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SUMMARY

The proximodistal axis is considered a major organi-
zational principle of the hippocampus. At the inter-
face between the hippocampus and other brain
structures, CA2 apparently breaks this rule. The re-
gion is involved in social, temporal, and contextual
memory function, but mechanisms remain elusive.
Here, we reveal cell-type heterogeneity and a charac-
teristic expression gradient of the transcription fac-
tor Sox5 within CA2 in the rat. Using intracellular
and extracellular recordings followed by neurochem-
ical identification of single cells, we find marked
proximodistal trends of synaptic activity, subthresh-
old membrane potentials, and phase-locked firing
coupled to theta and gamma oscillations. Phase-
shifting membrane potentials and opposite proximo-
distal correlations with theta sinks and sources at
different layers support influences from different cur-
rent generators. CA2 oscillatory activity and place
coding of rats running in a linear maze reflect proxi-
modistal state-dependent trends. We suggest that
the structure and function of CA2 are distributed
along the proximodistal hippocampal axis.

INTRODUCTION

The cornu ammonis 2 (CA2) hippocampal region has distinctive

molecular, physiological, and connectivity properties (Dudek

et al., 2016). CA2 pyramidal cells respond vigorously to direct en-

torhinal inputs from layer II stellate cells (Leroy et al., 2017; Sun

et al., 2017). In addition, they receive a direct mossy fiber

connection from granule cells and contribute to a parallel trisy-

naptic circuit to deep CA1 sublayers (Kohara et al., 2014; Sun

et al., 2017). Recurrently associated with CA3, CA2 pyramidal

cells project to superficial layers of the medial entorhinal cortex

(Rowland et al., 2013). g-Aminobutyric acid-ergic (GABAergic)

innervation by local parvalbumin-expressing cells and specific

classes of dendritic-targeting interneurons is particularly promi-

nent in this region (Botcher et al., 2014; Mercer et al., 2012a,
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2012b), supporting strong inhibitory control (Chevaleyre and

Siegelbaum, 2010; Piskorowski and Chevaleyre, 2013). CA2 is

specifically targeted by hypothalamic fibers releasing vaso-

pressin and oxytocin during social interaction (Caldwell et al.,

2008; Cui et al., 2013; Smith et al., 2016) and by supramammil-

lary glutamatergic cells with a major role in wake-sleep regula-

tion (Pedersen et al., 2017; Soussi et al., 2010).

Given recurrent connections with these brain systems, CA2

can be considered a network hub. Not surprisingly, it is involved

in a diversity of functions, including spatial and social memory.

Place fields are more abundant but less precise in CA2 than in

CA3 and CA1 (Oliva et al., 2016a). Some studies have revealed

that CA2 ensemble firing changes prominently over time (Alex-

ander et al., 2016; Lee et al., 2015; Lu et al., 2015; Mankin

et al., 2015). In contrast, others have reported some cells firing

in place during brief exploratory pauses and over sleep (Kay

et al., 2016). This leads to the idea that CA2 is specialized in

bridging contextual representations, supporting their contribu-

tion to episodic memory function (Mankin et al., 2015; Wintzer

et al., 2014). When CA2 cells are specifically manipulated, de-

fects emerge in contextual habituation to a neutral environment

(Boehringer et al., 2017), but not for contextual fear memory or

spatial learning (Hitti and Siegelbaum, 2014). Instead, memory

for a familiar conspecific is affected. Such a social memory

role may reflect not only specific features of CA2 (Leroy et al.,

2017) but also downstream effects (Okuyama et al., 2016;

Raam et al., 2017). Possibly, CA2 is instrumental in interfacing

among brain systems, but the mechanisms are not known.

The heterogeneous oscillatory behavior of putative CA2 cells

was reported using extracellular recordings (Kay et al., 2016;

Oliva et al., 2016b, 2016a). Moreover, in evaluating proximodistal

changes of firing similarity between contexts, a significant spatial

in-homogeneity was found at the CA3a-CA2 border (Lu et al.,

2015). Unfortunately, without morphological confirmation, it is

difficult to interpret these results given the miscellaneous

composition of this transitional area (Valero et al., 2015). Here,

we reveal striking heterogeneity of cell-type-specific molecular

markers around dorsal CA2 in rats and use intracellular and

extracellular in vivo recordings followed by neurochemical iden-

tification to target this region. We found marked proximodistal

trends of synaptic activity and theta/gamma oscillations in

both subthreshold membrane potentials and phase-locked
hor(s).
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Figure 1. Characteristic Features of Local Field Potentials around CA2

(A) Representative simultaneous LFP signals recorded at SP in awake head-fixed rats using multisite silicon probes. Probe tracks are identified in sections

immunostained against PCP4 and CB. The limit of MF (open arrowhead) is taken as a reference for quantitative analysis.

(B) LFP recordings around CA2 obtained from urethane anesthetized rats.

(C) Representative power spectra during theta activity recorded at SP of CA2, CA3a, and CA1p under urethane (black) and in head-fixed conditions (orange).

(D) Individual spectral area of the theta band (3–12 Hz) and the gamma band (30–90 Hz) plotted as a function of electrode distance to MF. Data are from 52

recording locations from n = 30 urethane anesthetized rats and 13 recordings from n = 5 drug-free rats. Different Pearson correlations were obtained at both

sides of MF for theta: R = 0.47, p = 0.0059 from �3 to 0 mm and R = 0.59, p = 0.0088 from 0 to 1 mm. Gamma power exhibited a significant negative correlation

(R = �0.65, p < 0.0001).

(E) Grand average spectra of the ripple power recorded at SP (aligned by the sharp-wave peak at SR).

(F) Delay between the ripple power peak and the sharp-wave peak as a function of recording location. Note the earlier ripple peak (negative delays) at the limit with

MF (arrowhead).

See also Figure S1.
firing. Our data disclose opposing entrainment by different cur-

rent generators and GABAergic microcircuits across the prox-

imal and distal sectors. Moreover, we found that these trends

shape CA2 pyramidal cell state-dependent oscillatory activity

and place coding.

RESULTS

Characteristic Features of Local Field Potentials
around CA2
Local field potentials (LFPs) were recorded with multisite silicon

probes around CA2 in 5 awake head-fixed rats. To target CA2

precisely, we learned to identify characteristic evoked responses

to stimulation of the ipsilateral perforant pathway (PP) and

contralateral CA3 (Figures S1A–S1D) (STARMethods). Theta os-

cillations and sharp-wave ripples were recorded during periods

of running and immobility, respectively.

In simultaneous recordings from the stratum pyramidale (SP),

we noted attenuation of theta activity and characteristic sharp-
wave ripple patterns around the CA2-CA1 border, as identified

by the specific marker PCP4 (Figure 1A, left). Immunostaining

against calbindin (CB) helped us to delineate the point at which

mossy fibers (MFs) terminate (Figure 1A, arrowhead). Theta-

nested gamma oscillations were typically recorded from CA3

(Figure 1A, right). Similar LFP profiles were recorded under ure-

thane in 30 rats (Figure 1B), despite spectral differences with the

drug-free condition (Figure 1C).

We evaluated LFP features quantitatively using detailed infor-

mation on the location of recording sites along SP with respect

to anatomical borders. The spectral power of the theta band

(3–12 Hz) and the gamma band (30–90 Hz) was plotted as a func-

tion of the site distance to MF along the SP contour (n = 13 re-

cordings from 5 awake head-fixed rats, n = 52 recordings from

30 anesthetized rats) (Figure 1D) (STAR Methods). We noted

representative spatial in-homogeneities of LFP signals around

CA2. For theta, positive Pearson correlations were confirmed

at both sides of theMF limit in an otherwise-negative global trend

(Figure 1D, left; see also Figures S1E and S1F). This correlation
Cell Reports 26, 1734–1746, February 12, 2019 1735



paradox (Julious and Mullee, 1994) was not present in the

gamma power, which decreased consistently (Figure 1D, right).

We also confirmed characteristic features of sharp-wave ripples

around CA2 by looking at the temporal relationship between the

ripple power and the sharp-wave peak (Figure 1E). As described

(Oliva et al., 2016b), the maximal ripple power preceded sharp-

wave peaks at CA2 (Figure 1F; Figures S1G and S1H). Indepen-

dent of whether these features reflect volume-conducted and/or

microcircuit effects, they represent characteristic LFP signatures

of the CA2 region.

Molecular and Electrophysiological Cell-Type-Specific
Heterogeneity around CA2
We next characterized cellular diversity around CA2. Immu-

noreactivity against PCP4, a-Actinin2, CB, and Wfs1 allowed

for classification of different cell types (STAR Methods). Us-

ing the MF limit as a natural morphological landmark, we

defined the proximal and distal sectors of CA2 (Figure 2A,

discontinuous line), corresponding to CA2a and CA2b subre-

gions (Dudek et al., 2016). We noted many cells positive for

PCP4 distributed at both sides of the MF limit in rats (Fig-

ure 2A), in contrast to mice that exhibit a narrower distal

CA2 (Figure 2B) (Dudek et al., 2016; Kohara et al., 2014).

We also noted some PCP4+ cells in deep layers of CA3a in

both species (Figures 2A and 2B, arrowheads). Similar to

CA2 cells, they co-expressed PCP4 and a-Actinin2 (Fig-

ure S2A). Many Wfs1+ CA1 pyramidal cells interspersed

with a-Actinin2+ cells at distal CA2 (Figure 2A, right). Accord-

ing to our estimates, CA2 spans about 250 mm around the

MF limit in the rat dorsal hippocampus (bregma �2.9 to

�3.7 mm).

Using VGAT-VenusA transgenic rats to exclude interneurons,

we quantified the distribution of pyramidal cells with cell-type-

specific immunostaining (Figure S2B). Double immunostaining

against a-Actinin2/PCP4 (n = 6 sections from 3 rats) and a-Acti-

nin2/Wfs1 (n = 6 sections from 3 rats) supported cellular hetero-

geneity within CA2 (Figure 2C). At proximal CA2, most cells were

PCP4+/a-Actinin2+ (�65%), and some were negative for both

markers (�15%). These cells were VGAT�, indicating they had

a glutamatergic phenotype. In double immunostaining against

a-Actinin2/Wfs1, we found a minority of Wfs1+ cells at proximal

CA2 (<5%). In contrast, at distal CA2, many Wfs1+/a-Actinin2�
cells (�35%) intermingled with a-Actinin2+ cells (50%). The

remaining Wfs1�/a-Actinin2� cells were VGAT+. Thus, hetero-

geneous cell types intermix with CA2 pyramidal cells at the

proximal and distal sectors. Similar features were seen in coronal

and sagittal sections, confirming they did not depend on the

orientation.

To identify cell types more precisely, we obtained in vivo

intracellular recordings in urethane anesthetized rats, in combi-

nation with 16-channel silicon probes (Figure 2D). We targeted

pyramidal cells around the CA2 region using characteristic LFP

features to guide sharp electrode penetrations (Figure S1B).

After recordings, cells were filled with Neurobiotin, visualized

with streptavidin, and tested against PCP4, a-Actinin2, Wfs1,

and CB immunoreactivity. Cell morphology was examined at

633 magnification under the confocal microscope to look for

thorny excrescences typical of CA3 pyramidal cells.
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A total of 24 pyramidal cells were impaled in 24 rats. We found

n = 5 a-Actinin2� or PCP4� cells with thorny excrescences

classified as CA3 cells (Figure 2D, green), n = 10 cells express-

ing PCP4 being classified as CA2 pyramidal cells (red), and n = 9

Wfs1+ CA1 pyramidal cells (blue). PCP4+ and Wfs1+ cells did

not exhibit thorny excrescences. We recorded the proximodis-

tal position of cell somata with respect to MF and confirmed

the heterogeneous cellular composition of the CA2 region

(Figure 2E). Electrophysiologically, we found no significant dif-

ferences in the resting membrane potential (RMP), but we did

find proximodistal trends for the maximal firing rate and sag in

response to current pulses, confirmed by Pearson correlation

(Figure 2E). We also noted some differences in the after-hyper-

polarization (AHP) following an action potential (Figure 2E).

Some of these features were described in vitro for CA3a and

CA2 pyramidal cells (Srinivas et al., 2017; Sun et al., 2017).

While differences in input resistance and difficulties to evaluate

intrinsic properties in vivo may complicate interpretation, data

suggest interaction between cell type and proximodistal loca-

tion (Table S1).

We next looked for markers that may help in further identifying

a proximodistal axis within CA2. Regionalized gene expression

has been described along the transverse hippocampal axis

and is exploited to define borders between regions along the

Cornu Ammonis (Cembrowski et al., 2016). While working with

Sox5, a transcription factor involved in several aspects of

neuronal development, including cell fate determination (Quir-

oga et al., 2015), we noted increasing proximodistal expression

along CA3-CA2 in adult mice (Figures S2C and S2D). This re-

gion- and cell-type-specific trend was cross-validated using

RNA sequencing (RNA-seq) mouse data from Hipposeq (Cem-

browski et al., 2016) (Figure S2E). In rats, we found a similar

gradient of Sox5 expression (Figure 2F; Figure S2F) and

confirmed regional trends by segmenting SP along CA3a-CA2

(one-way ANOVA, F(24) = 4.7, p = 0.008) (Figure 2G). Next, we

asked whether Sox5 was differentially expressed across single

cells within CA2 using co-localization with a-Actinin2 (Figure 2H,

top). Quantification of the mean intensity of Sox5 expression in

a-Actinin2+ cells showed a characteristic maximum around the

point at which MF terminate (Figure 2H, bottom). Consistently,

the expression dynamics of Sox5 reversed around this point,

as tested separately at proximal and distal sectors (Figures 2H

and 2I). Thus, in addition to different cell-type heterogeneity at

proximal and distal sectors, the CA2 pyramidal cell population

exhibits proximodistal molecular gradients around the MF

border.

Cell-Type-Specific Differences of Theta and Gamma
Firing Modulation around CA2
Next, we asked for functional proximodistal variations. Intracel-

lular recordings obtained simultaneously to multisite LFP signals

allowed us to evaluate oscillatory behavior of identified cell types

around CA2 (n = 24 cells) (Figures 3A and 3B). Juxtacellularly

labeled cells recorded simultaneously to LFPs in awake head-

fixed rats were also obtained (n = 3 cells) (Figures 3B and 3C)

(STAR Methods). Although theta under urethane (�4 Hz) may

differ from running theta (6–8 Hz), we aimed to compare modu-

latory influences across and within cell types.



Figure 2. Cell-Type-Specific Heterogeneity around CA2

(A) Immunoreactivity against PCP4, a-Actinin2, CB, and Wfs1 allowed evaluating cell-type heterogeneity around CA2. Images show co-localization among

different markers (3 confocal optical sections). Some PCP4+ cells were identified in deep layers of CA3a and in CA1 (open arrows). MF was used to define the

proximal (close to CA3a) and distal (close to CA1) sectors of CA2.

(B) PCP4 and CB expression in the mouse CA2.

(C) Quantification of pyramidal cell types around CA2, as examined in double immunostaining against a-Actinin2/PCP4 (n = 6 sections from 3 rats) and a-Actinin2/

Wfs1 (n = 6 sections from 3 rats). Individual data points are shown, together with mean ± SD.

(D) Intracellular recordings of CA2 pyramidal cells obtained in vivo from urethane anesthetized rats. Cells with thorny excrescences (open arrowheads)

and lacking immunoreactivity for PCP4 or a-Actinin2 were classified as CA3 (green, n = 5). Cells positive to Wfs1 either CB+ or CB�were classified as CA1 (blue,

n = 9). Cells immunoreactive to PCP4 or a-Actinin2 without thorny excrescences were classified as CA2 cells (red, n = 10).

(E) Intrinsic properties of the different cell types plotted as a function of their distance to MF. Proximodistal gradients were confirmed by a Pearson correlation, as

indicated. Intrinsic properties were measured at the resting membrane potential (RMP). Sag and firing rate were calculated in response to ±0.3 nA current pulses.

AHP was calculated from the first spike in response to +0.2 nA.

(F) Immunohistochemical expression of Sox5 in a representative section of the rat dorsal hippocampus co-localized with a-Actinin2 (1 confocal section).

(G) Quantification of Sox5 expression per region (normalized by background at 0) along the proximodistal axis of CA3 to CA2 (n = 5 sections from 4 rats).

Significant one-way ANOVA, F(24) = 4.7, p = 0.008. Post hoc Tukey test, **p < 0.001. Error bars show mean ± SD.

(H) Expression of Sox5 in CA2 cells as a function of the cell distance toMF (1 confocal section). A Pearson correlation R index was evaluated for proximal (�250 to

0 mm) and distal (0 to 250 mm) sectors separately. *p < 0.05, **p < 0.001. One representative section is shown.

(I) Mean group data (±SD) of the Pearson correlation and mean normalized intensity for proximal and distal CA2 cells. Data from n = 7 sections from 4 rats. Paired

Student’s (two-tailed) t tests, **p < 0.01, ***p < 0.0001.

See also Figure S2 and Table S1.
Under urethane, the power spectrum of intracellular mem-

brane potential oscillations suggested a significant proximodis-

tal gradient of the gammapower (30–90Hz), but not the theta po-

wer (4–12 Hz) (with similar trends for slow and fast gamma

bands: R = �0.61, p = 0.0014, and R = �0.67, p = 0.0003,

respectively) (Figures 3D and 3E). Phase-locked firing of single

cells to LFP signals from the stratum lacunosum moleculare
(SLM) exhibited opposite behavior for theta and gamma (Fig-

ure 3F). Theta-firing modulation increased toward distal CA2,

while gamma modulation reversed, as quantified by the mean

vector length (MVL) (Figure 3G). For this analysis, we included

juxtacellularly labeled cells, which fit into the distribution (Fig-

ure 3G, open dots). We noted a separated cluster of poorly

theta-modulated cells, especially some distal Wfs1+ and
Cell Reports 26, 1734–1746, February 12, 2019 1737



PCP4+ cells (Figure 3G, arrowheads), resembling spatial LFP in-

homogeneities.

Given the deep-superficial gradients reported in CA1 and CA2

(Oliva et al., 2016b; Valero et al., 2015), we looked for the distri-

bution of modulatory strength as a function of the cell distance

within SP. We found significant correlation with the deep-super-

ficial position for gamma modulation of all cells together and

within the PCP4+ group alone (superficial is at 0) (Figure 3H). A

different modulatory index, looking for pairwise phase consis-

tency (PPC) (Vinck et al., 2012), captured similar correlations

(Figures S3A and S3B). Comparable effects were seen for the

slow and fast gamma bands separately (Figure S3C). However,

because of the typical expansion of the cell layer around CA2,

the deep-superficial and proximodistal axes may interact. A

generalized linear model (GLM) accounting for cell types and

proximodistal and deep-superficial influences confirmed inter-

actions (Table S2).

Cells recorded around CA2 exhibited phase-locked firing

(z = 6.3, p = 0.0049, Rayleigh test) (Figure 3I). Significant prox-

imodistal gradients of the preferred theta phase were confirmed

with circular-linear statistics (R = 0.78, p < 0.0001, for all cells

and R = 0.63, p = 0.0348, for CA2 cells alone) (Figure 3I). No sta-

tistical effects were found as a function of deep-superficial loca-

tion (Figure 3J). These results did not depend on proximodistal

differences of LFP signals caused by penetrations of the silicon

probe along CA2 to CA1 (no correlation with probe position;

Table S2).

Altogether, our data suggest CA2 firing is organized proximo-

distally during theta oscillations. Considering the reversal profile

of theta cycles around SP of CA1, our data suggest proximal

PCP4+ pyramidal cells tend to fire along the falling phase,

together with CA3 cells, while distal cells fire in phase with

CA1 pyramidal cells near the theta trough (Figure 3K). Thus, firing

from CA2 pyramidal cells consistently shifts in phase from

proximal to distal. Complex mechanisms accounting for these

functional effects could include local microcircuit factors and

the influence of different theta generators (Figure 3L).

CA2 Pyramidal Cells May Couple to Different
Proximodistal Theta Generators
We sought to evaluate the contribution of different mechanisms

with additional analysis. We focused on n = 10 PCP4+ CA2 cells

recorded intracellularly to avoid cell-type effects. We examined

membrane oscillations at different holding potentials during

theta recorded extracellularly (Figure 4A). Current source density

(CSD) signals allowed identification of theta-associated local

transmembrane sinks and sources (Figure 4A, color map)

(STAR Methods). Theta current generators were localized at

the stratum oriens (SO), stratum radiatum (SR), and SLM layers

as described previously (Montgomery et al., 2009).

The frequency of intracellular theta oscillations was indepen-

dent of the holding potential (Figure 4A), but the oscillatory power

reached a minimum between �80 and �60 mV in different cells

(Figure 4B, arrowhead). For a given cell, the intracellular theta

power depicted a characteristic U-shaped curve with minimal

power potential (Figure 4C). When plotted as a function of the

cell position with respect to MF, the minimal power potential ex-

hibited a significant proximodistal correlation for all PCP4+ cells
1738 Cell Reports 26, 1734–1746, February 12, 2019
(no deep-superficial correlation, p = 0.79) (Figure 4D). This min-

imal power potential reflects the equilibrium potential for mixed

excitatory and inhibitory synaptic drives contributing to intracel-

lular oscillations (Soltesz and Deschênes, 1993) and suggests

proximodistal trends of theta currents. At RMP, the phase of

intracellular oscillatory peaks showed a significant proximodistal

shift with respect to LFP (Figure 4E). Thus, CA2 pyramidal cells

experienced different theta current drives along the proximodis-

tal axis, with depolarizing peaks consistently shifting in phase

from proximal (Figure 4Fa) to distal (Figure 4Fb).

To complement this analysis, we chose only those PCP4+

cells recorded simultaneously to CA2 extracellular LFPs (n = 5).

By evaluating coherence between intracellular membrane po-

tential and local CSD signals, we aimed to quantify the influences

of transmembrane currents at different strata during theta oscil-

lations. We also included in this analysis one CA3 cell and one

Wfs1+ CA1 pyramidal cell recorded simultaneously to LFP sig-

nals fromCA2 to control for cell-type-specific effects. To circum-

vent issues arising from the complex hippocampal geometry, we

limited the analysis to penetrations going through SO, SR, and

SLM of distal CA2 (Figure 4A, inset). One PCP4+ cell was

excluded due to the more proximal location of SLM penetration.

We found opposing proximodistal correlations between intra-

cellular theta oscillations and CSD signals at SO and SR for all

cells and for PCP4+ cells alone (Figure 4G), suggesting that

transmembrane currents flowing though basal and apical den-

drites contributed differently along the proximodistal axis. More-

over, correlation between intracellular and local CSD signals at

SLM was significant only for PCP4+ pyramidal cells (Figure 4G,

bottom), consistent with their responsiveness to entorhinal in-

puts (Srinivas et al., 2017; Sun et al., 2017).

Different Proximodistal Influences of Intra-
and Extra-hippocampal Inputs to CA2
Next, we examine microcircuit determinants of proximodistal

gradients within CA2 with stimulation of input pathways in vivo

(Figure 5A). Intracellular synaptic responses were evaluated at

different latencies in current-clamp configuration for paired-

pulse stimulation of the contralateral CA3 (n = 20 cells) and ipsi-

lateral entorhinal inputs (n = 12 cells). Responses to electrical

stimulation of entorhinal inputs were validated optogenetically

(Figure S1B).

We found no proximodistal trends for the amplitude of excit-

atory postsynaptic potentials (EPSPs) but found significant cor-

relation for di-synaptic inhibitory postsynaptic potentials (IPSPs)

in response to contralateral CA3 stimulation (Figure 5B, upper

plots). For entorhinal inputs, we noted clear EPSP responses

only in PCP4+ cells (Figure 5B, lower plots), consistent with

our results on theta coherence and previous data in vitro (Srini-

vas et al., 2017; Sun et al., 2017). Mean group responses per

cell type reflected these differences (Figure 5C). An inhibitory/

excitatory (I/E) ratio confirmed cell-type differences (also for

the excitatory/inhibitory [E/I] ratio, data not shown) (Figure 5D).

No effect was found for paired-pulse stimulation.

To exclude cell-type-specific effects and to examine synaptic

currents more precisely, we performed voltage-clamp patch-

clamp recordings in vitro (Figure 5E, left) (STAR Methods). Cells

in the vicinity of CA2 were recorded and filled with Alexa 568 for



Figure 3. Proximodistal Differences of Theta and Gamma Activity of CA2 Pyramidal Cells

(A) Intracellular recordings obtained simultaneously to multisite LFP signals allowed evaluation of oscillatory behavior of different cell types around CA2. Note the

poor theta rhythmicity of spontaneous firing in a proximal PCP4+ CA2 cell but consistent phase-locking preference with theta cycles at SLM. Note also clear

hyperpolarization during sharp-wave (SPW) ripples.

(B) Neurochemical classification of cells shown in (A) and (C).

(C) Single-cell and LFP recordings from head-restrained rats.

(D) Power spectrum of the intracellular membrane potential recorded during LFP theta in different cell types. Cells are ranked according to their proximodistal

location within each group. Data from n = 5 CA3 cells (green), n = 10 CA2 cells (red), and n = 9 CA1 cells (blue).

(E) Individual single-cell data of theta and gamma power of membrane potential oscillations.

(F) Representative examples of single-cell autocorrelation and phase-locking firing to theta and gamma waves recorded at SLM. Cells are ranked according to

their proximodistal location.

(G) Proximodistal distribution of themodulatory strength for theta and gamma for cells recorded under urethane (filled circles; 24 cells) and in drug-free conditions

(open circles; 3 cells). The discontinuous line indicates the 95% confidence interval. Note the separate cluster of poorly modulated cells (arrowhead).

(H) Distribution of the modulatory strength as a function of the cell distance within SP (0 is the superficial limit).

(I) Theta phase firing preference of single cells measured against the SLM signal. The circular distribution significance is indicated.

(J) Theta phase firing preference of cells plotted as a function of their deep-superficial location.

(K) Phase firing preference of single cells represented against the CA1 SP signal (note the reversal of the theta wave along the CA1 layers).

(L) Potential mechanisms may include proximodistal and deep-superficial microcircuit organization and the influence of different theta generators.

See also Figure S3 and Table S2.
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Figure 4. Influence of Different Proximodistal Theta Drives along CA2

(A) Intracellular membrane oscillations recorded at different holding potentials simultaneously to extracellular LFP signals in one PCP4+ pyramidal cell. CSD local

sinks and sources are shown, together with LFPs (color map). Note attenuated theta oscillations around �70 mV in this cell, near the reversal potential of

g-aminobutyric acid a (GABAa) receptors. LFP and CSD signals were recorded simultaneously to the �70 mV trace. The inset shows validation of probe

penetration through the distal CA2 region.

(B) Power spectrum of membrane potential oscillations of traces shown in (A). Note the reduced theta power for a holding potential near �70 mV.

(C) Relationship between theta power of membrane potential oscillations and holding potential for the cell shown in A. A minimum theta power is estimated at

�70 mV (arrowhead). The thick line shows the best polynomial fit.

(D) Significant gradients of minimal power potential along the proximodistal axis. Data from n = 10 PCP4+ CA2 cells.

(E) Phase relationship between the membrane oscillation peak at RMP and the proximodistal location of CA2 cells.

(F) Example of a proximal PCP4+ CA2 cell (a). Note the maximal depolarization and firing at the falling phase of theta recorded at SP. Example of a distal cell (b)

with maximal depolarization and firing at the SP theta trough. In both cases, LFP signals were recorded from the distal CA2.

(G) Proximodistal distribution of theta coherence between membrane potential oscillations at RMP and the local CSD signal at SO, SR, and SLM from the distal

CA2 region. Data from cells recorded simultaneously to CA2 extracellular LFP signals (n = 1 CA3, n = 5 CA2, n = 1 CA1). In one CA2 cell, the SLM CSD signal did

not meet the inclusion criteria.
neurochemical identification. Evoked excitatory postsynaptic

currents (EPSCs) and inhibitory postsynaptic currents (IPSCs)

were evaluated in response to CA3 and SLM stimulation (Fig-

ure 5E, right). We confirmed similar population responses for

electrical and optogenetic stimulation of SLM (Figure S1D). In a

preliminary set of experiments, we noted a significant effect of

recording duration and access resistance in immunoreactivity

against PCP4+, presumably due to cell dialysis (Figure S4).

Thus, we reduced patching time to theminimum to gain in neuro-

chemical characterization. Cells were tested first against PCP4

and subsequently for Wfs1. Cells without thorny excrescences

and negative to both markers were left unclassified.

Consistent with in vivo data, we found significant trends for the

amplitude of IPSCs upon stimulation of CA3 for all cells and

within PCP4+ cells alone (Figure 5F, no difference for EPSCs;

Figure S5A) (n = 7 PCP4+, n = 8 Wfs1+, n = 6 not-confirmed

cells). The I/E ratio reflected similar global correlation with the

cell distance to MF (Figure 5F, similar trends for E/I: R = 0.34,

p = 0.0081; Figure S5C, left). The frequency of spontaneous

IPSCsmeasured in all cells, but not that of EPSCs, exhibited sig-

nificant proximodistal correlation (Figure 5G; Figure S5D).

In contrast, responses to entorhinal inputs at SLM were more

complex. First, we found significant proximodistal trends for the

EPSC amplitude only in PCP4+ cells (n = 7 PCP4+, n = 6 Wfs1+,

n = 7 not-confirmed cells) (Figure 5H, left) and no differences for

IPSCs (Figure S5B). Second, an I/E ratio showed opposing corre-
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lations for PCP4+CA2 andWfs1+CA1 pyramidal cells around the

MF limit (Figure 5H, right, similar for the E/I ratio; FigureS5C, right).

We found no clear evidence of deep-superficial gradients in syn-

aptic potentials along CA2 in response to either pathway (Fig-

ure S6). Finally, we confirmed previous reports of cell-type-spe-

cific responses to MF stimulation (Sun et al., 2017), with smaller

EPSCs in PCP4+CA2 cells comparedwith CA3a cells (Figure S7).

Thus, our data support different influences from input pathways

along CA2. Accordingly, different intra-hippocampal (e.g., CA3)

and extra-hippocampal (e.g., entorhinal cortex) theta current gen-

erators (Buzsáki, 2002; Montgomery et al., 2009) may influence

CA2 cells along the proximodistal axis (Figure 5I).

Proximodistal Differences of Oscillatory Activity
and Spatial Coding of CA2 Cells
We reasoned that a proximodistal distribution of CA2 activity

should be reflected in functional operations within this hippo-

campal region. To investigate this point, we looked at data on

large-scale simultaneous recordings of pyramidal cells from

the CA3a, CA2, and proximal CA1 regions in rats during spatial

navigation in a linear maze and subsequent sleep (Oliva et al.,

2016a). We identified 6 rats with penetrations at different proxi-

modistal locations along CA2 (Figure 6A). A total of 688 pyrami-

dal cells were sorted (387 from rats 6, 7, and 8 at proximal loca-

tions and 301 from rats 2, 4, and 5 at distal locations). Theta

signals recorded from the CA1 SLM served as reference.



Figure 5. Proximodistal Gradients of Synaptic Responses along CA2

(A) Intracellular responses to contralateral CA3 (cCA3) and PP stimulation were examined in vivo. The amplitudes of evoked EPSPs and IPSPs were evaluated at

different latencies from stimulation (arrowheads). Cell types are identified by colors.

(B) Synaptic responses to cCA3 stimulation (n = 20 cells) and PP stimulation (n = 12 cells). Data are plotted as a function of the cell distance to MF.

(C) Mean group responses (±SD) and individual data per cell type. Because of their location, cell-type differences reflect a proximodistal gradient along

CA2. cCA3 stimulation: EPSP is non-significant; IPSP F(19) = 9.1, p = 0.011, one-way ANOVA; *p < 0.05, **p < 0.005, post hoc Tukey test. PP stimulation: EPSP

F(11) = 8.9, p = 0.007; IPSP F(11) = 6.1, p = 0.021; *p < 0.05, post hoc Tukey test.

(D) I/E ratio of different cell types. cCA3 stimulation: F(19) = 6.5, p = 0.008, one-way ANOVA; *p < 0.05, **p < 0.005, post hoc Tukey test. PP simulation:

F(11) = 41.1, p < 0.0001; **p < 0.005, ***p < 0.0001, post hoc Tukey test.

(E) In vitro recordings were obtained to evaluate synaptic currents in response to CA3 or SLM stimulation. Cells were filled with Alexa 568 for posterior identi-

fication. Evoked excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs) from the PCP+ pyramidal cell are shown.

(F) Synaptic currents evoked by CA3 stimulation. Wfs1+ CA1 cells (n = 8) and PCP4+ CA2 cells (n = 7) are shown in blue and red, respectively. Cells not confirmed

neurochemically are indicated in black (n = 6). Significant proximodistal trend for IPSC and the I/E ratio are indicated.

(G) Spontaneous IPSC frequency from n = 12 PCP4+, n = 9 Wfs1+, and n = 9 not confirmed.

(H) Synaptic currents evoked by stimulation of entorhinal inputs at SLM (n = 7 PCP4+ CA2 cells, n = 6 Wfs1+ CA1 cells, n = 7 not-confirmed cells).

(I) Schematic representation of a proximodistal microcircuit organization of CA2. Intra-hippocampal (CA3 and dentate gyrus [DG]) and extra-hippocampal input

pathways (entorhinal cortex [EC] and possibly septum or the supramammillary nucleus) relay different theta current generators at different layers along the

proximodistal axis of CA2. Local GABAergic inputs also exhibit a proximodistal distribution, consistent with gamma oscillations.

See also Figures S4–S7.
Consistent with data reported above, the preferred theta phase

of CA2 pyramidal cells shifted along the proximodistal axis during

both running (RUN) and rapid-eye-movement (REM) sleep (Fig-

ure 6B) (data from each rat shown independently). A one-way

ANOVA confirmed proximodistal trends across cell types (RUN:

F = 25.4, p < 0.0001; REM: F = 22.5, p < 0.0001) (Figure 6C).

No difference of theta modulation was detected around CA2 (Fig-

ure 6D); however, neurons in CA3b and CA3c regions were found

in an earlier study to be slightly more phase locked to theta (Oliva

et al., 2016b). During RUN, we found stronger cross-correlations

between firing from proximal CA2 and firing from CA3a pyramidal

cells (p = 0.0111), whereas distal CA2 cells were better correlated

with CA1p pyramidal cells (p = 0.0303) (Figure 6E). During REM
sleep, firing of proximal and distal CA2 pyramidal cells was differ-

ently modulated by slow (30–60 Hz) and fast (60–90 Hz) gamma

(Figure 6F). The proximodistal trend for the slow gamma band

was consistent with data shown earlier under urethane. Finally,

we also examined whether place coding properties distributed

differently across the proximodistal axis in CA2. As reported

earlier, spatially modulatedCA2 pyramidal cells from the proximal

and distal sectors may exhibit more than one place field (Fig-

ure 6G). We found more spatially modulated cells with larger

selectivity and carrying more information content per spike at

distal than at proximal sectors (Figure 6H). Altogether, these

data support different state-dependent oscillatory dynamics

and place coding along the proximodistal axis in CA2.
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Figure 6. Proximodistal Organization of CA2 Activity in Time and Space
(A) High-density multisite silicon probes (256 channels) allowed simultaneous recordings of CA3, CA2, and CA1 unit activity from 6 rats running (RUN) in a linear

maze and subsequently sleeping (REM) (Oliva et al., 2016a).

(B) Mean theta phase modulation from pyramidal cells from the 6 rats organized from proximal to distal penetrations through CA2. A total of 688 CA2 pyramidal

cells were isolated: 87 from rat 2, 126 from rat 4, 88 from rat 5, 65 from rat 6, 188 from rat 7, and 134 from rat 8. The reference for theta cycles was taken at SLM of

CA1, with the theta peak at zero. Data from RUN and REM episodes are shown separately.

(C) Proximodistal group difference of the preferred theta phase for RUN (F = 25.4, p < 0.0001) and REM (F = 22.5, p < 0.0001). Note the statistical differences for

proximal and distal CA2. Data are from 262 pyramidal cells in CA3a, 387 pyramidal cells in proximal CA2, 301 pyramidal cells in distal CA2, and 389 pyramidal

cells in proximal CA1. *p < 0.05 from post hoc t test.

(D) No statistical effects were found between groups in the strength of theta modulation.

(E) Cross-correlation between pyramidal cells from proximal and distal CA2 with CA3 and with CA1. Proximal CA2 neuronal firing is more correlated with CA3

firing, whereas distal CA2 cells tend to better correlate with CA1, especially during RUN periods. Data are shown as mean ± SEM.

(F) Proximodistal differences of slow and fast gamma modulation.

(G) Representative examples of CA2 place cells recorded from the proximal and distal sectors.

(H) Proximodistal differences of spatial coding properties of CA2 place cells.
DISCUSSION

Our data suggest that within CA2, opposite influences from

different input pathways and local gradients of the E/I ratio shape

neuronal firing. Intra-hippocampal inputs from CA3 (and dentate

gyrus [DG]) converge proximally to modulate CA2 pyramidal cell
1742 Cell Reports 26, 1734–1746, February 12, 2019
firing in phase with CA3a cells during theta oscillations. In

contrast, at distal sectors, extra-hippocampal activity operates

maximally at SO and SLM to shift CA2 pyramidal cell firing to-

ward CA1. Proximodistal effects on CA2 oscillatory activity oper-

ate differently across states (awake, REM sleep, and urethane).

The depth of theta modulation increases toward distal CA2



under urethane, while slow and fast gamma influences are differ-

entially modulated during REM sleep. CA2 place cells exhibited

different selectivity along the proximodistal axis. Therefore,

the CA2 output dissociates proximodistally in the dorsal hippo-

campus of the rat.

The transverse axis is central to hippocampal function. Initially

identified in single CA3 pyramidal cells projecting to CA1

(Ishizuka et al., 1990; Li et al., 1994), a proximodistal topography

quickly emerged as a major organizational principle of intra-hip-

pocampal connectivity (Witter et al., 2000). Proximal CA3c cells

(near DG) project distally to CA1, whereas distal CA3a project

proximally. Analogous connectivity was identified for the CA1

projections to subiculum, where strong proximodistal gradients

support functional dissociation (Amaral and Witter, 1989; Cem-

browski et al., 2018). The medial and lateral entorhinal inputs

separate proximodistally in CA1 (Witter et al., 2000), and this is

reflected in the organization of place fields (sharper at proximal

CA1 and unspecific at distal CA1) (Henriksen et al., 2010). Similar

functional segregation is present at CA3 (Lu et al., 2015). Given

differences in recurrent connectivity (Ishizuka et al., 1990; Li

et al., 1994), the ability of the CA3 network to separate patterns

degrades toward CA3a, where more recurrent collaterals favor

pattern completion (Lee et al., 2015).

Using PCP4, a-Actinin2, and Wfs1 as cell-type-specific

markers, we found sharply organized variations of cellular

composition around the CA2 transitional region. CA3a and CA1

pyramidal cells interspersed distinctly in CA2 at the proximal

and distal sectors. Yet they all retain their different input prefer-

ences with intra- and extra-hippocampal inputs. The transcrip-

tion factor Sox5 showed a marked proximodistal expression

from CA3 to CA2, consistent with transcriptomic variability

among hippocampal cell types (Cembrowski et al., 2016). How-

ever, Sox5 also reflects proximodistal variabilities within CA2 py-

ramidal cells, with distal cells expressing lower levels of Sox5

compared with proximal cells and a sharp inflection gradient at

the point where MFs terminate. This is consistent with the idea

of distinct functionalities emerging from graded genetic varia-

tions (Cembrowski and Menon, 2018) and supports molecular

heterogeneity within CA2. Sox5 is not likely to characterize

CA2 cells specifically; rather, it appears to correlate with the

functional organization around the MF border. Inter-species dif-

ferences of CA2 may arise around this border as noted previ-

ously (Dudek et al., 2016).

Our electrophysiological data reveal that different proximo-

distal microcircuits determine functional properties within CA2

pyramidal cells as well. Distal CA2 cells receive stronger ento-

rhinal inputs and lower di-synaptic inhibition in response to

both CA3 and PP stimulation. We found that during sponta-

neous theta activity, the peak and reversal of membrane poten-

tial oscillations shifted in phase, consistent with different

phase-locking preferences at proximal and distal sectors.

Other report also noted different theta modulation in pyramidal

cells recorded around CA2 in mouse, but neurochemical confir-

mation was not available (Matsumoto et al., 2016). Three inde-

pendent analyses provided additional support to this functional

distribution along the transverse axis. First, somatic membrane

potential oscillations were more influenced by SLM and SO

theta currents in distal CA2 cells, whereas proximal cells
followed SR currents. Given the known layered organization

of entorhinal, septal, and supramammillary inputs at SLM and

SO (Joshi et al., 2017; Soussi et al., 2010), our data suggest

distal CA2 cells may be more biased toward extra-hippocampal

theta generators, while proximal CA2 cells may follow intra-hip-

pocampal influences (Buzsáki, 2002; Montgomery et al., 2009).

Proximodistal differences of I/E balance and distinctive plas-

ticity properties of different pathways may further contribute

(Dasgupta et al., 2017; Leroy et al., 2017; Nasrallah et al.,

2017; Piskorowski and Chevaleyre, 2013; Sun et al., 2017).

A second observation reinforced the idea of a proximodistal

distribution of CA2 function. Gamma activity, particularly slow

gamma (30–60 Hz), interfered largely with theta in proximal

cells, as confirmed in both subthreshold membrane potential

oscillations and neuronal firing. A confounding deep-superficial

trend interacted with proximodistal variations of feedforward in-

hibition, possibly reflecting diverse interneuronal connectivity

(Botcher et al., 2014; Mercer et al., 2012a, 2012b). These data

do not contradict previous findings of strong inhibition around

CA2 (Chevaleyre and Siegelbaum, 2010; Piskorowski and Che-

valeyre, 2013; Valero et al., 2015); they just support a proximo-

distal organization along the transverse axis, consistent with

other reports (Sun et al., 2017). Axons from bistratified CA2 inter-

neurons are shown to arborize distally, while SP-SR interneurons

innervate locally in proximal CA2 and CA3a (Mercer et al., 2012a,

2012b). All these complex interactions along the transverse axis,

together with volume-conduction effects, may contribute to

characteristic LFPs around CA2. While the gamma power

measured at SP consistently decreased, theta power exhibited

a strong in-homogeneity at the point where MF terminates. In

addition, parallel extracellular dipoles from interspersed CA3a

and CA1 pyramidal cells will contribute distinctly to LFP signals.

Possibly, MF inputs recruiting preferentially CA3 versus CA2

cells (Kohara et al., 2014; Sun et al., 2017) and SLM inputs doing

the opposite (Srinivas et al., 2017) will reinforce geometrical

asymmetries in the area. Ripples preceding the local sharp-

wave peak in proximal locations strengthen the idea of complex

local LFPs explained by microcircuit mechanisms (Oliva et al.,

2016b; Valero et al., 2015).

Finally, large-scale recording of pyramidal cells with high-den-

sity silicon probes confirmed relevant proximodistal trends

within CA2 in rats RUN in a linear maze and during subsequent

REM sleep. In this independent dataset (Oliva et al., 2016a,

2016b), we found distribution similar to that in urethane for the

preferred theta phase in the proximal and distal CA2 region dur-

ing RUN and REM sleep. These gamma modulatory influences

segregated during sleep, with proximal CA2 cells experiencing

stronger modulation by slow gamma and distal CA2 cells exhib-

iting stronger influences by fast gamma. Given the pathway de-

pendency of slow and fast theta-gamma coupling, this suggests

different control of spike timing of proximal and distal CA2 cells

by CA3a and entorhinal inputs (Fernández-Ruiz et al., 2017). The

opposite trends of firing cross-correlation between proximal and

distal CA2 cells with CA3a and CA1p, together with the more

spatial selectivity of distal CA2 cells, support this view.

Spatial and non-spatial memories, as well as the ability for

pattern separation, segregate along the transverse CA3-CA2

axis (Hunsaker et al., 2008; Lee et al., 2015; Nakamura et al.,
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2013). Place field similarity between contexts changes abruptly

200–250 mm from the CA2 border (Lu et al., 2015). This fits

perfectly with the proximal CA2 region, where PCP4+ cells fire

in phase with CA3a. At this border, oxytocin receptor signaling

plays a role in discriminating social stimuli (Raam et al., 2017).

Given recurrent interactions between CA3a and CA2 pyramidal

cells (Li et al., 1994; Wittner and Miles, 2007), a proximodistal

integration of social and contextual information may be respon-

sible for more flexible representations (DeVito et al., 2009;

Pagani et al., 2015; Raam et al., 2017; Wintzer et al., 2014). In

contrast, distal CA2 cells fired in phase with proximal CA1 pyra-

midal neurons and a lower I/E balance suggest different compu-

tational operations compared with the proximal sector (Guzman

et al., 2016; Sun et al., 2017). Our findings that distal CA2 cells

are more driven by entorhinal inputs and have stronger fast

gamma modulation than proximal cells suggest the circuit can

accommodate additional functionalities (Jones and McHugh,

2011; Valero and de la Prida, 2018). Social contexts can modify

spatial fields in CA2 (Alexander et al., 2016), possibly due to cell-

type-specific interactions (Kohara et al., 2014; Okuyama et al.,

2016).

In summary, we propose that CA2 operates along the proxi-

modistal axis, similar to other hippocampal regions, and that

this segregation is critical to better understanding its functional

role.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-calbindin D-28k Swant Swant CB-38; RRID:AB_10000340

Mouse anti-calbindin D-28k Swant Swant 300; RRID:AB_10000347

Mouse anti-NeuN Millipore Cat# MAB377; RRID:AB_2298772

Rabbit anti-Wfs1 Proteintech Cat# 11558-1-AP; RRID:AB_2216046

Mouse Anti-a-Actinin2 Sigma Cat#: A-7811; RRID: AB_476766

Rabbit anti-PCP4 Sigma Cat#: HPA5792; RRID: AB_1855086

Mouse anti-Sox5 In house (Figures S2C and S2D) N/A

Goat anti-rabbit Alexa Fluor633 IgG Invitrogen Cat# A21070; RRID:AB_2535731

Goat anti-mouse Rhodamine Red IgG Jackson Immunoresearch Cat# 115-295-003; RRID:AB_2338756

Alexa Fluor488-conjugated streptavidin Jackson Immunoresearch Cat# 016-540-084; RRID:AB_2337249

Bacterial and Virus Strains

AAV5-CaMKIIa-hChR2(H134)-EYFP University of North Caroline (UNC

Vector Core)

N/A

Chemicals, Peptides, and Recombinant Proteins

Bisbenzimide H33258 Sigma-Aldrich Cat# B2883; CAS: 23491-45-4

Neurobiotin tracer Vector Labs Cat# SP-1120

Experimental Models: Organisms/Strains

Rat: Wistar Instituto Cajal Animal facility N/A

Rat: VGAT-VenusA National Bioresource Project Japan.

University of Kyoto

Cat#: 0554

Mouse: C57BL/6 Instituto Cajal Animal facility N/A

Software and Algorithms

MATLAB 2016b Mathworks https://www.mathworks.com

Ethovision v1.90 Noldus http://www.noldus.com/animal-behavior-

research/

ImageJ NIH Image https://imagej.net/ImageJ

Recording software Molecular devices ClampFit

MiniAnalysis Software v5 Synaptosoft http://www.synaptosoft.com/MiniAnalysis/

NeuroExplorer v4.135 Nex Technologies http://www.neuroexplorer.com/

Other

Silicon probes: 16-channel linear; 100 mm

inter-spacing; 413 mm2 electrode area

Neuronexus A1x16-5mm-100-413

Silicon probes: 32-channel 2x16 linear;

100 mm inter-spacing; 413 mm2 electrode

area; 200 mm inter-shank

Neuronexus A2x16-10mm-200-413

Silicon probes: Prida 16ch-comb; 413 mm2

electrode area; 100 mm inter-shank

Neuronexus A16x1-5mm-100-413

Tapered optic fibers Optogenix Lambda-B
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents and resources should be directed to and will be fulfilled by the Lead Contact, Dr. Liset

M. de la Prida (lmprida@cajal.csic.es).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All protocols and procedures were performed according to the Spanish legislation (R.D. 1201/2005 and L.32/2007), the European

Communities Council Directives of 1986 (86/609/EEC) and 2003 (2003/65/CE) for animal research, and were approved by the Ethics

Committee of the Instituto Cajal (CSIC). Animals included in this study were not involved in any previous procedure, except for

re-analysis of the large-scale datasets reported in Figure 6, which were published before (Oliva et al., 2016a, 2016b).

A total of 63 adult (150 –200 g) and 20 juvenile (50-70 g) male and female rats were used (both wild-type and VGAT-VenusA trans-

genicWistar rats (Uematsu et al., 2008). For in vivo electrophysiological experiments, 10wild-type adult rats both sexeswere used for

head-fixed recordings and 30 for urethane anesthetized experiments. For in vitro studies, 14 wild-type and 2 VGAT-VenusA juvenile

rats were used. For histological studies, 6 VGAT-VenusA transgenic rats were used. For optogenetic experiments, we used 4 wild-

type adult rats injected with AAV5-CamKII-ChR2. For behavioral assays, 2 wild-type and 11 VGAT-VenusA male rats were used. All

rats were maintained in the animal facility of the Instituto Cajal, with water and food ad libitum in a 12 h light-dark cycle (7am to 7pm).

In addition, we used 5 wild-type C57BL/6 mice and 1 Nestin-Cre/Sox5fl/fl transgenic mouse for histological studies

METHOD DETAILS

Juxtacellular and LFP recordings in head-fixed rats
Rats were first implanted with fixation bars under isoflurane anesthesia (1.5%–2%) in oxygen (30%)while continuously monitored with

an oximeter (MouseOx; Starr Life Sciences). After surgery, animals were habituated to head-fixed procedures (2-3 weeks habituation).

The apparatus consisted in a cylindrical treadmill (40 cm diameter) adapted to a perforated table with a Narishige stereotaxic frame.

The cylinder axlewas equippedwith a sensor to estimate speed and distance traveled analogically. The systemwas coupled to awater

delivery pump controlled by a custom-madeArduino system. Animals learnt to run freely in the cylinder for water reward. After a couple

of weeks of training, rats were able to stay confortable in the system for up to 2 hours with periods of RUN, immobility and sleep.

Once habituated to the apparatus, animalswere anesthetized againwith isoflurane to performacraniotomy for electrophysiological

recordings and stimulation (AP:�3.9 to�6mm from Bregma; ML: 2-5 mm). A subcutaneous Ag/AgCl wire in the neck was implanted

as reference and a bone screw served as ground. The craniotomywas sealedwith sterile vaselyne and animals returned to their home

cage. The day after, a bipolar tungsten wire was advanced to target CA3 while recording simultaneously from the contralateral CA1

with 16-ch silicon probes (NeuroNexus; 0.3–1.2Mohm site impedance; 100 mm resolution; 177-413 mm2 electrode area) at the contra-

lateral CA1. Once the stimulation position was adjusted, the electrode was cemented and the craniotomy sealed again with vaselyne.

The day after (2 days after surgery for craniotomy) single-cell and LFP recordings started.

For LFP recordings of CA2, we used either a 32-ch silicon probe consisting in 2 shanks of 16-channels linear arrays each separated

200 mm or single 16-channels linear arrays (100 mm resolution; 413 mm2 electrode area). The angle of approach varies depending on

alignment requirementswith respect to thehippocampal curvature (typically from0 to 30�). Penetrationswereguidedbycharacteristic

response to cCA3 stimulation (Figure 1A; Figure S1). Then, single-cell recordings followed by juxtacellular labeling for post hoc immu-

nohistochemical identification were obtained in combination with LFP. For juxtacellular recordings, a glass pipette (1.0mmx 0.58mm,

ref 601000; A-MSystems) was filledwith 1.5%–2.5%Neurobiotin in 0.5MNaCl (impedance 8-15MU). LFP signalswere pre-amplified

(4x gain) and recorded with a 32-channel AC amplifier (100x, Multichannel Systems) with analog filters (1Hz-5 kHz). Juxtacellular

signals were acquired with an intracellular amplifier (Axoclamp 2B; Axon Instruments) at 100x gain. Single-cell and simultaneous

LFP recordings were sampled at 20 kHz/channel with 12 bits precision (Digidata 1440; Molecular Devices).

After recording, cells were modulated using the juxtacellular labeling technique with positive current pulses (500-600 ms on-off

pulses; 5-18 nA) while monitoring their response, as described before (Valero et al., 2015). One hour after, rats were perfused

with 4% paraformaldehyde and the brain cut in 70 mm coronal sections. Labeled cells were identified using streptavidin-conjugated

fluorophores and submitted to immunostaining studies. Only unambiguously identified cells are reported (3 cells were clearly iden-

tified out of 10 recorded cells).

Intracellular and LFP recordings under urethane
Rats were anesthetized (urethane 1.2 g/kg, i.p.), fastened to the stereotaxic frame and kept warmed (37� body temperature). Bilateral

craniotomies were performed for stimulation (cCA3 at AP: �1.2 mm, ML: 2.9 mm; ipsilateral PP at AP: �7 mm; ML: 3.5 mm), and a

window was drilled above the right hippocampus for recordings (AP: �3.7 mm; ML: 3 mm). The dura was gently removed and the

cisterna magna opened and drained.

LFP recordings were guided by extracellular stimulation and electrophysiological hallmarks to target either CA1 or CA2 region

(Figure S1). LFP signals were acquired as described before. Concentric bipolar electrodes were advanced 3.5 mm with 30� in the

coronal plane to stimulate CA3 or 3 mm vertically to stimulate PP. Stimulation consisted of biphasic square pulses (0.2 ms duration,

0.05-1.2 mA every 5 s). A subcutaneous Ag/AgCl wire in the neck served as reference. Recording and stimulus position was

confirmed by post hoc histological analysis.

For intracellular recording and labeling in current-clamp mode, sharp pipettes (1.5 mm/0.86 mm outer/inner diameter borosilicate

glass; A-M Systems, Inc) were filled with 1.5 M potassium acetate and 2% Neurobiotin (Vector Labs, Inc; impedances: 50-100 MU).

Signals were acquired with an intracellular amplifier (Axoclamp 900A, 100x gain). Before recordings started, the craniotomy was
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covered by 3% agar to improve stability. The resting potential, input resistance and amplitude of action potentials was monitored all

over experiments. After data collection, Neurobiotin was ejected using 500 ms depolarizing pulses at 0.5-2 nA at 1 Hz for 10-45 min.

Rats were perfused with 4% paraformaldehyde and the brain cut in 70 mm coronal sections for posterior histological studies.

In vitro electrophysiology
Juvenile wild-type and VGAT-VenusA transgenic Wistar rats were used to prepare hippocampal slices, when PCP4 was already ex-

pressed (San Antonio et al., 2014). Animals were anesthetized with pentobarbital, intracardially perfused with cold 95%O2 - 5%CO2

artificial cerebrospinal fluid (ACSF; see below) and decapitated using approved procedures. Sagittal slices (400 mm) were prepared

from the dorsal level of the hippocampus at 2-4mm frommidline using a Leica vibratome (Leica VT1200S). Slices were cut in a slicing

ACSF whose composition was (in mM): 70 Sucrose, 86 NaCl, 2.5 KCl, 26 NaHCO3, 1 NaH2PO4, 0.5 CaCl2, 7 MgCl2, 25 glucose, pH

7.3 when balanced with 95%O2 - 5%CO2. After 15min at 32�C, slices were transferred to a submerged holding chamber for at least

1hr at room temperature (RT) bathed with recording ACSF containing (in mM): 125 NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 2.5

CaCl2, 1.3 MgCl2, 10 glucose, pH 7.3 when balanced with 95% O2 - 5% CO2.

For recording, slices were transferred to a submerged chamber continuously perfused with recording ACSF (2.5-3 ml/min) using a

peristaltic pump (Gilson) and oxygen-impermeable Tygon tubes. Somatic patch-clamp recordings were obtained from neurons

around the CA2 region under visual control with an upright microscope (BX51W, 60x lens; Olympus) at 32�C. Patch pipettes (pulled

from borosilicate glass capillaries; World Precision Instruments, WPI) were filled with (in mM): 40 Cs-gluconate, 90 K-gluconate, 3

KCl, 1.5 NaCl, 1 MgCl2, 1 EGTA, 10 HEPES, 2 K2ATP, 0.3 NaGTP, 10 mM phosphocreatine and 0.1% Alexa568, pH 7.3 adjusted

with KOH (osmolarity �300 mOsm). Electrodes filled with this solution had resistances of �4-6 MU.

Bipolar stimulating electrodes (tungsten wires, 0.5 mm separation, 0.5 MU, WPI) were positioned under visual control at the SP

layer of CA3c/b or at the SLM layer of CA2. Extracellular field potentials were recorded with a patch-clamp pipette filled with

ACSF coupled to one-channel AC amplifier (DAM-80; WPI). Stimulation intensity was adjusted homogenously between slices so

that extracellular field potentials recorded at the CA1 or CA3 SR exhibited comparable responses (field EPSPs of 50-200 mV for

390-530 mA). In a subset of experiments, MF were stimulated at the tip of the upper DG blade, known to project to the CA3a-CA2

border specifically.

Whole-cell patch recordings were obtained in current- and voltage-clamp modes with an Axoclamp 2B and digitized at 20 kHz

(Digidata 1440A; Molecular Devices). Pyramidal cells had stable resting potentials of at least �50 mV and access resistances lower

than 25 MU. Capacitance compensation and bridge balance were performed for current-clamp recordings. The junction potential

was not corrected. Thirty minutes after experiments, slices were fixed in 4% paraformaldehyde for histological studies.

Tissue processing and inmunohistochemistry
After completing experiments, animals were perfused with 4% paraformaldehyde and 15% saturated picric acid in 0.1 M, pH 7.4

phosphate buffered saline (PBS). Brains were postfixed overnight, washed in PBS and serially cut in 70 mm coronal sections (Leica

VT 1000S vibratome). Sections containing the stimulus and probe tracks were identified with a stereomicroscope (S8APO, Leica).

Sections containing Neurobiotin-labeled cells were localized by incubation in 1:400 Alexa Fluor488-conjugated streptavidin (Jackson

ImmunoResearch 016-540-084) with 0.5% Triton X-100 in PBS (PBS-Tx) for 2 hours at RT. Slices recorded in vitro containing

Alexa568 filled cells were fixed for 30 min, washed in PBS and processed similarly to others.

Sections containing the somata of recorded cells were treated with Triton 0.5% and 10% fetal bovine serum (FBS) in PBS. After

washing, they were incubated overnight at RT with the primary antibody solution containing rabbit anti-calbindin (1:1000, CB D-28k,

Swant CB-38), ormouse anti-calbindin (1:1000, CBD-28k, Swant 300) with 1%FBS in PBS-Tx to identify theMF. CB immunostaining

was complemented with Wfs1 to identify CA1 pyramidal cells (1:1000, Proteintech 11558). For identifying the CA2 region, we used

either rabbit anti-PCP4 (1:100, SigmaHPA005792) ormouse anti-a-Actinin2 (1:500;1:1000; Sigma A7811). CA3 pyramidal cells nega-

tive to Wfs1 and PCP4 were further examined for thorny excrescences. For Sox5 immunostaining we used an in-house developed

polyclonal antibody (1:500; Figure S2D; Quiroga et al., 2015). After three washes in PBS-Tx, sectionswere incubated for 2 hours at RT

with secondary antibodies: goat anti-rabbit Alexa Fluor633 (1:500, Invitrogen, A21070), and goat anti-mouse Alexa Fluor488

(Jackson Immunoresearch 115-545-003) or goat anti-mouse Rhodamine Red (1:200, Jackson ImmunoResearch, 115-295-003) in

PBS-Tx-1%FBS. Following 10min incubation with bisbenzimideH33258 (1:10000 in PBS, Sigma, B2883) for labeling nuclei, sections

were washed and mounted on glass slides in Mowiol (17% polyvinyl alcohol 4-88, 33% glycerin and 2% thimerosal in PBS).

Multichannel fluorescence stacks were acquired with a confocal microscope (Leica SP5; LAS AF software v2.6.0) and the following

channels (fluorophore, laser and excitation wavelength, emission spectral filter) were used: a) bisbenzimide, Diode 405 nm,

415–485 nm; b) Alexa Fluor488, Argon 488 nm, 499–535 nm; c) Rhodamine Red / Alexa Fluor568 / Texas Red, DPSS 561nm,

571–620 nm; d) Alexa Fluor633, HeNe 633 nm, 652–738 nm; and objectives HC PL APOCS 10.0x0.40 DRY UV, HCX PL APO lambda

blue 20.0x0.70 IMM UV, HCX PL APO CS 40.0x1.25 OIL UV and HCX PL APO 63x IMM OIL. For illustration purposes, false colors

were used.

All morphological analyses were performed blindly to electrophysiological data. The distance from the cell soma to the MF limit

(taken as 0) or the cell position within SP (the superficial border taken at 0) was measured from confocal images using information

from CB and bisbenzimide staining and the ImageJ software (NIH Image). The proximodistal distance to MF was measured along

the linear SP contour.
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Analysis of Sox5 expression
Immunohistochemical expression of Sox5 was analyzed both at the regional and single-cell levels. For regional analysis, Sox5 inten-

sity was calculated from closed contours of 130 mm length delineated around the SP from the MF limits in the proximal and distal

direction (mean of 2 confocal sections at 40x). Mean intensity was subtracted and normalized by the mean background signal taken

from similar regions at SO, SR and SLM. Normalized intensity is represented as % (0% = background). Information from a-Actinin2

expression was used to identify CA2. Regional data from n = 5 sections from 4 rats was represented as a function of the distance to

the MF border.

For single-cell analysis, the nucleus of a-Actinin2+ cells was delineated using bisbenzimide signal in one confocal optical section

(7 sections from 4 rats). Only cells with the equator of their nuclei lying on the confocal plane were counted. For each cell, the distance

to MF limit was measured. The mean Sox5 intensity per cell was calculated and normalized as before. Data was plotted as a function

of the cell distance toMF. To evaluate expression trends, a Pearson correlation R-indexwas estimated for proximal and distal sectors

separately in each section. The mean single-cell normalized intensity level was evaluated for proximal and distal a-Actinin2+ cells

separately.

Optogenetics
To validate CA2 responses to electrical PP stimulation, we injected 2 wild-type Wistar rats with an adeno-associated virus (AAV5)

carrying ChR2 under the control of CaMKII (AAV5-CamKII-ChR2) in the medial entorhinal cortex (Karl Deisseroth, UNC Vector

Core). For stereotaxic surgery, rats were anesthetized with isoflurane (1.5%–2%) in oxygen (30%). Injections of 1ml at AP �9 mm

and ML 5 mm (DV 4 mm) were made unilaterally to the site of recording (titer 4.6 1012 vg/ml). Rats recovered for 2-4 weeks to allow

for adequately expression. For in vivo optogenetic experiments (n = 2 rats), light was delivered from a solid state blue laser (MBL-F-

473, 300 mWmaximal fiber output, CNI Laser, China) with Neuronexus opto-probes (flat optic fiber of 105 mm diameter mounted on

16-ch linear arrays) located stereoataxically at the angular bundle. LFP signals were recorded simultaneously from CA2 and CA1

layers with an independent probe. Laser stimulation ranged from 3-15 mW for short pulses of 2-5 ms. After experiments, animals

were perfused with 4% paraformaldehyde and sagittal sections (70 mm) were obtained to validate infection. In vivo experiments

(n = 2 rats), were performed similarly using an edged optical fiber (Optogenix; Italy). For in vitro experiments we used 16-channel

silicon combs from Neuronexus (Prida design; interspaced 100 mm).

Analysis of LFP signals
Analysis of electrophysiological in vivo data was performed using routines written in MATLAB 7.10 (MathWorks). Multi-site LFPs from

different layers were identified using characteristic physiological events, including sharp-wave ripples (to identify SR and SP) and

maximal theta oscillations (for SLM). Characteristic evoked responses to contralateral CA3 and ipsilateral PP simulation were

used to identify CA2 penetrations (Figure S1). One-dimensional current-source density (CSD) signals were calculated from the sec-

ond spatial derivative of laminar LFPs (100 mm resolution). Smoothing was applied to CSD signals for visualization purposes only.

Tissue conductivity was considered isotropic, and an arbitrary value of 1 was assigned to express CSD signal as mV/mm2. In trying

to handle with issues arising from the complex hippocampal geometry around CA2, we limited our intracellular-CSD analysis to pen-

etrations going through distal CA2 (see Figure 4A inset). To avoid the CSD phase-reversal zone at the SR-SLM border, we chose SR

sites at 100-200 mm from SP.

The power spectrum of LFP signals was estimated using the Fast Fourier transform (FFT). For theta activity, non-overlapping seg-

ments of continuous oscillations in the 4-12 Hz band were identified in LFP signals from SLM. The contribution of theta (4-12 Hz) and

gamma (30-90 Hz) activity was evaluated from the spectral area at each oscillatory band using data from recording sites at SO, SP,

SR and SLM. Gamma activity was separated in the lower (30-60 Hz) and high (60-90Hz) bands. We confirmed similar trends using

detrended spectra. The location of probe penetrations along the SP was evaluated by estimating the linear distance to MF. Multiple

probe penetrations were made per rat (typically 2 to 4). To reconstruct probe tracks reliably, relative stereotaxic coordinates and

experimental history were documented.

For sharp-wave ripples, LFP recordings fromSRwere low-pass filtered at 100Hz to identify sharp-waves and signals fromSPwere

bandpass filtered between 100-600Hz to identify ripples.We used forward-backward-zero-phase finite impulse response (FIR) filters

of order 512 to preserve temporal relationships. For sharp-waves, filtered signals were smoothed (Gaussian kernel) and events de-

tected by thresholding of > 3 SDs. For ripples, bandpass-filtered signals were smoothed (Savitzky-Golay) and events detected by

thresholding of > 2 SDs. All pairs of detected events were visually confirmed. Time-frequency analysis of sharp-wave ripples was

performed by applying multitaper spectral estimation in sliding windows with 97.7% overlap and frequency resolution of 10 Hz in

the 90-600 Hz frequency range (only the 100-600 Hz range is shown) to data sweeps aligned by sharp-waves (±1sec). The time dif-

ference between the sharp-wave peak and the maximal ripple power was estimated and plotted as a function of the probe position

with respect to MF.

Analysis of intracellular recordings
Passive electrophysiological properties (input resistance, membrane decay and capacitance) of neurons recorded intracellularly

in vivo were measured using 500 ms currents step in current-clamp mode. Cells with intracellular action potential amplitude smaller

than 40 mV were excluded. RMP and input resistance were estimated by linear regression between baseline potential data and the
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associated holding current. Intrinsic firing properties, including action potential threshold, half-width duration and AHP were esti-

mated from the first spike in response to depolarizing current pulses of 0.2 nA amplitude and 500 ms duration. The sag and maximal

firing rate was calculated from current pulses of ± 0.3 nA amplitude. A bursting index was defined as the ratio of the number of com-

plex spikes (minimum of 3 spikes < 8ms inter-spike interval) over the total number of spikes recorded during theta activity.

The power spectrum of intracellular membrane potential oscillations was calculated with FFT methods similar to LFP signals for

different holding potentials. The contribution of theta (4-12 Hz) and gamma (30-90 Hz) bands was evaluated from the spectral ampli-

tude of the FFT. We found comparable results by using the area below detrended power spectra. Pairwise theta coherence between

the intracellular membrane potential and LFP or CSD signals was defined from the cross-spectral power densities at the peak fre-

quency in the 4–12 Hz range at 1Hz resolution.

Phase-locking firing of single cells was measured from each spike using the Hilbert phase of theta peaks recorded at SLM. Each

theta cycle was divided into 25 bins. Phase locking was quantified using the mean vector length (MVL) of phase distribution from 0 to

1. We also used a pairwise phase consistency measure (PPC) suitable for evaluating modulation of relatively small number of spikes

(Vinck et al., 2012). The SLM theta trough was set at 0 and peaks at ± pi (or 180�). To establish links with previous data, we also

estimated the corresponding theta peak at SP which exhibited a shift of �1.6 radians respect to the SLM trough due to theta

wave asymmetries. To the purpose of this paper, this shift was not considered. Gamma modulation was evaluated similarly for

LFP oscillations in the full gamma band (30-90 Hz) or in the slow (30-60Hz) and high (60-90 Hz) bands separately.

To evaluate theta rhythmicity of single-cell firing, we estimated the power spectrum of the autocorrelogram built at ± 0.5 s windows

(1 ms bin size). A theta autocorrelation index was defined from the normalized area in the 4–12 Hz band. For visualization purposes,

45 bins were used to build autocorrelograms.

Analysis of juxtacellularly labeled cells
For juxtacellularly labeled cells, signals from glass pipettes were high-pass filtered at 300 Hz to detect positive spikes from the jux-

tacellular recorded cell (> 8 SD). Simultaneous LFP signals at SLM and SP were processed similarly than for intracellular recordings.

Interspike interval autocorrelograms (0.5 ms bins) were constructed using all detected spikes. The stability of the action potential

waveform (peak-to-peak duration and amplitude as well as a spike asymmetry index defined as the ratio of the difference between

the negative and positive baseline-to-peak amplitudes and their sum) was evaluated over the entire recording session (> 3 min),

before juxtacellular electroporation. Baseline firing rate was stable for small movements of the pipette toward the cell, excluding me-

chanical interferences. Phase-locking firing was evaluated similar as described for intracellular data.

Analysis of large-scale recordings of pyramidal cells during RUN and sleep
To test for functional proximodistal effects in large-scale simultaneous recordings of pyramidal cells from CA3, CA2 and CA1 regions

we re-examined data by Oliva et al. (2016a, 2016b). This dataset comprised a total of 688 well isolated CA2 pyramidal cells recorded

from 6 rats during spatial navigation in a linear maze and subsequent rapid-eye-movement (REM) sleep. Penetrations through CA2

was confirmed histologically and organized from proximal to distal positions (Figure 6A; Oliva et al., 2016b) and data organized as

proximal (n = 387 pyramidal cells from 3 rats) and distal (n = 301 cells from 3 rats). In addition, parallel silicon shanks allowed isolation

of 262 pyramidal cells from CA3a and 389 cells from the proximal CA1 region. Phase-locking firing to theta and gamma was

analyzed as before using the SLM channel at CA1 as reference and quantified using the MVL. The SLM theta peak was set at

0 and troughs at ± pi (or 180�). Cross-correlation analysis was applied to quantify the degree of firing synchrony between CA3a,

CA2 and CA1. To this purpose, the cross-correlation function was computed from the pyramidal cell population vector from each

region in each rat separately in a window interval of ± 150ms. The spatial position of the rat during behavioral sessions allowed

for examination of place field coding. Position and spiking data were binned in 5 cm pixels (Oliva et al., 2016a). A place field was

defined as a continuous region (> 15 cm) with firing rate exceeding 10% of rate peak of > 2Hz and spatial coherence > 0.7 for cells

with more than 50 spikes. Place cells were defined independent on direction in the linear maze. Place fields at the turning position in

the trackwere not included in the analysis. Spatial information selectivity and sparsity were calculated using smoothedmaps of spike

and occupancy (Gaussian kernel of 5 cm).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performedwithMATLAB. No statistical methodwas used to predetermine sample sizes, whichwere similar to

those reported in similar reports (Valero et al., 2015). Normality and homoscedasticity were evaluated with the Kolmogorov–Smirnov

and Levene’s tests, respectively. The exact number of replications for each experiment is detailed in text and figures.

One-way ANOVAs or Kruskal-Wallis tests were applied for cell-types or regions. Post hoc comparisons were evaluated with

either the Tukey-Kramer or Wilcoxon tests. Proximodistal and deep-superficial trends were evaluated with the Pearson product-

moment correlation coefficient, which was tested against 0 (i.e., no correlation was the null hypothesis) at p < 0.05 (two sided).

Both the Pearson coefficient and p value are reported to facilitate interpretation.

To account for mixed statistical effects onmeasurements of interest, a generalized linear model (GLM) was implemented as a linear

combination of the following variables: cell-type, distance to MF and distance within SP. The impact of each variable in the GLM
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model was then tested with ANOVA and the p value reported after Tukey-Kramer posthoc correction. Variables having a significant

impact in explaining the measurement of interest show p values < 0.05.

DATA AND SOFTWARE AVAILABILITY

Freely available software and algorithms used for analysis are listed in the Key Resources Table. Some analyses were specifically

designed for the purpose of this paper using routines written in MATLAB 7.10 (MathWorks). All custom scripts and data contained

in this manuscript are available upon request from the Lead Contact.
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Figure S1. Electrophysiological features around CA2. Related to Figure 1.  

(A) The CA2 region was targeted in vivo guided by spontaneous LFP signals and characteristic 

responses to stimulation of both the contralateral CA3 (cCA3) and perforant pathway (PP). The probe 

position was histologically validated after experiments. In a subset of animals, we used optogenetics to 

validate CA2 responses to PP stimulation. To this purpose, rats were injected with AAV5-CaMKII-

ChR2 in the medial entorhinal cortex 3 weeks before experiments.   

(B) In the SP of CA2, cCA3 stimulation elicited an antidromic spike (black arrowhead) followed by an 

orthodromic spike of variable amplitude (open arrowhead). PP electrical stimulation evoked a clear 

synaptic event typically associated to a small orthodromic response. These two characteristics aided 

us in targeting CA2 precisely. Optogenetic stimulation of entorhinal inputs elicited similar synaptic 

responses in CA2 than PP electrical stimulation, but the orthodromic spike was less reliably elicited. 

Current source density (CSD) signals are shown below traces. Note similar CSD sinks at SLM after 

electrical and optical stimulation of entorhinal terminals. All data from the same rat.  

(C) Histological validation of the experiment shown in B. The CA2 region was identified with 

immunostaining for PCP4. Note the probe track indicated (discontinuous line and arrowhead). ChR2 

was expressed both in layers II and III of the entorhinal cortex, but only ECII stellate cell terminals 

project to CA2.   

(D) In vitro recordings to validate CA2 responses to SLM stimulation in one rat injected with AAV5-

CaMKII-ChR2 in the medial entorhinal cortex. A 16-channel silicon comb was used to record laminar 

signals. The CSD profile is shown at bottom. Note similar CSD responses to electrical and optical 

stimulation of the entorhinal terminals at SLM.  

(E) Individual spectral area of the theta (3-12 Hz) and gamma bands (30-90 Hz) plotted as a function 

of electrode distance to MF as measured in head-fixed conditions. Data from n=12 recordings from 

n=5 drug-free rats.  

(F) Same for data obtained under urethane (52 recording locations from n=30 urethane anesthetized 

rats).  

(G) Delay between the ripple and SPW peaks as a function of recording location. Data from n=13 

recordings from n=5 drug-free rats.  

(H) Same for data obtained under urethane (52 recording locations from n=30 urethane anesthetized 

rats)  



 

 

Figure S2. Proximodistal heterogeneity around CA2. Related to Figure 2.  

(A) Double immunostaining against -Actinin2 and PCP4 as evaluated in coronal sections from VGAT-

VenusA transgenic rats. -Actinin2 and PCP4 co-localized in CA2 pyramidal cells. Note some PCP4+ 
cells dispersed in CA3a (enlarged box shown at right). Bottom images show details of a PCP4+ and a 

PCP4- cell from CA3a that differ in their intensity of -Actinin2 signal.  

(B) Co-localization between -Actinin2 and PCP4 in the CA2 region (one confocal optical section from 
a VGAT-VenusA rat).  
(C) Immunohistochemical expression of Sox5 in a representative section from an adult mouse (one 

confocal section) co-localized with -Actinin2 and PCP4. In mouse -Actinin2 is mildly expressed at 
the somata.  
(D) Validation of the rabbit Sox5 polyclonal antibody tested in a brain coronal section from a Nestin-
cre/Sox5fl/fl mutant mouse.  
(E) Quantitative regional RNAseq data from Hipposeq (Cembrowski et al., 2016).  
(F) Co-localization between PCP4 and Sox5 in rat.  
  



 

 

Table S1. Intrinsic properties of single cells recorded in vivo. Related to Figure 2. 

 

 
PCP4-/Thorn 

n=5 
PCP4+ 
n=10 

Wfs1+ 
n=9 

GLM (P-value) 

Cell-type 
Distance 

to MF 
Distance 

to SR 
All factors 

Resting 
potential (mV) 

-59.7 ± 3.4 -58.7 ± 4.2 -60.5 ± 5.9 0.7124 0.2373 0.9689 0.4855 

Input resistance 

(M) 
20.1 ± 11.1 20.4 ± 9.5 36.3 ± 16.2 0.0249 0.0185 0.2510 0.0246 

Membrane time 
constant (ms) 

8.9 ± 4.2 6.6 ± 5.5 10.9 ± 3.8 0.1782 0.2214 0.4262 0.2859 

Sag amplitude  
@-0.3nA (mV) 

0.59 ± 0.27 1.08 ± 0.51 1.08 ± 0.47 0.1327 0.0421 0.2430 0.0494 

Max firing rate 
@0.3nA (Hz) 

5.7 ± 2.4 7.8 ± 4.1 20.4 ± 10.1 0.0006 0.0006 0.8055 0.0021 

Firing rate adapt 
@0.3nA  

0.52 ± 0.08 0.63 ± 0.02 0.65 ± 0.04 0.0018 0.0205 0.5592 0.0514 

Bursting Index  0.10 ± 0.20 0.08 ± 0.18 0.046 ± 0.09 0.7902 
 

0.4792 
 

0.6983 0.6870 

AP threshold 
(mV) 
 

-53.5 ± 4.2 -49.5 ± 3.2 -48.1 ± 4.4 0.0632 0.0520 0.5128 0.1360 

AP half-width 
(ms) 
 

0.94 ± 0.13 0.93 ± 0.14 0.95 ± 0.16 0.9310 0.9362 0.8130 0.9706 

AHP amp (mV) 
 

2.9 ± 1.5 3.4 ± 1.6 5.4 ± 1.8 0.0182 0.0106 0.1959 
 

0.0254 
 

 

 

 

 

 

 

 

 

 



 

 

Figure S3. Phase locked firing of morphologically identified single cells. Related to Figure 3.  

(A) Modulation strength calculated from the PPC index. 
(B) Distribution of the PPC modulation strength as a function of the cell distance within SP. Note 
strong deep-superficial trends for gamma activity within the CA2 and CA1 subgroups, and for all grups 
together. The SP border with SP is at 0 (superficial).  
(C) Modulation strength during slow and fast gamma activities as a function of the deep-superficial 
location of recorded cells. 
  



 

Table S2. Theta and gamma modulation of single cells recorded in vivo. Related to Figure 3 

All cells in the database  

 
PCP4-/Thorny 

n=5 
PCP4+ 
n=10 

Wfs1+ 
n=9 

GLM (P-value) 

Cell-type Dist to 
MF 

Dist to 
SR 

All 
factors 

Theta 
autocorrelation 
index 

0.38 ± 0.03 0.38 ± 0.07 0.36 ± 0.05 0.4785 0.11611 0.00328 0.00756 

 
Theta index 
(MVL) 

0.17 ± 0.13 0.29 ± 0.16 0.45 ± 0.27 0.0201 0.01528 0.27042 0.02176 

 
Gamma index 
(MVL) 

0.30 ± 0.09 0.24 ± 0.13 0.18 ± 0.09 0.2708 0.04298 0.00761 0.00313 

 
Theta phase 
(rad) 

1.80 ± 0.91 0.45 ± 1.07 -2.56 ± 0.72 <0.0001 <0.0001 0.0389 <0.0001 

 
Gamma phase 
(rad) 

3.09 ± 0.53 2.76 ± 1.03 2.74 ± 1.01 
 

0.8737 
 

0.6495 
 

0.1145 
 

0.2266 

 
Theta phase 
(deg) 

103.3 ± 52.2 140.2 ± 61.2 -126.9 ±  1.03 <0.0001 <0.0001 0.0389 <0.0001 

 
Gamma phase 
(deg) 

177.4 ± 30.5 158.4 ± 58.6 157.1 ± 57.9 
 

0.8737 
 

0.6495 
 

0.1145 
 

0.2266 

 
Theta index 
(PPC) 
 

0.04 ± 0.06 0.16 ± 0.18 0.25 ± 0.21 0.1477 0.04250 0.18519 0.04060 

 
Gamma index 
(PPC) 
 

0.091 ± 0.026 0.067 ± 0.075 0.0108 ± 0.009 0.0265 <0.0001 <0.0001 <0.0001 

Only cells recorded against CA1 LFP 

 PCP4-/Thorny 
n=4 

PCP4+ 
n=5 

Wfs1+ 
n=8 

Cell-type Dist to 
MF 

Dist to 
SR 

All 
factors 

Theta 
autocorrelation 
index 

0.38 ± 0.03 0.41 ± 0.08 0.35 ± 0.05 
 

0.3223 
 

0.1767 
 

0.0413 
 

0.0681 

 
Theta index 
(MVL) 

0.16 ± 0.15 0.28 ± 0.19 0.41 ± 0.26 
 

0.2109 
 

0.0383 
 

0.1391 
 

0.0373 

 
Gamma index 
(MVL) 

0.30 ± 0.06 0.25 ± 0.16 0.19 ± 0.09 
 

0.2516 
 

0.0506 
 

0.0017 
 

0.0016 

 
Theta phase 
(rad) 

2.07 ± 0.95 1.89 ± 1.06 -2.76 ± 0.75 <0.0001 <0.0001 0.0664 <0.0001 

 
Gamma phase 
(rad) 

-3.08 ± 0.56 2.76 ± 0.74 2.56 ± 1.04 
 

0.4633 
 

0.4222 
 

0.0669 
 

0.1196 

 
Theta phase 
(deg) 

118.6 ± 54.6 108.6 ± 60.9 -150.3 ±  42.8 <0.0001 <0.0001 0.0664 <0.0001 

 
Gamma phase 
(deg) 

-176.9 ± 32.3 158.2 ± 42.3 147.1 ± 59.5 
 

0.4633 
 

0.4222 
 

0.0669 
 

0.1196 

 
Theta index 
(PPC) 
 

0.04 ± 0.06 0.11 ± 0.13 0.21 ± 0.19 0.2108 0.0345 0.2350 0.0480 

 
Gamma index 
(PPC) 
 

0.093 ± 0.034 0.081 ± 0.096 -0.005 ± 0.038 0.0237 <0.0001 <0.0001 <0.0001 

 

 

 



 

Figure S4. Effect of cell dialysis on immunoreactivity to PCP4. Related to Figure 5.  

(A) Significant difference of recording duration of PCP4+ cells versus cells with non-confirmed 
immunoreactivity suggest dialyzing of cytoplasmic content is a major factor against neurochemical 
confirmation of CA2 cells with whole-cell patch recordings in vitro. Data from n=7 not confirmed cells, 
n=4 PCP4+ CA2 pyramidal cells. Results from a Student t-test are shown at bottom.  
(B) Significant difference of access resistance through the patch pipette in PCP4+ cells versus cells 
with non-confirmed immunoreactivity.  
  



 

 

Figure S5. Synaptic activity of CA2 pyramidal cells recorded in vitro. Related to Figure 5.  

(A) Relationship between the amplitude of the CA3-evoked EPSCs and paired-pulse ration (PPR) with 
the distance to MF. Cells without thorny excrescences and not confirmed with PCP4 (red) or Wfs1 
(blue) immunostaining are shown in black. Data from n=6 not-confirmed cells, n=7 PCP4+ CA2 
pyramidal cells and n=8 Wfs1+ CA1 pyramidal cells.  
(B) Proximodistal distribution of the amplitude of SLM-evoked IPSCs and PPR. Data from n=6 not-
confirmed cells, n=7 PCP4+ CA2 pyramidal cells and n=6 Wfs1+ CA1 pyramidal cells.  
(C) E/I and I/E ratio for CA3 and SLM stimulation.  
(D) Distribution of the amplitude of spontaneous EPSCs and IPSCs with the cell proximo-distal 
position. Data from n=9 not-confirmed cells, n=12 PCP4+ CA2 pyramidal cells and n=9 Wfs1+ CA1 
pyramidal cells. 

 

  



 

 

 

 

 

 

 

 

Figure S6. Relationship between synaptic currents and the cell location within SP (deep-

superficial axis). Related to Figure 5.  

(A) Individual data for synaptic currents evoked by CA3 stimulation plotted as a function of cell location 
within the SP layer. Same data as before.  
(B) Same for synaptic currents evoked by stimulation at the SLM layer.   
(C) Same for the amplitude and frequency of spontaneous events.  
  



 

 

 

 

 

 

Figure S7. Responses to MF stimulation. Related to Figure 5.  

(A) MF were stimulated at the upper blade tip of the DG.  
(B) Examples of a CA3 and CA2 pyramidal cell repsonses to MF stimulation.  
(C) Individual data for synaptic currents evoked by MF stimulation plotted as a function of the 
proximodistal cell location. Data from n=3 CA3a pyramidal cells, n=7 PCP4+ CA2 cells and n=3 Wfs1+ 
CA1 cell. In n=4 cells immunoreactivity to Wfs1 and PCP4+ was not confirmed (no thorny 
excrescences).  
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