
S1 Appendix

Supplemental derivations and nomenclature.

S1.1 Group symmetry and matrix decomposition

Here we summarize a fundamental result of group representation theory: how the vector
space for a matrix that is invariant under a symmetry group can be decomposed into
subspaces that do not interact with each other. We follow the procedure described
in [1, 2] for the general case. In the next section we apply it to a binary tree.

Let ϑ : s→Ds ∀s ∈ G be the representation of the group G on Rp. From Maschke’s
theorem, and by induction, a linear representation ϑ of a finite group is a direct sum of
irreducible representations. Accordingly, ϑ =

⊕I
ω=1mωϑ

(ω) where each inequivalent
irreducible representation ϑ(ω) has a multiplicity mω and a dimensionality dω such that
p =

∑I
ω=1mωdω. This ensures that any matrix M ∈ WG , where WG is the set of

matrices invariant under G, can be decomposed as

T †MT =

C
(1) 0

. . .

0 C(I)

 , M ∈ WG , (S1)

where each C(ω) ∈ Rmωdω×mωdω is associated with an isotypic subspace. Here T is a
unitary change-of-basis matrix that transforms M to a symmetry-adapted basis where
its block diagonal form is revealed. T is defined by the symmetry group of M .

Furthermore, Schur’s lemma states that, since C(ω) and ϑω commute, the isotypic
subspaces themselves decompose and can be written as a direct sum of repeated
subblocks,

C(ω) =


M

(ω)
Ω 0

. . .

0 M
(ω)
Ω

 (S2)

where there are dω repeated subblocks of M
(ω)
Ω ∈ Rmω×mω . Note that this requires that

T be specified with the appropriate arrangement of symmetry-adapted basis vectors in
each isotypic subspace (see p.40-43 [1]).

The fundamental decomposition of M ∈ WG is thus

T †MT =

I⊕
ω=1

[
dω⊕
ν=1

M
(ω)
Ω

]
,

=

I⊕
ω=1

[
Idω ⊗M

(ω)
Ω

]
, M

(ω)
Ω ∈ Rmω×mω , (S3)

where ν indexes the repeated subblocks M
(ω)
Ω and Idω is the identity matrix of

dimension dω. This expression highlights how the M
(ω)
Ω are orthogonal building blocks

of M . We refer to each M
(ω)
Ω as an irreducible block. Each irreducible block describes

the interactions between mω natural variables which span what we call an irreducible
subspace. Irreducible blocks are thus the main objects of inference and, as we will see
for the case of a binary tree, are each associated with a source of variation.

Eq S3 states that a p-dimensional space decomposes into I unique irreducible
subspaces (each repeated dω times) each with mω dimensions. This reduces the number

January 30, 2019 1/14



of pairwise associations in the model since Eq S3 only permits associations between
variables within an irreducible subspace. It also reduces the total number of unique
variables since only one of the dω identical copies of each irreducible subspace needs to
be considered. Note that when dω > 1, which can occur only for a non-commutative
group, Schur’s lemma states that degenerate eigenvalues are present. Degeneracy
reduces the number of variables, and thus the dimensionality, of the problem. For the
binary tree degeneracy occurs when the number of generations is 3 or higher.

S1.2 Group representation for a complete tree

The finite group symmetry of a matrix refers to the set of permutations of variables that
keep the matrix invariant. As described in the previous section, this invariance property
defines a set of orthogonal subspaces of the original vector space. Formal derivation of
the orthogonal subspaces for a particular group symmetry representation follows a
standard procedure [1]. Since this does not appear to have been done for a
representation on a complete tree we give a detailed derivation here, for binary trees
with 2 and 3 generations. Generalization of the key results to higher generations then
becomes apparent.

S1.2.1 Symmetry groups

The abstract symmetry group of the tree is set by the largest generation being studied.
In general the group involves recursions of wreath products.

Generations 1,2: With two generations the symmetry group is just the S2 group, the
cyclic group containing 2 elements:

G2 ∼ S2. (S4)

Generations 1,2,3: The symmetry group of a binary tree containing the first 3
generations is given by

G3 ∼ (S2 × S2) o S2

∼ S2 o S2

∼ D4

where × is the direct product, o is the semi-direct product and o is the wreath product.
This group has order 8 and is isomorphic to the dihedral group D4, the symmetry group
for a square.

S1.2.2 Permutation representation

The permutation matrix representations, D(s), that leave the covariance matrix
invariant can be found manually. Here they are shown divided up into equivalence
classes. χ[D(s)] is the character of each class. Note that dots are used to represent 0
when the matrix element corresponds to a pair of cells from two different generations
(which we assume can not be permuted since variation is not stationary between
generations).

Generations 1,2:

Class I: s = {e}, χ[D(s)] = 3:

D(e) =

1 · ·
· 1 0
· 0 1

 ,
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Class II: s = {c}, χ[D(s)] = 1:

D(c) =

1 · ·
· 0 1
· 1 0

 .

Generations 1,2,3: The 8 group elements, s, of G3 are each represented by a
7-dimensional permutation matrix, D(s), corresponding to the 7 positions in a binary
tree with 3 generations. These are listed below, grouped into the 5 equivalence classes
each with a given character χ:

Class I: s = {e}; χ[D(s)] = 7:

D(e) =



1 · · · · · ·
· 1 0 · · · ·
· 0 1 · · · ·
· · · 1 0 0 0
· · · 0 1 0 0
· · · 0 0 1 0
· · · 0 0 0 1


,

Class II: s = {c2}, χ[D(s)] = 3:

D(c2) =



1 · · · · · ·
· 1 0 · · · ·
· 0 1 · · · ·
· · · 0 1 0 0
· · · 1 0 0 0
· · · 0 0 0 1
· · · 0 0 1 0


,

Class III: s = {c, c−1}, χ[D(s)] = 1:

D(c) =



1 · · · · · ·
· 0 1 · · · ·
· 1 0 · · · ·
· · · 0 0 1 0
· · · 0 0 0 1
· · · 0 1 0 0
· · · 1 0 0 0


,

D(c−1) =



1 · · · · · ·
· 0 1 · · · ·
· 1 0 · · · ·
· · · 0 0 0 1
· · · 0 0 1 0
· · · 1 0 0 0
· · · 0 1 0 0


,
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Class IV: s = {r, c2r}; χ[D(s)] = 5:

D(r) =



1 · · · · · ·
· 1 0 · · · ·
· 0 1 · · · ·
· · · 0 1 0 0
· · · 1 0 0 0
· · · 0 0 1 0
· · · 0 0 0 1


,

D(c2r) =



1 · · · · · ·
· 1 0 · · · ·
· 0 1 · · · ·
· · · 1 0 0 0
· · · 0 1 0 0
· · · 0 0 0 1
· · · 0 0 1 0


,

Class V: s = {cr, c3r}, χ[D(s)] = 1:

D(cr) =



1 · · · · · ·
· 0 1 · · · ·
· 1 0 · · · ·
· · · 0 0 1 0
· · · 0 0 0 1
· · · 1 0 0 0
· · · 0 1 0 0


,

D(c3r) =



1 · · · · · ·
· 0 1 · · · ·
· 1 0 · · · ·
· · · 0 0 0 1
· · · 0 0 1 0
· · · 0 1 0 0
· · · 1 0 0 0


.

S1.2.3 Irreducible representations and character tables

Since G2 and G3 are isomorphic to well-known symmetry groups, their irreducible
representations can be identified immediately.

Generations 1,2: Since G2 ∼ S2, the irreducible representations of G2 are simply
those for S2. The canonical decomposition of the representation space for a tree can be

found by first examining the character table for G2 (Table A). Here Γ
(ω)
2 are the

irreducible representations of G2 and ϑ2 is the completely reducible representation for
the 2-generation tree given in the previous section.

{e} {c}
Γ

(1)
2 1 1

Γ
(2)
2 1 -1
ϑ2 3 1

Table A. Character table for G2.

Generations 1,2,3: Since G3 ∼ D4 the irreducible representations of G3 are just those
for the symmetry group of the square. The character table is given in Table B where
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the Γ
(ω)
3 are the irreducible representations of G3 and ϑ3 is the completely reducible

representation for the tree given in Section “Permutation representation”.

{e} {c2} {c, c−1} {r, c2r} {cr, c3r}
Γ

(1)
3 1 1 1 1 1

Γ
(2)
3 1 1 1 -1 -1

Γ
(3)
3 1 1 -1 1 -1

Γ
(4)
3 1 1 -1 -1 1

Γ
(5)
3 2 -2 0 0 0
ϑ3 7 3 1 5 1

Table B. Character table for G3.

S1.2.4 Canonical decomposition

The completely reducible permutation representations can be decomposed into a direct
sum of the irreducible representations. This is done by calculating the multiplicity mω

of each irreducible representation (ω) using:

mω =
1

|G|
∑
s∈G

χ(ω)(s)∗χ(s)

This leads to the following canonical decompositions:
Generations 1,2:

ϑ2 = 2Γ
(1)
2 ⊕ Γ

(2)
2

Generations 1,2,3:

ϑ3 = 3Γ
(1)
3 ⊕ 2Γ

(3)
3 ⊕ Γ

(5)
3

If we use ϑ
(ω)
G to refer to active irreducible representations then ϑ2 = 2ϑ

(1)
2 ⊕ ϑ

(2)
2 and

ϑ3 = 3ϑ
(1)
3 ⊕ 2ϑ

(2)
3 ⊕ ϑ

(3)
3 . This already suggests that there will be G active irreducible

representations spanning the vector space of a tree with G generations.

S1.2.5 Symmetry-adapted basis vectors

To determine the change-of-basis matrix between the standard and natural
(symmetry-adapted) variables we must project the permutation matrices onto the
invariant subspaces by applying the projection operators (see p.147 [1])

P (ω) =
dω
|G|
∑
s∈G

χ(ω)(s)∗D(s)

Π(ω) =
∑
s∈G

ζ
(ω)
11 (s)∗D(s)

where the first is used if mω = 1 and the second if mω > 1. Here ζ
(ω)
11 (s) is the first

element in the irreducible representation matrix. The results are as follows:
Generations 1,2:

T =

1 0 0
0 1√

2
1√
2

0 1√
2

−1√
2
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Generations 1,2,3:

T =



1 0 0 0 0 0 0
0 1√

2
0 1√

2
0 0 0

0 1√
2

0 −1√
2

0 0 0

0 0 1
2 0 1

2
1√
2

0

0 0 1
2 0 1

2
−1√

2
0

0 0 1
2 0 −1

2 0 1√
2

0 0 1
2 0 −1

2 0 −1√
2


S1.2.6 Covariance matrix in the symmetry-adapted basis

In the symmetry-adapted basis the covariance matrix block diagonalizes into
components corresponding to each irreducible representation. The dimension of each
block is the product of the multiplicity and dimensionality of that representation.

Generations 1,2:

ΣΩ = T−1ΣGT

=

ξ
(1)
11 ξ

(1)
12 ·

ξ
(1)
12 ξ

(1)
22 ·

· · ξ
(2)
22


Generations 1,2,3:

ΣΩ = T †ΣGT

=



ξ
(0)
11 ξ

(0)
12 ξ

(0)
13 · · · ·

ξ
(0)
12 ξ

(0)
22 ξ

(0)
23 · · · ·

ξ
(0)
13 ξ

(0)
23 ξ

(0)
33 · · · ·

· · · ξ
(1)
22 ξ

(1)
23 · ·

· · · ξ
(1)
23 ξ

(1)
33 · ·

· · · · · ξ
(2)
33 0

· · · · · 0 ξ
(2)
33


S1.2.7 Generalization to higher generations

For generations above G = 3 we can determine the symmetry group using the recursive
relation:

Gg+1 ∼ (Gg × Gg) o S2,

The order of the group up to any generation g is thus:

|Gg+1| = 2|Gg|2.

Given that for the base case, |G2| = 2, the order of the group is given explicitly by:

|Gg| = 2A, A = 2(g−1) − 1

Thus for pedigrees up to g = 4 or g = 5 the order of the group would be 128 and 32768,
respectively. Clearly the group order increases too fast for this manual projection
approach to be useful at higher generations.

However, by inspection, the following general result can be found. For a completely
reducible representation on a binary tree with G generations, the number of active
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irreducible representations I (indexed here as 0 ≤ ω ≤ I − 1), their dimensionalities dω,
and multiplicities mω are

I = G (S5)

dω =

{
1, if ω = 0

2ω−1, if ω ≥ 1
(S6)

mω = G− ω. (S7)

As required, this satisfies p =
∑I−1
ω=0mωdω when p = 2G − 1.

S1.2.8 Natural variables for a tree

The natural, or symmetry-adapted, basis for the tree was interpreted in
Section Generalized spectral analysis of a complete tree. A 3-integer tuple (`, τ, g) was
found to uniquely define each natural variable. These indices relate to the isotypic and
irreducible subspaces as follows:

`: Longitudinal coordinate of source The longitudinal coordinate of a source of
variation, `, corresponds to an isotypic component, ω. The fact that there are G
longitudinal coordinates is consistent with there being I = G isotypic subspaces
(Eq S5). We adopt the convention that 0 ≤ ` < G.

τ : Transverse coordinate of source The transverse coordinate of a source of
variation, τ , corresponds to an irreducible subspace ν within an isotypic subspace.
The fact that there is 1 transverse coordinate for ` = 0, 1 and 2`−1 coordinates for
` ≥ 2 (see Fig 6) is consistent with the dimensionalities dω found for each
irreducible representation (Eq S6). We adopt the convention that 0 ≤ τ < d`.

g: Generation The variables within each irreducible subspace correspond to the
generations g at which variation from (`, τ) can be observed, where 1 ≤ g ≤ G.
Given that variation can only be observed in generations after the source `, g is
restricted to ` < g ≤ G within an isotypic subspace, giving it G− ` possible values.
This is consistent with the multiplicity of each irreducible representation being
mω = G− ω (Eq S7). Importantly, since each accessible g occurs exactly once in
each irreducible subspace, the irreducible subspace consists of an ordered sequence
and is thus a time series.

S1.2.9 Covariance matrix decomposition

In Eq 5, the structured covariance matrix ΣG was defined in terms of elements σgg′m.
ΣΩ can be expressed in terms of σgg′m by applying the similarity transform,
ΣΩ = T †ΣGT . For a 3-generation tree,

ΣΩ =



σ111

√
2σ121 2σ131 0 0 0 0√

2σ121 σ221 + σ222

√
2 (σ231 + σ232) 0 0 0 0

2σ131

√
2 (σ231 + σ232) 2σ331 + σ332 + σ333 0 0 0 0

0 0 0 −σ221 + σ222

√
2 (−σ231 + σ232) 0 0

0 0 0
√

2 (−σ231 + σ232) −2σ331 + σ332 + σ333 0 0
0 0 0 0 0 −σ332 + σ333 0
0 0 0 0 0 0 −σ332 + σ333


In Eq 18, the transformed covariance matrix ΣΩ was defined in terms of elements

ξ
(`)
gg′ . ΣG can be expressed in terms of ξ

(`)
gg′ by applying the reverse similarity transform,

ΣG = TΣΩT
†. For a 3-generation tree,
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ΣG =



ξ
(0)
11

√
2ξ

(0)
12

2

√
2ξ

(0)
12

2
ξ
(0)
13

2
ξ
(0)
13

2
ξ
(0)
13

2
ξ
(0)
13

2√
2ξ

(0)
12

2
ξ
(0)
22

2 +
ξ
(1)
22

2
ξ
(0)
22

2 −
ξ
(1)
22

2

√
2ξ

(0)
23

4 +
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 +
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 −
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 −
√

2ξ
(1)
23

4√
2ξ

(0)
12

2
ξ
(0)
22

2 −
ξ
(1)
22

2
ξ
(0)
22

2 +
ξ
(1)
22

2

√
2ξ

(0)
23

4 −
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 −
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 +
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 +
√

2ξ
(1)
23

4
ξ
(0)
13

2

√
2ξ

(0)
23

4 +
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 −
√

2ξ
(1)
23

4
ξ
(0)
33

4 +
ξ
(1)
33

4 +
ξ
(2)
33

2
ξ
(0)
33

4 +
ξ
(1)
33

4 −
ξ
(2)
33

2
ξ
(0)
33

4 −
ξ
(1)
33

4
ξ
(0)
33

4 −
ξ
(1)
33

4
ξ
(0)
13

2

√
2ξ

(0)
23

4 +
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 −
√

2ξ
(1)
23

4
ξ
(0)
33

4 +
ξ
(1)
33

4 −
ξ
(2)
33

2
ξ
(0)
33

4 +
ξ
(1)
33

4 +
ξ
(2)
33

2
ξ
(0)
33

4 −
ξ
(1)
33

4
ξ
(0)
33

4 −
ξ
(1)
33

4
ξ
(0)
13

2

√
2ξ

(0)
23

4 −
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 +
√

2ξ
(1)
23

4
ξ
(0)
33

4 −
ξ
(1)
33

4
ξ
(0)
33

4 −
ξ
(1)
33

4
ξ
(0)
33

4 +
ξ
(1)
33

4 +
ξ
(2)
33

2
ξ
(0)
33

4 +
ξ
(1)
33

4 −
ξ
(2)
33

2
ξ
(0)
13

2

√
2ξ

(0)
23

4 −
√

2ξ
(1)
23

4

√
2ξ

(0)
23

4 +
√

2ξ
(1)
23

4
ξ
(0)
33

4 −
ξ
(1)
33

4
ξ
(0)
33

4 −
ξ
(1)
33

4
ξ
(0)
33

4 +
ξ
(1)
33

4 −
ξ
(2)
33

2
ξ
(0)
33

4 +
ξ
(1)
33

4 +
ξ
(2)
33

2


Elements along the diagonal represent the components of variance referred to in Eq 31.
Boxes indicate the covariance matrices for generation 2 only (dotted) and generation 3
only (dashed).

S1.3 Sparsity

Having employed the symmetry constraint in Section “Complexity of the structured
covariance”, we remarked that the number of replicates required, nmin, still grew with
the number of generations. To identify another constraint, we note that the G− `
natural variables in each irreducible subspace (`, τ) represent a time series from
generation `+ 1 to G (see Section “Generalized spectral analysis of a complete tree”).
Together, the unique irreducible subspaces comprise a set of G independent time series
each starting at a different generation but all ending at G. The additional structure we
impose is to consider each of these time series as a fixed order Markov chain.

We note first that the structure of ΣG is preserved in its inverse, KG = Σ−1
G , a

consequence of G-invariance [3]. This means that the spectral precision matrix,
KΩ = T †KGT has the same block-diagonal structure as ΣΩ. Hence each irreducible

block K
(`)
Ω in the spectral precision matrix is just the inverse of the corresponding

irreducible block in the spectral covariance Σ
(`)
Ω :

K
(`)
Ω =

[
Σ

(`)
Ω

]−1

. (S8)

Imposing a Markov constraint on Σ
(`)
Ω involves imposing a sparsity constraint on

K
(`)
Ω . More specifically, matrix elements in K

(`)
Ω outside a diagonal band (the

tri-diagonal in the case of a 1st order Markov process) are constrained to be zero.

Remember that it is the structure of each K
(`)
Ω that is sparse; the precision matrix itself,

KG , may not be particularly sparse. We remark that a zero in the precision matrix
enforces conditional uncorrelatedness between two variables without assuming
Gaussianity (if the distribution is Gaussian, then this pair of variables is also
conditionally independent).

A restricted-order Markov chain is a simple case of a decomposable graphical
model [4, 5] and thus yields an explicit estimate of the covariance matrix. Following the
procedure for a decomposable model, we organize variables in the irreducible block into
cliques and separators, a straightforward exercise for a Markov chain of any order. If

S
(`)
Ω represents the irreducible block of the sample covariance, we can label sub-blocks of

cliques and separators within S
(`)
Ω as

S
(`)
Ω,ci

, i = 1, ...,NC ; S
(`)
Ω,si

, i = 2, ...,NC

where the subscript ci refers to a clique, si refers to a separator, and NC is the number
of cliques in the irreducible block. The covariance estimate for an irreducible block is
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then given by (p.145 [5])

K̂
(`)
Ω =

NC∑
i=1

{[
S

(`)
Ω,ci

]−1
}0

−
NC∑
i=2

{[
S

(`)
Ω,si

]−1
}0

(S9)

Σ̂
(`)
Ω =

[
K̂

(`)
Ω

]−1

(S10)

where the expression {Υ}0 denotes a matrix with the dimensions of K̂
(`)
Ω which has its

appropriate sub-block occupied by Υ and zeros elsewhere. Recombining the irreducible
blocks using a direct sum gives the Markov-constrained spectral covariance estimate,
Σ̂Ω:

Σ̂Ω =

G−1⊕
`=0

[
d`−1⊕
τ=0

Σ̂
(`)
Ω

]
,

=

G−1⊕
`=0

[
Id` ⊗ Σ̂

(`)
Ω

]
, d` =

{
1, if ` = 0

2`−1, if ` ≥ 1
, (S11)

from which the Markov-constrained structured covariance, Σ̂G , can be calculated using
the inverse transform:

Σ̂G = T Σ̂ΩT
†. (S12)

Eq S9 shows that, since it is the inverse of the clique and separator sub-blocks that
are required (rather than the entire irreducible block), it is only these sub-blocks (with
maximum dimension M+ 1) that need to be positive definite. The minimum number of
replicates required for positive definiteness is thus set by the order M of the Markov
process, which is fixed, rather than by the size of the irreducible block, which grows
linearly with G. In general then, nmin =M+ 2 and we have finally achieved our goal of
having the data requirements be independent of the number of generations being
analyzed. Note that restricting the non-zero parameters in the precision matrix to be on
the diagonal band means that NΣ ∼ O(G2), down from the cubic dependence in Eq 20.
peff remains unchanged (Eq 19).

Inspection of the T-cell and worm lineage data show that, at least up to generation

4, non-zero values in K
(`)
Ω are indeed primarily confined to the tri-diagonal, justifying

the (first-order) Markov process assumption.

S1.4 Missing data

The EM algorithm iteratively improves the estimate of the covariance matrix,
generating expected values of the sufficient statistics at each step.

In more detail (p.223 [6]), the first and second order statistics are calculated for each
replicate i by partitioning the variables into observed sets, labelled oi, and unobserved
sets, labelled ui. Members of each set usually differ from one replicate to the next. The
vector of unobserved values in each replicate is then filled by its expected value
conditioned on the vector of observed values:

Yi,ui
= E(Yi,ui

|Yi,oi)
= µ̂ui

+ Σ̂ui,oiΣ̂
−1
oi,oi (Yi,oi − µ̂oi) . (S13)

Combining these with the observed values completes the first order statistic,
Yi = {Yi,oi ,Yi,ui

} for i.
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The second order statistic (Y Y )i for each replicate i, partitioned into observed and
unobserved sections, is found from

(Y Y ′)i,oioi = Yi,oiY
′
i,oi

(Y Y ′)i,uioi = Yi,uiY
′
i,oi

(Y Y ′)i,oiui
= Yi,oiY

′
i,ui

(Y Y ′)i,uiui
= Yi,ui

Y ′i,ui
+ Σ̂uiui|oioi , (S14)

where

Σ̂uiui|oioi = Σ̂ui,ui
− Σ̂ui,oiΣ̂

−1
oi,oiΣ̂oi,ui

is the residual covariance of the unobserved variables after conditioning on the observed
variables.

Once this exercise has been completed for all replicates, the sample mean and
covariance are calculated from the usual

y =
1

n

n∑
i=1

Yi, S =
1

n

n∑
i=1

(Y Y ′)i − µ̂µ̂′. (S15)

Finally, symmetry constraints are applied to y to determine µ̂G while symmetry and
sparsity constraints are applied to S to determine and Σ̂G (see Section “Summary of
algorithm”).

S1.5 Maximum likelihood estimation

The second order theory given in Section “Covariance estimation” for complete data is a
nonparametric spectral estimate of Σ. It does not assume a probability distribution.
Here we show that our estimates Σ̂G and Σ̂Ω are in fact the maximum likelihood
estimates for a multivariate Gaussian. This becomes important when we have to assume
a distribution to account for missing data.

In this study the traits we examine for T cells and C. elegans are continuous and
approximately marginally Gaussian. Thus it is reasonable to assume that the joint
probability distribution over the complete tree P(y), where y is a p-dimensional
random variable representing the single trait for each lineal position, can be modeled by
the multivariate Gaussian

P(y;µ,Σ) =
|Σ|−1/2

(2π)p/2
exp

[
−1

2
(y − µ)′Σ−1(y − µ)

]
,

where Σ is the variance-covariance matrix and µ is the multivariate mean.
The sample mean (y) and (biased) sample covariance (S) are given by

y =
1

n

n∑
i=1

Yi, S =
1

n

n∑
i=1

YiY
′
i − y y′, (S16)

where Yi is the data vector from pedigree i. As usual, the unstructured mean and
variance-covariance maximum likelihood estimates (MLE) are given simply by µ̂ = y

and Σ̂ = S.
We now find the MLE for a covariance matrix constrained to have the structure of

an unordered tree (e.g. Eq 5). Crucially, since the structure of Σ arises from a group
symmetry, its inverse K = Σ−1 has the same structure [3]. With the constraint being
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in K, the MLE has an explicit form [7,8]. Consider the log-likelihood of the
multivariate Gaussian

L(µ,K;Y ) = lnP(Y ;µ,K)

=
n

2
[ln detK − tr (SK)− p ln(2π)] (S17)

over positive definite matrices K. To constrain the structure of K we represent it as a
linear combination of matrices. The resulting structured inverse covariance is then

KG =
∑
α

aαAα, (S18)

where each Aα is a matrix of 0’s and 1’s which has the same dimensions as KG , with
1’s identifying a particular shared parameter and aα giving the value of that parameter.

The MLE is found by differentiating Eq S17 with respect to each aα and setting
dL/daα = 0, giving

d

daα
ln detKG =

d

daα
tr(SKG). (S19)

Substituting Eq S18 gives

tr(Σ̂GAα) = tr (SAα) . (S20)

Since the matrices are symmetric we can equate the inner products of the matrices:

〈Σ̂G ,Aα〉 = 〈S,Aα〉. (S21)

Thus the MLE of each shared parameter in Σ̂G is found by averaging the corresponding
elements in S [7]. The result, SG , is thus the MLE of the structured covariance

Σ̂G = SG . (S22)

Similarly, for a multivariate Gaussian with group symmetries the MLE of the mean,
µ̂, is given explicitly [9]. For the case of a binary tree µ̂ is found by pooling data from
lineal positions in the same generation.

S1.5.1 MLE from irreducible components

The decomposition of ΣG into block-diagonal form reduces the single MLE calculation
over all p variables into several smaller independent MLE calculations. To see this, let

K ∈ WG . Then from Eq S3, K can be decomposed into irreducible blocks K
(`)
Ω . The

parts of the likelihood function thus become

ln detK = ln detT †KT = ln detKΩ,

=

G−1∑
`=0

d` ln detK
(`)
Ω , (S23)

and

tr (SK) = tr
(
T †STT †KT

)
= tr (SΩKΩ) ,

=

G−1∑
`=0

d`−1∑
τ=0

〈S(`,τ)
Ω ,K

(`)
Ω 〉, (S24)
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where K
(`)
Ω has the same dimensionality as S

(`,τ)
Ω but is independent of τ . Substituting

Eqs. S23 and S24 into the likelihood Eq S17, it is thus apparent that each irreducible
block can be treated as an independent MLE calculation. The result,

Σ̂
(`)
Ω =

1

d`

d`−1∑
τ=0

S
(`,τ)
Ω = S

(`)
Ω (S25)

states that Σ̂
(`)
Ω is found by averaging the d` irreducible subblocks in the sample

spectral covariance. This procedure ensures that elements of SΩ that are outside the
block diagonal are ignored.

The resulting Σ̂ can be reconstructed by substituting Eq S25 in Eq S3 and
transforming back to the original basis:

Σ̂Ω =

G−1⊕
`=0

[
d`−1⊕
τ=0

Σ̂
(`)
Ω

]
=

G−1⊕
`=0

[
Id` ⊗ Σ̂

(`)
Ω

]
, (S26)

Σ̂ = T Σ̂ΩT
† (S27)

The procedure for finding Σ̂ for a G-invariant covariance is thus as follows:

1. Transform S into the symmetry-adapted basis.

2. Zero the elements outside the irreducible blocks.

3. If there is more than one irreducible block per isotypic block, average them.

4. Transform back to the original basis.

Importantly, Eq S25 gives an explicit MLE of the irreducible block that involves
simply re-arranging terms in the sufficient statistic S. Each of these blocks is thus a
descriptive statistic for tree-structured data, involving linear combinations of data
points, sums of squares and no parameters. Thus the MLE is the same as our original
nonparametric estimate.

S1.6 Lineage nomenclature for C. elegans

The spectral features found in Fig 11b can be related to known subtrees in the
C. elegans lineage. Fig A shows the PHA-4 gene expression pattern [10] on a lineage
where each lineal position has been given its standard label [11]. Red dashed lines are
used to highlight a few of the subtrees giving rise to particularly strong bifurcated
expression in generation 8.
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first 8 generations of embryogenesis in C. elegans. Each lineal position is labelled with its standard identifier [11].
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