Distinct Contribution of the HtrA Protease and PDZ Domains to its Function in Stress Resilience and Virulence of *Bacillus anthracis*

Ma'ayan Israeli, Uri Elia, Shahar Rotem, Hila Cohen, Avital Tidhar, Adi Bercovich-Kinori, Ofer Cohen, Theodor Chitlaru

Supplementary Material

Supplementary Table S1

E. coli bacterial strains, plasmids and oligonucleotide primers used in this study.

Supplementary Figure S1

Expression of the trans-complementation forms of $HtrA_{BA}$ (HtrA FL, HtrA Δ PDZ and HtrAS255A) in *E coli*, purification and functionality assays.

Supplementary Figure S2

Schematic representation of the chromosomal $HtrA_{BA}$ locus and of the strains exhibiting modified chromosomal $HtrA_{BA}$ alleles.

Supplementary Figure S3

Growth of the WT parental ΔV , $\Delta V \Delta htrA$, and the trans-complemented strains $\Delta V \Delta htrA/HtrA$, $\Delta V \Delta htrA/HtrA \Delta PDZ$ and $\Delta V \Delta htrA/HtrAS255A$ at 37°C and 42°C.

Supplementary Figure S4

Expression of S-layer proteins by the *B. anthracis* parental WT ΔV , the $\Delta V \Delta htrA$ and the ΔV strains exhibiting modified *htrA* alleles $\Delta V htrA_{\Delta PDZ}$ and $\Delta V htrA_{S255A}$, as well as the transcomplemented strains $\Delta V \Delta htrA/HtrA$, $\Delta V \Delta htrA/HtrA\Delta PDZ$ and $\Delta V \Delta htrA/HtrAS255A$.

<i>E. coli</i> Strain	Description	Source
	Description	500100
DH5a	endA1 recA1	Bioline
BL21 (DE3)	15::Kan (DE3)	Novagen
dam ⁻ dcm ⁻	$Dam13::Tn9(Cm^R)dcm-6$	NEB
Plasmids	Description	Reference
pASC-α	pASCa-derived PA expression vector	Chitlaru et al.,
	under amy promoter	2011
pASC-α HtrA	pASC-α htrA expression vector with C'	This study
	6*His tag between <i>SnaBI</i> and <i>BamH</i> I	
	sites	
pASC-α N'Htra	pASC-α N'htrA (containing nucleotides	This study
	1-900 of the <i>htrA</i> gene) expression vector	
	with C' 6*His tag between <i>SnaBI</i> and	
	BamHI sites	
pASC-α HtrA _{S255A}	Protease mutant <i>htrA</i> expression vector	This study
	with C ⁶ *His tag between SnaBI and	
700	BamH1 sites	
pEGS-cya	Allelic replacement vector for <i>cya</i>	Levy et al 2012
	deletion	TT1 (1
pEGS-N'HtrA	Allelic replacement vector for deletion of	This study
	C ntrA (900-12420p)	This star lar
pegs-htras255A	Allenc replacement vector for mutation	This study
nVV Issal	DVV I seel and any classe expression	Louve at al 2012
paa-iscei	voctor Km ^R	Levy et al 2012
nFT_21h	Amp^R E coli expression vector	Novagen
pET-21b pET_21b -Htr Δ	$pET_{21}h$ expression vector with HtrA at	This study
pL1-210-1107X	<i>EcoRI</i> and <i>YhoI</i> sites	This study
pFT_21h_N'HtrA	nFT-21h expression vector with N'HtrA	This study
	(1-900bp) at <i>EcoRI</i> and <i>XhoI</i> sites	This study
pET-21b-HtrAs255A	pET-21b expression vector with	This study
r	HtrAs ₂₅₅₄ at E_{coRI} and $XhoI$ sites	
Primer*	sequence	Use
DA521	agaaatagatattataaaaaagaagaagtaagtat ATCC	Cloning of htr A

Supplementary TABLE S1 | *E. coli* bacterial strains, plasmids and oligonucleotide primers used in this study. *B. anthracis* strains are detailed in Table 1.

BA531	agacct agatct tatacaaaaaggagtacgtatATGG GATATTACGACGGACCA	Cloning of htrA- 6XHis
BA819C	agatagacct ggattc ttaatggtgatggtgatggtgTT GATTCTTTGTAGCTGAGTTATCT	Cloning of htrA- 6XHis

BA818	TGAGAAGAAAAAAGTAGGCGAGA AAG	Sequencing of EC1489
BA820C	ggattc ttaatggtgatggtgatggtg	PCR detection of transformants
BA821C	agatagacct ggattc ttaatggtgatggtgatggtgTT TTTCAAGTGATTCAATAACTGGT	Cloning of N'htrA-6XHis
BA822	ATAAGCGTGCAGATTGGAATGCTC AA	PCR detection of transformants
BA825C	CCCGATTTTCTCACTTCTCTCG	Sequencing of EC1491
BA826	GGTGCTAATGTTAATAAAGTTGCC	Sequencing of EC1491
BA827	agatacctGCGGCCGCATGGGATATTA CGACGGACCAA	Cloning of EC1495 and EC1496
BA828C	gtcctcACTAGTTTATTTTTCAAGTGA TTCAATAACTGG	Cloning of EC1495
BA829	gtcctcACTAGTTCGGAATAAAAGAA AGTCTCT	Cloning of EC1495
BA830C	agacctGGCGCGCCTCTTCATTATAT TGGAACTGAT	Cloning of EC1495
BA831C	agacctGGCGCGCCTTATTGATTCTT TGTAGCTGAGT	Cloning of EC1496
htrA-pET-for-EcoRI	gcaaatgggtcgggatcc gaattc ATGGGATAT TACGACGGACCA	Cloning of HtrA to pET-21b
htrA-pET-rev-Xho-S	cctttcgggctttgttagcagccggatc ctcgag TTAA TGGTGATGGTGATGGTG	Cloning of HtrA to pET-21b

* The homology region to the coding sequence is marked in capital letters while homology to vector-derived sequences are in lowercase letters. The restriction sites used for the cloning of the corresponding PCR fragment are in bold.

Supplementary Figure S1 | Expression of the trans-complementation forms of HtrA_{BA} (HtrA FL, HtrA Δ PDZ and HtrAS255A) in *E coli*, purification and functionality assays. (A) Schematic representation of the HtrA forms expressed in E. coli. Right boxed panel: Western blot analysis of purified forms of HtrABA following IMAC (immobilized metal affinity chromatography). While the full-length and the Δ PDZ forms of HtrA were obtained in highly enriched fractions by IMAC. the HtrAS255A form could not be purified to homogeneity, as attested by the commassie-blue stained gel. Note that the additional bands do not react with the anti-his tag or anti-HtrA antibodies, establishing that they do not represent degraded forms of HtrA. The identity of these proteins and the reason for their co-elution only with the His-tagged HtrAS255A form but not with the FL or ΔPDZ forms, was not further studied. (B) β -Casein proteolysis assay using the different forms of HtrA_{BA}. Upper panel depicts the SDS-PAGE of the reactions, lower panel represents scan quantification of the β -casein bands from the gel, using an Odyssey CLx scanner (Li-Cor Biosciences, Lincoln, NE, USA) and analyzed by the Li-Cor Image Studio (ver. 5.2). Note the complete loss of proteolytic activity by the S255A form of HtrA_{BA};*p<0.05, by student t-test. (C) Lysozyme aggregation assay in the presence/absence of the various HtrA_{BA} forms. Note that the ΔPDZ form is significantly more affected in its ability to prevent aggregation of the substrate, in line with the notion that the PDZ domain is required for the optimal chaperone activity of HtrA. Statistical significance was determined by a global non-linear regression analysis using the GraphPad Prism 5.0 software (GraphPad Software, San-Diego, CA, USA); *p<0.05, **p<0.01.

Supplementary Figure S2 Schematic representation of the chromosomal HtrA_{BA} locus and of the strains exhibiting modified chromosomal HtrA_{BA} alleles. Modification of the *B. anthracis* chromosomal *htrA* gene enables comparison between *B. anthracis* wild-type, *B. anthracis* Δ *htrA* and novel strains containing an *htrA* truncated allele (*htrA*_{ΔPDZ}) or a mutated allele (*htrA*_{S255A}). HtrA_{BA} is encoded by the indicated mono-cistronic gene (NCBI locus BA3660). The position of the locus in the *B. anthracis* Ames ancestor genomic sequence is indicated. Right panel: Westernblot analysis using anti-HtrA antibodies of cellular extracts of the 4 strains described in the left scheme. Note that the HtrA form expressed in the *htrA*_{S255A} strain, exhibits a slower electrophoretic migration due to its failure to be auto-lytically processed (see Section 3.2).

Supplementary Figure S3 Growth of the WT parental ΔV strain, $\Delta V \Delta htrA$, and the transcomplemented strains $\Delta V \Delta htrA/HtrA$, $\Delta V \Delta htrA/HtrA \Delta PDZ$ and $\Delta V \Delta htrA/HtrAS255A$ at 37°C and 42°C. The various strains were grown in BHI medium. Over-night cultures of the 5 strains (OD= 10-13) were used to inoculate fresh BHI at a starting OD of 0.05. At the indicated time, when the cultures were in the mid-log phase (OD=1), the cultures were split into two twin flasks which were incubated at 37°C or 42°C.

Supplementary Figure S4 Expression of S-layer proteins by the *B. anthracis* parental WT ΔV , the $\Delta V \Delta htrA$ and the ΔV strains exhibiting modified *htrA* alleles $\Delta V htrA_{APDZ}$ and $\Delta V htrA_{S255A}$, as well as the trans-complemented strains $\Delta V \Delta htrA/HtrA$, $\Delta V \Delta htrA/HtrA\Delta PDZ$ and $\Delta V \Delta htrA/HtrAS255A$. The various strains were grown in BHI media for 18 hours. Bacterial cells were washed in PBS and boiled in SDS-PAGE buffer for 15 minutes before analysis. Equal cell equivalent volumes (approx.. 10 OD) of the 5 cultures were loaded for Western blot analysis using antibodies specific for both the Sap and EA1 S-layer proteins. See and **Table 1, Figure 1** and **Supplementary Figure S2** for details regarding the various strains exhibiting modified HtrA_{BA}.