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Self-Generated Unconscious Processing of Loss Linked to  
Less Severe Grieving 

 
Supplemental Information 

 

MRI 

Blood-oxygen-level dependent (BOLD) images were acquired on a GE 3-T scanner 

parallel to the anterior commissure-posterior commissure (AC-PC) line with a T2*-weighted EPI 

sequence of 45 contiguous slices (TR=2000ms, TE=25ms, flip angle = 77, FoV=192 x 192mm) 

of 3mm thickness and 3x3 in-plane resolution. Structural images were acquired with a T1-

weighted SPGR sequence recording 256 slices at a slice thickness of 1mm and in-plane 

resolution of 1x1mm. 

 Preprocessing was carried out using FSL version 6 (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl) (1). Preprocessing included slice time correction, motion correction, skull 

stripping and smoothing with a Gaussian kernel of 6mm FWHM. A 120-second high pass filter 

was applied to the data. All data were corrected for head motion by removing the influence of six 

motion time courses. Bias field correction was implemented using FSL-FAST for functional and 

structural images (2). Following preprocessing functional images were registered to structural 

images with 7-degrees of freedom and then structural images were warped to the standard MNI 

space using a 12-degree affine registration followed by a non-linear warp implemented in FNIRT 

(3, 4). Following the acquisition of the first 23 subjects, the T1 bias corrections step failed 

necessitating the removal of this step from preprocessing for subsequent subjects. To reduce the 

effect of this noise on the overall model, these subjects were excluded from the pattern-training 

phase (i.e. Stroop task) and only incorporated in the pattern application phase (SART-PROBES). 

The primary analysis was run with and without these subjects and effects were unchanged (see 

Results). All images were registered to the MNI standard space template. All regional delineations 

are defined according to the Harvard-Oxford atlases.  

http://www.fmrib.ox.ac.uk/fsl
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MVPA analysis 

The prediction of RT was implemented through a multivariate linear regression. For each 

subject, we first computed the z score of RT and the z score of the BOLD activity at each voxel 

within the feature mask across all deceased-related trials. Then we concatenated RT and BOLD 

activity across all subjects and constructed a linear regression model implemented using 

FaSTGLZ (5) to predict RT to deceased-related words using the BOLD activity across voxels in 

the d-SA voxel mask. A 10x10 fold cross validation procedure was used to optimize the neural 

pattern for d-SA (i.e. W). That is, the blocks were randomly split into 10 parts (folds), where nine 

folds were used to train the models, and the tenth fold was used to measure the out-of-sample 

prediction.  

To test the significance of the prediction, we used a permutation procedure where we 

randomly permuted the RT and calculated the mean squared error (MSE) of the prediction. This 

procedure was repeated for 1000 times to obtain an empirical null distribution of the MSE. The 

significance of the prediction was then determined by comparing the observed MSE against the 

empirical null distribution. 
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Figure S1. d-SA Weighting Matrix. A 3D weighting matrix was identified by the machine learning 

regression. This weighting matrix optimized the prediction of longer Stroop RTs on the basis of 

trial by trial BOLD data. Because it predicted longer Stroop RTs this matrix was interpreted as a 

neural pattern corresponding to the engagement of deceased-related selective attention (i.e. d-

SA), which when applied in the Stroop task would lengthen RTs.  Blue indicates negative 

weighting and red indicates positive weighting. B. Histogram of weighting values across the 3D 

d-SA matrix.

B.

A.
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Table S1. Regional Distribution of d-SA Weighting Matrix 

 Cluster Center (XYZ) Voxel #  Average Weight 
Brain Stem 43.46 47.72 30.39 158 0.15 
Central Opercular Cortex 24.74 67.63 38.74 19 -0.22 
Cingulate Gyrus, anterior division 44.58 76.14 48.54 440 0.08 
Cingulate Gyrus, posterior division 45.11 43.92 48.63 546 -0.11 
Cuneal Cortex 45.48 23.15 50.15 845 0.00 
Frontal Operculum Cortex 24.00 72.66 37.04 187 0.11 
Frontal Orbital Cortex 43.37 73.73 29.18 1017 0.00 
Frontal Pole 30.22 85.63 50.15 474 -0.01 
Inferior Frontal Gyrus opercularis 19.90 72.80 38.40 10 0.13 
Inferior Frontal Gyrus triangularis 19.54 77.25 37.83 313 -0.07 
Insular Cortex 32.31 69.87 34.02 450 0.03 
Intracalcarine Cortex 44.83 26.16 40.21 1078 0.03 
Lateral Occipital Cortex-inferior  41.67 27.08 42.13 86 -0.15 
Lateral Occipital Cortex-superior  46.82 22.63 50.20 2279 -0.01 
Left Hippocampus 56.92 49.67 29.38 24 -0.34 
Lingual Gyrus 45.61 31.36 33.60 1247 0.00 
Middle Frontal Gyrus 31.47 76.63 53.34 122 -0.16 
Middle Temporal Gyrus-anterior  21.46 63.38 22.77 13 0.20 
Middle Temporal Gyrus-posterior  19.11 53.76 28.85 112 -0.02 
Occipital Fusiform Gyrus 50.72 22.52 27.84 90 -0.37 
Occipital Pole 46.26 16.54 47.23 1446 0.04 
Paracingulate Gyrus 44.03 80.84 49.78 585 0.03 
Parahippocampal Gyrus 50.81 46.42 29.16 227 0.12 
Planum Polare 24.43 60.59 27.48 54 -0.28 
Postcentral Gyrus 53.31 41.80 61.38 81 -0.28 
Precuneous Cortex 45.34 34.89 58.11 1985 -0.01 
Right Thalamus 38.09 51.32 33.36 22 -0.11 
Subcallosal Cortex 47.45 72.78 29.40 137 -0.09 
Superior Frontal Gyrus 38.11 72.13 65.46 641 0.05 
Superior Parietal Lobule 52.81 36.92 65.15 26 -0.04 
Superior Temporal Gyrus-anterior 21.64 63.64 24.64 11 0.02 
Superior Temporal Gyrus-posterior 20.44 53.62 32.15 39 0.33 
Supracalcarine Cortex 42.75 29.20 43.55 176 0.13 
Temporal Fusiform Cortex  53.84 45.33 22.84 69 0.20 
Temporal Occipital Fusiform Cortex 49.58 37.13 28.96 262 -0.08 
Temporal Pole 53.31 70.55 21.70 308 0.10 
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Table S2. Prediction of ICG Score from d-SA Expression with Covariates 
 B T p 95% CI Partial Corr 

Months Since Loss .83 1.42 .17 -0.38 to 2.05 0.31 
Psychiatric Medication 3.53 .84 .41 -5.23 to 12.30 0.19 
# MDD episodes  -.77 -.47 .64 -4.20 to 2.65 -0.11 
Income -.65 -.41 .68 -3.95 to 2.66 -0.09 
d-SA Expression  -30.79 -2.46 .02 -56.95 to -4.62 -0.49 
 
d-SA pattern expression during non-intrusion blocks predicts Inventory for Complicated Grief 
(ICG) score while controlling for demographic correlates of ICG.  

 

 

 
Table S3. Prediction of ICG Score from d-SA Expression Controlling for Loss Type 

 B T p 95% CI Partial Corr 
d-SA Expression -29.68 -4.29 <.00 -44.02 to -15.34 -.67 
Loss Type 12.56 3.91 <.00 5.89 to 19.24 .64 
 
d-SA pattern expression during non-intrusion blocks predicts Inventory for Complicated Grief 
(ICG) score while controlling for type of loss (i.e. suicide vs non-suicide). 
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Figure S2. Grief Severity by d-SA Expression in Suicide Bereaved Only 
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Figure S3. Grief Severity by d-SA Expression in Original 23 Subjects 
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