Optical space-time wave packets having arbitrary group velocities in free space:

Supplementary Material

Kondakci et al.

Supplementary Figure 1.

Detailed experimental setup. The experimental arrangement shown schematically in Fig. 2a in the main text is presented here in detail. The setup comprises four sections for space-time (ST) wave packet synthesis and characterization. The acronyms on all the optical components are provided in the inset box.

Supplementary Figure 2.

Restructuring the spatio-temporal wave packet profile from interferometric measurements. a, Time-integrated beam profile of a ST wave packet recorded by a slow detector (CCD₁) at a fixed propagation distance. In absence of the reference or if the reference and ST wave packet do not overlap in time, off-axis spatial interference along x is absent. **b**, Spatially-resolved interference fringes along the x-axis for a delay $\tau \approx 7$ ps, resulting from the overlap of the reference and ST wave packet in time. **c**, The visibility of the spatially resolved interference fringes changes as the delay is scanned around the center of the ST wave packet. **d**, A set of measurements with small delay increments are taken to obtain the visibility v near the vicinity of any selected τ . Each set of such measurements yields a single line in the spatio-temporal profile $I(x, 0, \tau)$ given in Fig. 3b in the main text.

Supplementary Figure 3.

Space-time-diagram for determining the group velocity of ST wave packets. The experiment starts with the ST wave packet and reference pulse overlapping in space and time, resulting in high-visibility spatially resolved fringes (Supplementary Figure 2b). A common distance Δz is introduced into the path of the ST wave packet and the reference pulse by moving CCD₁ (Supplementary Figure 1), which results in a loss of the interference fringes (Supplementary Figure 2a). A delay $\Delta \tau$ is then introduced into the path of the reference pulse to regain the visibility of the spatial resolved interference fringes (Supplementary Figure 2c).

Supplementary Figure 4.

Space-time-diagram measurements of ST wave packets to estimate their group velocities. a, Positive subliminal ST wave packets lie below the light line $v_g = c$ (blue-dashed). A retardation of the reference pulse is required to obtain maximum visibility. **b**, Positive superluminal ST wave packets lie above the light line with a positive slope. An advancement of the reference pulse is required to obtain maximum visibility. The luminal ST wave packet, which coincides – as expected – with the light line (data points represented by stars) is produced by idling the SLM. **c**, Negative superluminal ST wave packets lie above the light line with a negative slope $v_g = -c$. An advancement of the reference pulse is required to obtain maximum visibility. Note that the required advancement here exceeds that of the case of positive superluminal ST wave packets. **a-c**, In all cases, three measurements are taken at three points in z and the required advancement or retardation of the reference pulse that gives the maximum visibility is recorded. One of the observation points set to be origin (z = 0). The black lines are linear fits.

Supplementary Table 1.

Measurement results and theoretical expectation for the group velocity of ST wave packets in free space

	θ	Wave packet type	$v_{ m g}$	$\Delta v_{ m g}$	Theory	Conic section
(1)	26.6°	Positive subluminal	0.49 <i>c</i>	$\pm 3 \times 10^{-4}c$	0.5 <i>c</i>	ellipse
(2)	34.6°	Postive subluminal	0.68 <i>c</i>	$\pm 2 \times 10^{-5}c$	0.69 <i>c</i>	ellipse
(3)	45°	Positive luminal	С	$\pm 3 \times 10^{-5}c$	С	line
(4)	53.3°	Positive superluminal	1.36c	$\pm 4 \times 10^{-4}c$	1.34 <i>c</i>	hyperbola
(5)	61.1°	Positive superluminal	1.80 <i>c</i>	$\pm 3 \times 10^{-4}c$	1.81 <i>c</i>	hyperbola
(6)	73.4°	Positive superluminal	3.29 <i>c</i>	$\pm 2 \times 10^{-4}c$	3.36 <i>c</i>	hyperbola
(7)	80.7°	Positive superluminal	6.17 <i>c</i>	$\pm 0.02c$	6.14 <i>c</i>	hyperbola
(8)	86.4°	Positive superluminal	14.86 <i>c</i>	±1.07 <i>c</i>	15.9 <i>c</i>	hyperbola
(9)	88.5°	Positive superluminal	32.86 <i>c</i>	±2.18c	39.21 <i>c</i>	hyperbola
(10)	104.2°	Negative superluminal	-3.94 <i>c</i>	±0.03 <i>c</i>	-3.94 <i>c</i>	hyperbola
(11)	120.6°	Negative superluminal	-1.66 <i>c</i>	$\pm 5 \times 10^{-3}c$	-1.69 <i>c</i>	Hyperbola

The group velocity v_g of the ST wave packets are arranged in order of increasing value of θ in the range $0 < \theta < 180^\circ$. The theoretical values correspond to $v_g = \tan \theta$, and Δv_g is the uncertainty in the measured value of v_g .