacement field, ~uhole is the displacement field155

with the hole, and ε is the applied strain, then156

|~uhole − ~uref | ≥ εa [S35]157

where εa is the approximate elongation of a small-scale158

bond in a perfectly affinely deformed network with overall159

strain ε. Below, we show two cases: a deformed network with160

a hole of length 5, and a deformed network with a hole of161

length 10. Networks are colored to show the magnitude of the162

discrepancy between the displacement fields in the networks163

with and without the hole, and the boundary of the holes164

region of influence is shown with a bold, red stroke (Fig S4).165

While the region of influence is modest for small hole size,166

the region of influence for large hole size is considerable. To set167

a standard for widest acceptable width, given a certain length,168

we calculate the maximum difference from the center of the169

hole to a point on the perimeter of the center of influence. We170

denote this distance by rmax. For the lattices we consider, the171

center-to-center separation of holes of length l, separated by a172

single large-scale bond, is l√
3 . Therefore, the size of the region173

Fig. S5. Region of influence size vs. the width of a hole placed in the center of the
network.

of influence of a hole should be comparable to or greater than 174

this length. We find that, for holes with side length s of 3 or 175

greater, in units of small-scale bond length, rmax is roughly 176

linear with hole size: 177

rmax ≈ 5.6s− 15 [S36] 178

with r2 = 0.99. This demands 179

l√
3
≤ 5.6s− 15 [S37]

l√
3
≤ 5.6

(
l − w

√
3
)
− 15 [S38]

or 180

l − 2w & 3 [S39] 181

We show data in Fig S5. While we have chosen to study 182

networks in which springs have a stiffness of one, in units 183

of one-dimensional stretching modulus over small-scale bond 184

length, the equilibrium configurations of networks in their 185

strained states would remain equilibrium configurations for 186

the same loading conditions if the stiffness of each spring 187

were re-scaled by the same multiplicative factor. We therefore 188

find that the foregoing considerations should be of general 189

applicability. 190

On the other hand, a bond may also be too narrow. Our 191

analysis is sure to fail if large-scale bonds are only one or two 192

bonds wide. In this case, the connectivity at the small scale 193

is less than or equal to 4, and so the removal of even a small 194

fraction of small-scale bonds will immediately destabilize the 195

network. Further, overly narrow large-scale bonds will be 196

highly susceptible to bending, which invalidates our picture of 197

a primarily stretching-stabilized structure. In general, a thin 198

rod of length l, with Young’s modulus E, becomes unstable 199

to buckling along direction x̂ under a load 200

Fcr ∝
EI

l2
[S40] 201
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Fig. S6. Model vs. simulated stiffness values for a two-level network with large-scale
bonds that are 5 rows wide and 20 small-scale bonds long.

with202

I =
∫
x2dA [S41]203

where the integral is over the cross section of the rod. (1)204

In two dimensions, for a rod of width w,205

I = w3

12 [S42]206

The prefactor in Eq. (S40) depends upon the precise bound-207

ary conditions at the ends of the rod, and is of order unity.208

On the other hand, we note that the network will generically209

contract in the direction transverse to applied tensile strain.210

Given a Young’s modulus E for a large scale bond, a strain ε211

will lead to a force212

F = wEε [S43]213

In all, Eq. (S40), Eq. (S42), and Eq. (S43) suggest bending214

will become a concern when215

Ew3

l2
∼ wEε [S44]216

or217

l

w
∼ ε−1/2 [S45]218

We have also conducted an additional investigation to con-219

firm that our model captures simulation results when the220

length and width of large-scale bonds relative to small-scale221

bonds are varied. We produced two-level networks in which222

each large-scale bond had five rows of small-scale bonds, and a223

length of twenty small-scale bonds. As in previous simulations,224

we varied both the small and large-scale bond portions from225

0.55 to 1.0 in increments of 0.05, and as before, we found226

that our model captured simulation results. A plot of model227

prediction vs. simulation result for the 100 cases considered is228

linear, with a slope of 0.995, and an r2 value of 0.991. Data229

are shown in Fig. S6.230

Fig. S7. Non-normalized stiffness values from the scaling model and simulation are
compared. Despite the difference in maximum attainable stiffness, the same trend of
strong agreement between model and simulation data is observed.

Non-normalized Comparison of Simulation and Model. In the 231

main text, Fig. 2e shows a comparison of the model vs. the 232

simulation stiffness values for networks with one-, two- and 233

three-hierarchical levels, in which we normalized the stiffness 234

value of a network with N levels by dividing that stiffness 235

by the maximum attainable stiffness for an N level network. 236

As before, stiffness units are the one-dimensional stretching 237

modulus µ used in Eq. 5 in the main text, divided by the 238

length of a small-scale bond. In Fig. S7, we show a modified 239

version of Fig. 2e, in which stiffness values are not normalized. 240

Notably, the maximum attainable stiffness decreases with the 241

number of hierarchical levels, as the maximum density of small- 242

scale units decreases significantly. Nevertheless, agreement 243

between the simulation results and scaling model remains 244

strong for each class of network considered, and within the 245

range of stiffness values attainable, more hierarchical networks 246

offer more reliability with less material used. 247

Assessing Stiffness Distributions for Differing Target Stiff- 248

ness and Noise Values. In the main text, we discussed nu- 249

merical trials in which we produced interpolating functions to 250

predict the stiffnesses of hierarchical networks with specified 251

bond portions on each scale, found combinations that would 252

yield a desired, soft stiffness, and added zero-mean, Gaussian 253

random noise to each bond portion over 50,000 trials. We 254

found that the distribution of stiffness became progressively 255

narrower with increasing levels of structural hierarchy. To 256

assess the robustness of this effect, we have considered a range 257

of stiffness values and noise standard deviations. Below, we 258

show the results of the procedure described above in which 259

stiffness values range from 0.02 to 0.05, in simulation units (for 260

which the stretching stiffness of an individual bond is unity), 261

and the standard deviation of noise added to bond portions 262

varies from 0.005 to 0.001. We show heat maps for networks 263

with one, two and three levels of structure, in which the mean 264

absolute value of the difference between actual and target 265
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stiffness, normalized by the target stiffness, is plotted vs. the266

standard deviation of noise and target stiffness (Fig. S8). In267

all cases we find that increasing the number of hierarchical268

levels, increasing the target stiffness, and decreasing the noise269

all decrease the error in stiffness.270
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Fig. S8. Mean absolute value of deviation from target stiffness, normalized by target
stiffness for a a network with one level of structure, b a network with two levels of
structure, and c a network with three levels of structure.

6 |



1. Landau, L. D. and Lifshitz, E. M. Theory of Elasticity, Second Edition (Pergamon Press, Ox-271

ford), pp. 97-98.272

PNAS | February 4, 2019 | | | 7


