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Supporting Information: 

 

Figure S1: Collection effort varies over time. A) shows the total number of cleaned tracheophyte records 
from eastern states for each year; B) shows the same for lepidoptera records. 
 
 

Use of genetically modified crops in the United States 

The main genetically modified (GM) crops in the United States are corn, soybeans, 

and cotton1. To estimate the total area of US cropland dedicated to GM crops, we gathered 

estimates of what proportion of each of these crops were genetically modified to express 

resistance to herbicide. Our estimates came from four sources: the USDA-NASS report 

Acreage2 for the period 2000-2016; Fernandez-Cornejo and McBride3 for cotton and 

soybeans for the period 1996-1999; Fernandez-Cornejo and McBride4 for corn 1996-1997; 

the USDA-NASS report Crop Production5 for corn 1998-1999. We multiplied these to the 

total area planted for each of these three crops2 to estimate the total acreage planted with 
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GM crops, which we compared both to the total acreage planted for corn, soybeans, and 

cotton, and to the total acreage planted for all crops2.  

 The prevalence of genetically modified herbicide resistant crops increased steadily 

since their introduction in 1996 as shown in Figure S2. 

 

Figure S2: Increase in herbicide-resistant (HR) GM crops in the United States. HR crops were introduced 
in 1996. Each point shows the proportion of HR GM acreage of corn, cotton, and soybeans as a proportion of 
all corn, cotton and soybeans acreage (black points), and as a proportion of all crops (blue points). Half of all 
corn, cotton, and soybeans were HR by 2004; half of all crops by 2013. 
 

Robustness of monarch and milkweed trends 

 For some years, particularly in the early 1900s, the monarch and milkweed trends 

displayed in Figure 1 are based on a relatively small number of records. For instance, no 

monarchs at all were collected in 10 of the years before 1930 (Figure 1). Therefore, we 

tested whether the trends shown in Figure 1 were artefacts arising from small sample sizes 

in some years, or if they were robust to some degree of noise added to the underlying data. 

 We added noise to our data sets in two different ways. In the first, we randomly 

selected a single year and data source (GBIF, CMH, OVFW, or MBA for milkweeds; always 
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SCAN, the only data source, for monarchs). We then made a large change to the number of 

monarchs or milkweeds records given in that year and data source, changing it by 50% of 

the number of records or by 20 records, whichever was greater. We randomly decided 

whether that number of records was either added or subtracted. If the new number of 

monarch or milkweed records was less than 0, it was set to 0 instead. If the new number of 

monarch or milkweed records was greater than the total number of all lepidoptera or 

vascular plant records for that year and data source, then the number of monarch or 

milkweed records was set equal to the total number of all lepidoptera or vascular plant 

records (i.e., a relative abundance of 1 for that data source and year). If this procedure 

resulted in the data set being unchanged (e.g., if we attempted to subtract records from an 

entry with 0 records), then we randomly chose a different entry and manipulation instead. 

We then removed outliers and plotted these data using the same protocol as for the original 

data set. This procedure was repeated 1000 times, beginning from the original data set 

each time. 

 In the second perturbation, we made a small change to every year and data source. 

For each year and data source, we changed the number of monarch or milkweed records by 

10% or 2 records, whichever was greater, randomly adding or subtracting this number. 

The number of monarch or milkweed records was not allowed to go below 0 or above the 

total number of lepidoptera or vascular plant records (respectively) for that year and data 

source.  Outliers were removed, and the perturbed data plotted, with 1000 replicates. 

 In both cases, we also calculated the point at which the midcentury decline in 

monarchs or milkweed began. We calculated this as the maximum point on the smoothed 

curve of the mean; if the curve included multiple local maxima, we chose the one closest to 
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the maximum value of the original curve (1946 for milkweeds, 1956 for monarchs). Our 

results are shown in Figure S3. 

 

Figure S3: Monarch and milkweed trends are generally robust to the addition of noise. Panels A and B 
show trends for milkweed, C and D show trends for monarchs. In A and C, a large amount of noise was added 
to the records for a single year; in B and C, a smaller amount of noise was added to the records for every year. 
Each trend line in gray represents one of 1000 replicates; the trend line in green or orange represents the 
original trend for milkweeds and monarchs, respectively. Shown below each graph is the point at which 
monarch or milkweed decline begins, in gray for each replicate, or in green or orange for the original data. 
The gray circles have been jittered to improve readability. 
 

 As seen above, adding noise to the milkweed data set did not change the overall 

trend, with all replicates showing an early-twentieth-century increase followed by a steady 
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decline. The milkweed decline began slightly earlier in some of the noise-added data sets, 

but seldom by more than two or three years. For the monarch data set, changing the 

number of records for a single year by a large amount does not have a strong effect on the 

overall trend in almost all cases: we still observe the same rise in the early twentieth 

century and fall in the later twentieth century. Although most of the noise-added data sets 

begin the decline around 1956, there is more scattering, with some declines beginning a 

couple of years later, and a handful beginning a decade or more earlier. 

 When adding a smaller amount of noise to every year, we observed that the 

monarch data set showed considerable variation in the trend from 1900-1930, which is not 

surprising considering the relatively small absolute number of monarch records from this 

period. Most of the trend lines for our 1000 noise-added data sets lie above the trend line 

for the original data set. This is because many of the years during this period had zero 

monarch records; since we did not allow the added noise to reduce any records below zero, 

the noise could only increase the monarch abundance for those years (or leave it 

unchanged, at zero). Despite the variation, most of the trend lines still showed an increase 

at some point in the early 1900s, although as with the single-year-noise replicates, the year 

at which monarch declines began varied. For the most part, we saw declines begin within a 

year or two of 1956, but a few of the noise-added data sets showed declines that began in 

the 1930s or 1940s, or even in 1900. There is also a smaller amount of variation in the 

replicates after 2000. Relatively few records of both monarchs and all lepidoptera have 

been digitized from this period (Figure S1), possibly because of a decline in collecting or 

simply because more recently collected specimens have had less time to be digitized. As 

with the beginning of the trend, in the majority of the cases, the noise-added data sets 
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showed an increase in monarch abundance after 2000, because records already at zero 

could not be reduced below zero. 

 The small number of monarch records from the early twentieth and twenty-first 

century means that there is some room for change in these trends as more records are 

digitized in the future. However, the entire trend for milkweeds, and the bulk of the trend 

for monarchs, including an increase after about 1930 and a later decline, is robust to noise 

in the underlying data set. 

Abundance trends in other plant species from 1900-2016 

 To confirm the sensitivity of this analysis to real changes in population size, we did a 

similar procedure for several species with ongoing invasions of the United States during 

the time period of this study: garlic mustard, Alliaria petiolata6; purple loosestrife, Lythrum 

salicaria7; Japanese stiltgrass, Microstegium vimineum8; and kudzu, Pueraria montana9. P. 

montana is a synonym with P. lobata, and some data sets had records for both species 

names; in this case, we combined P. lobata and P. montana records. For each invasive 

species, we compared the total number of records for that species to the total number of 

tracheophyte records collected within that species’ range. Species’ ranges were calculated 

as described for Asclepias in the main text.  

 When visualizing the trends for individual species, we removed some years which 

were substantial outliers, i.e., falling greater than three standard deviations away from the 

mean annual abundance (Alliaria petiolata: 2002; L. salicaria: 2009, 2016; M. vimineum: 

2001, 2004; P. montana: 1966, 1967).  
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In each case, we detected marked increases in abundance over the course of the 

twentieth century for these plants known to be invasive in the United States over that 

period (Figure S4). 

 

Figure S4: Invasions of the continental United States are apparent from museum specimens. The total 
number of specimens collected is shown next to each species. Points indicate abundance for each year, lines 
and shading indicate smoothed mean and 95% confidence intervals. Smoothing was done using the Loess 
smoothing method implemented in ggplot210, with the default smoothing span. 

 

Breaking down abundance trends by land cover category 

 For each record, we used the associated latitude and longitude to estimate the kind 

of landscape upon which that specimen was collected. To do this, we consulted the USDA 

National Agricultural Statistics Service Cropland Data Layer11. These data provide 

estimates of land cover for the continental United States since 2008. We used these data to 
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categorize specimens as being collected from one of the following categories: developed 

land (Cropland Data Layer categories 82, 121-124), crop land (CDL categories 1-60, 66-77, 

204-254), natural land (CDL categories 63-65, 87, 88, 112, 131-152, 190, 195), grassland 

(CDL categories 61, 62, 171, 176, 181; this includes both agricultural grasslands such as 

fallow fields and non-agricultural grasslands), or water (CDL categories 83 and 111). Some 

points changed cover category over the period since 2008. If land cover information was 

available for the year in which a specimen was collected, we assigned that specimen that 

cover category. Otherwise, if one cover category was found at that point during more years 

than any other cover category, we assigned that specimen that plurality cover category. If 

there was no plurality cover category, we did not assign a cover category.  

 Since land cover data only goes back to 2008, these assignments should be viewed 

as preliminary, as many specimen collection sites no doubt changed land cover between 

when that specimen was collected and 2008. For instance, some specimens categorized as 

being collected from “developed” land were likely collected from pasture or agricultural 

land which has since urbanized.  

 

 Shorter-term trends in milkweed decline appear to vary by land cover category; e.g., 

declines in crop fields land may be much steeper than declines in non-agricultural land, like 

roadsides12. We investigated whether this was the case for our long-term trends. 

 To calculate abundance on each land cover category, we compared the number of 

Asclepias specimens assigned to that category to the total number of specimens (of all 

categories) collected in that year, as above. We did not do this for D. plexippus, for which 

there were not enough records to subdivide. To account for the fact that the number of 



9 
 

specimens assigned to a land cover category changes over time (as more specimens are 

associated with geographic coordinates), we divided this abundance by the proportion of 

Asclepias specimens collected that year which were assigned a land cover category. Finally, 

we averaged each data source (i.e., GBIF, WIS, etc) separately, weighting them the same as 

described in the main text methods section, “Abundance trends in the genus Asclepias from 

1900-2016”. When visualizing the trends for each land cover category, we removed some 

years which were substantial outliers, i.e., falling greater than three standard deviations 

away from the mean annual abundance (records from crops: 1971, 1975, 1983; developed 

land: 1900; grassland: 1929, 1967; natural land: 1939).  

 We found declines in milkweed abundance in all four categories of land cover 

(Figure S5). In the case of cropland, grassland, and natural land, we saw an increase in the 

early twentieth century that predated the decline in the second half of the century. In the 

case of developed land, we saw a steady decline, although this could be because many sites 

that are currently developed were in fact in another land cover category before 

urbanization. Thus, the count of records from developed land is likely inflated in the early 

part of the twentieth century. 
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Figure S5: Milkweed decline over the twentieth century is seen across land use types. The total number 
of specimens collected on that land cover type is shown above each graph. Points indicate abundance for each 
year, lines and shading indicate smoothed mean and 95% confidence intervals. Smoothing was done using the 
Loess smoothing method implemented in ggplot210, with the default smoothing span. Because land cover was 
not determined for all records, the abundances for each land cover type do not add up to the abundance for 
the genus as a whole. 
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Abundance trends for individual Asclepias species from 1900-2016 

We examined species level trends for A. incarnata, A. tuberosa, A. verticillata, A. syriaca, A. 

viridiflora, A. speciosa, A. amplexicaulis, A. viridis, A. quadrifolia, and A. asperula. Records of 

these 10 species combined made up 63% of the total data set. For each species, we 

calculated its range and abundance as described in the main text for the Asclepias genus. 

When visualizing the trends for individual species, we removed some years which were 

substantial outliers, i.e., falling greater than three standard deviations away from the mean 

annual abundance (A. amplexicaulis: 1903, 1909, 1988; A. asperula: 1936, 1940; A. 

quadrifolia: 1924; A. speciosa: 1943, 1970; A. tuberosa: 1937; A. verticillata, 1921; A. 

viridiflora; 1904; A. viridis, 1904, 1918, 1994). These trends are visualized in Figure 2. We 

also divided the Asclepias records into 10-year bins, and calculated the relative proportion 

of each species over time (we did not identify or remove outliers in this part of the 

analysis). As noted in the main text, the relatively slow declines in these two species mean 

that these species now account for a greater proportion of the total milkweed records than 

they did at the beginning of our study period. This change in the makeup of the community 

of milkweeds is visualized in Figure S6. 
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Figure S6: Changes in composition of Asclepias records over time. A. syriaca and A. speciosa make up a 
greater proportion of Asclepias records in the past few decades than early in the twentieth century. 

 

Comparison of our trends from museum specimens to other data sets 

 Using Pearson’s correlation coefficient, we compared the abundance of milkweeds 

and monarchs from our museum data both to each other, and also to estimates of monarch 

and milkweed abundance from other datasets. We examined three other data sets: 

estimates of the size of the monarch overwintering population from 1994-201413, Monarch 

Larva Monitoring Project (MLMP) estimates of immature (egg stage) monarch population 

sizes in the summer breeding grounds from 1999-201414, and North American Butterfly 

Association (NABA) estimates of adult monarch population sizes in the summer breeding 

grounds from 1993-201415. For the latter two data sets, we also employed the corrections 

for changes in land cover described by Pleasants et al.14. 

 A relatively small number of states contribute disproportionately to the eastern 

migratory population16. Therefore, we also calculated milkweed abundance in these states 
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alone, using the methods described above, but including only records from Texas, 

Oklahoma, Missouri, Illinois, Indiana, and Ohio. We compared these estimates of milkweed 

abundance from the core area to the size of the overwintering population. 

We found no correlation between our estimate of milkweed abundance with our 

estimate of monarch abundance. However, there was substantial year-to-year variation, 

which may have obscured the overall trend. To test this hypothesis, we grouped monarch 

and milkweed abundance into five-year bins, taking the median abundance for each bin, 

and measured the correlation between these two data sets. 

There is little correlation between our D. plexippus abundance and NABA citizen-

science counts of adult butterflies (r = 0.11, p = 0.6, Figure S7A). However, Pleasants et al.14 

point out that these metrics may be biased because few citizen-science records are made 

from agricultural land, and they provide corrected NABA counts for the period 1999-2014. 

If we use these corrected counts, there is a much stronger (while not “statistically 

significant”) correlation between D. plexippus abundance and NABA counts (r = 0.48, p = 

0.06, Figure S7B).  

There was a strong correlation between our D. plexippus abundance and MLMP 

citizen-science counts of monarch eggs over the period 1999-2014, whether (r = 0.65, p < 

0.01, Figure S7C) or not (r = 0.66, p < 0.01) we used the collection-bias corrections of 

Pleasants et al.14. 

There was a reasonable (if not significant) correlation between our D. plexippus 

abundance and estimates of monarch population sizes during the following winter over the 

period 1994-2014 (r = 0.40, p = 0.07, Figure S7D). 
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Our estimates of A. syriaca abundance had a slightly negative correlation with the 

estimates of A. syriaca abundance of Pleasants et al.14 over the period 1999-2014 (r = -0.35, 

p = 0.2, Figure S7E). However, Pleasants et al.14 estimated A. syriaca abundances from Iowa 

data alone, while we include A. syriaca from across its range in the continental United 

States. We did not have enough A. syriaca records from Iowa during the 1999-2014 period 

(n = 3) to compare our results more directly. 

Overall, previously published data from purpose-built citizen science initiatives 

predict the size of monarch overwintering populations better than do our data: corrected 

NABA estimates vs overwintering population size, r = 0.74, p < 0.01; MLMP estimates vs 

overwintering population size, r = 0.55, p < 0.05. However, our data are reasonable 

predictive, supporting their use for the period before 1993 when no other published data 

sets on monarch or milkweed abundance are available. 

We also tested whether our metrics of Asclepias spp. abundance predicted monarch 

abundance. Our milkweed abundance did not predict monarch abundance over the period 

1900-2016 (r = 0.16, p = 0.08, Figure S7F). This was still the case when looked at over 5-

year bins (r = 0.18, p = 0.4, Figure S7G). Additionally, we tested whether the lack of 

correlation between the two was due to a temporal mismatch between monarch and 

milkweed trends. We thus tested for a correlation between milkweed abundance and 

monarch abundance 10 years later, choosing 10 years as our temporal lag because this was 

the period between the beginning of the milkweed decline and the beginning of the 

monarch decline (as quantified by taking the maxima of the best fit splines shown in Figure 

1). Adding this lag did not improve the correlation of these data sets (r = 0.08, p = 0.4). 
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Our milkweed abundance had some mild ability to predict the size of the monarch 

overwintering population the following winter from 1994-2014 (r = 0.34, p = 0.14, Figure 

S7H). However, the milkweed abundance metric includes many records from states that 

contribute relatively little to the monarch population16. Therefore, we subsequently 

calculated milkweed abundance in only those states that contribute the most to the 

monarch population. We found that milkweed abundance in these states does indeed 

predict the size of the subsequent overwintering population from 1994-2014 (r = 0.45, p < 

0.05, Figure S7I), albeit not as well as did the purpose-collected data of Pleasants et al.14 

during the period 1999-2014 (r = 0.70, p < 0.01). Core state milkweed abundances did not 

improve our ability to predict museum-specimen based monarch abundances, either 

throughout the eastern United States (r = 0.08, p = 0.4) or in the core states specifically (r = 

0.13, p = 0.2). 

In general, our abundance metrics had some, if weak, power to predict other, 

previous measurements of monarch and milkweed abundance. This is likely a combination 

of error in our data set, error in others’ data sets, and natural variability in monarch and 

milkweed populations across time and space. 

Likewise, the weakness of the relationship between abundance of milkweed and 

monarchs is perhaps not surprising, as both data sets are relatively noisy at the year-to-

year, and even 5-year-to-5-year level, particularly the abundance of D. plexippus. This is 

likely a combination of sampling error introduced by the method of examining museum 

collections with natural variation in insect population sizes, as all other metrics of monarch 

abundance have great amounts of year-to-year variation15,17. Furthermore, factors beyond 

milkweed abundance, particularly weather, are known to effect monarch population 
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sizes18. The effect of such other factors on long term trends in monarch population size 

certainly merits further investigation. However, when views on a decades-to-century time 

scale, the correspondence between milkweed and monarch abundance remains striking 

(Figure 1A). 

 

Figure S7: Correlations between various metrics of monarch and milkweed abundance. 
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Agricultural data 

 We gathered data on selected agricultural practices in the United States, namely, the 

number of farms and other agricultural operations such as ranches and tree nurseries19, 

the total area of farmland20, the amount of nitrogen and phosphorus fertilizers used21,22, 

and the amount of glyphosate herbicide used23. Nitrogen and phosphorus fertilizer use 

were highly correlated with each other (Figure S8), and so we combined them into a single 

variable by scaling both variables to have a mean of zero and a standard deviation of 1, 

then adding the scaled variables to produce a metric of total nitrogen-plus-phosphorus 

fertilizer used. The remaining variables were much less strongly correlated with each 

other. The correlation coefficients between predictor variables and/or A. syriaca 

abundance are shown in Table S1 (after binning by region and five year period as described 

below). 

Data on glyphosate use were only available at the national level; data on the other 

three factors, however, were available at the state level. We divided the states into six 

regions (Figure S9) with relatively homogenous agricultural practices, combining the data 

for each state. We divided the A. syriaca and tracheophyte records gathered above by 

region, then used these to calculate the relative abundance of A. syriaca within each region. 

Since there was some degree of variation from year to year, we pooled the regional 

data into five year bins. As the year-to-year data for A. syriaca contained several outlying 

data points, we took the median value for A. syriaca abundance in each five year bin, as this 

greatly lessened the ability of outlier data points to effect the model compared to year-to-

year data or calculating occurrence across the five year period (i.e., roughly a weighted 

mean). Using the median rather than mean or single-year bins accordingly increased the 
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predictive power of the global model and increased our ability to distinguish different 

models using AIC (Table S3). We averaged the agricultural data across the five year period 

(or the two year period, in the case of the 2005-2006 bin). The agricultural data was then 

standardized so that within each factor, the mean was zero and the standard deviation was 

one.  

 

 The nationwide trends for each chosen agricultural variable are shown in Figure 

S10. We then used state-by-state variation in these characteristics to divide the A. syriaca 

range into six, relatively homogenous regions (Figure S11). 
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Figure S8: Nitrogen and phosphorus use are tightly correlated (r = 0.88, p << 0.001). Each point 
represents the fertilizer use for a single state (including all 48 states in the continental United States) in a 
single year from 1950-2006. 
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Figure S9: The six agricultural regions used in the A. syriaca model. The six regions are outlined in black. 
States home to the western population of D. plexippus are also indicated. 
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Figure S10: Nationwide trends for chosen agricultural variables. Each point shows the total for all states 
within the area of our model (see Figure S4) for a single year. 
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Figure S11: States were grouped into regions (thick black lines) with relatively homogenous 
agricultural practices. 
 

Robustness of multimodel inference 

 As above, we tested whether the results of our multi-model inference were robust to 

some degree of noise added to the underlying data. We added noise to our data sets in two 

different ways. In the first, we randomly selected a single year, region (as shown in Figure 

S11) and data source (GBIF, CMH, OVFW, or MBA). We then made a large change to the 

number of common milkweed records given in that data source for that year and region, 

changing it by 50% of the number of records or by 20 records, whichever was greater. We 

randomly decided whether that number of records was either added or subtracted. If the 

new number of milkweed records was less than 0, it was set to 0 instead. If the new 

number of milkweed records was greater than the total number of all vascular plant 
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records for that year, region, and data source, then the number of milkweed records was 

set equal to the total number of all vascular plant records (i.e., a relative abundance of 1). If 

this procedure resulted in the data set being unchanged (e.g., if we attempted to subtract 

records from an entry with 0 records), then we randomly chose a different entry and 

manipulation instead. We then used this data set for multi-model inference using the same 

protocol as for the original data set. This procedure was repeated 1000 times, beginning 

from the original data set each time. 

 In the second perturbation, we made a small change to every year and data source. 

For each year and data source, we changed the number of common milkweed records by 

10% or 2 records, whichever was greater, randomly adding or subtracting this number. 

The number of milkweed records was not allowed to go below 0 or above the total number 

of vascular plant records (respectively) for that year and data source. This data set was 

then used for multi-model inference, with 1000 replicates. 

 In both cases, we determined the average importance of each variable (i.e., the 

relative weight of the models containing that variable from among the selected models) 

across all 1000 replicates. Within each replicate, the effect (i.e., coefficient of that variable 

in the linear model) of each variable on A. syriaca abundance was averaged across all the 

retained models, weighting by the relative likelihood of each model. When a variable was 

not found in a model, it was considered to have an effect of zero. These estimates of effect 

size were then averaged across all 1000 replicates. Importances and estimates are shown 

in Table S2. 

 Making a large change to a single entry had very little effect on either the average 

importance or estimate of the effect of any of the four variables. Making small changes to 
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every entry had the effect of lessening the difference in importance among the variables: 

number of farms and area farmed are now similarly important (found in 79% of all models, 

by model weight), and have similar effect size estimates, while the importance of fertilizer 

use and glyphosate use are raised, but still less than the other factors (found in less than 

half of all models, by model weight), and with smaller effect size estimates, although the 

gap between effect sizes has narrowed somewhat. These results suggest that our multi-

model inference procedure is robust to errors, even large errors, that affect single entries 

in our data set, but if there is widespread error in these data sets, it may reduce our ability 

to distinguish between the importance of various agricultural factors in predicting A. 

syriaca abundance. 

Table S1: Correlation of variables used in multi-model inference 
 A. syriaca 

abundance Glyphosate use Fertilizer use Area farmed 
Number of farms -0.37 -0.25 0.24 0.40 
Area farmed 0.01 -0.08 0.48  
Fertilizer use -0.08 0.19   
Glyphosate use 0.12    

Each cell shows the correlation coefficient between the values of each pair of predictor and/or response 
variables from multi-model inference. Each predictor variable was first scaled as described above. Individual 
data points for the correlations are values for multi-state regions over a five year period, as described above. 
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Table S2: Effects of noise on multi-model inference 

 Importance: 
original data 

Importance: 
with noise I 

Importance: 
with noise II 

Estimate: 
original data 

Estimate: 
with noise I 

Estimate: 
with noise II 

Number of 
farms 

1.00 0.995 0.79 -4.04 -4.02 -13.5 

Area 
farmed 

0.55 0.55 0.79 1.10 1.10 13.9 

Fertilizer 
use 

0.21 0.21 0.47 -0.09 -0.09 -2.90 

Glyphosate 
use 

0.19 0.19 0.38 0.04 0.04 1.53 

“Importance” gives the relative weight of the models containing that variable, averaged across 1000 
replicates. “Estimate” gives the mean effect of each agricultural variable. The estimate for each predictor 
variable is first averaged within each replicate across all selected models according to their model weight, 
then these values are averaged across 1000 replicates. All “estimates” are multiplied by 104 for readability. 
Two kinds of replicate additions of noise were performed. In Type I, we changed the number of A. syriaca 
records for a single region and five-year period by a large amount. In Type II, we changed the number of A. 
syriaca records by a small amount across all regions and five-year periods.  

 

Table S3: Effects of alternative methods of calculating occurrence on model selection 

ΔAIC of model: 1 2 3 4 5 6 Additional models Pseudo-R2 
Median 0 0.38 1.93 2.36 2.65 2.68 0 0.18 
Mean 0 0.30 1.03 0.80 3.44 - 7 0.16 
Annual 1.02 1.92 0 2.53 3.91 3.99 7 0.06 

We took three approaches to modelling A. syriaca occurrence, using the median milkweed occurrence in 5-
year bins (“Median”), calculating occurrence using the combined records across each 5-year bin (“Mean”), or 
modelling the annual occurrences against the annual values for each agricultural variable. Presented here are 
the ΔAIC values for each of models 1-6 (corresponding to the model numbers given in Table 2), as well as the 
number of additional models within 4 ΔAIC units of the best model. We also present the marginal Pseudo-R2 
of the global model, which represents the variance explained by the fixed factors in a mixed model. Model 6 
was not within 4 ΔAIC units of the best model in the “Mean” treatment. 
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