1	Supplementary Data
---	--------------------

2	
3	In silico site-directed mutagenesis informs species-specific predictions of chemical
4	susceptibility derived from the Sequence Alignment to Predict Across Species Susceptibility
5	(SeqAPASS) tool
6	
7	Jon A. Doering *.+, Sehan Lee +, Kurt Kristiansen §, Linn Evenseth §, Mace G. Barron +,
8	Ingebrigt Sylte §, Carlie A. LaLone *
9	
10	* Mid-Continent Ecology Division, U.S. Environmental Protection Agency, Duluth, MN 55804,
11	USA
12	⁺ National Research Council, U.S. Environmental Protection Agency, Duluth, MN, USA
13	‡Gulf Ecology Division, U.S. Environmental Protection Agency, Gulf Breeze, FL, USA
14	§ Department of Medical Biology, Faculty of Health Sciences, UiT – The Arctic University of
15	Norway, NO-9037 Tromso, Norway
16	
17	Corresponding Author:
 18 19 20 21 22 23 24 25 26 	Carlie A. LaLone Mid-Continent Ecology Division U.S. Environmental Protection Agency 6201 Congdon Boulevard Duluth, Minnesota, 55804, USA Phone: (218) 529-5038 Fax: (218) 529-5003 E-mail: LaLone.Carlie@epa.gov.

28 Summary

29 30	Figure S1: Test compounds for organophosphates	page S3
31 32	Figure S2: Test compounds for carbamates	page S4
33 34 35	Table S1: AChE in silico site-directed mutagenesis docking simulation validations	page S5
36 37 38	Table S2: AChE in silico site-directed mutagenesis docking simulation validations continued	page S6
38 39 40 41	Table S3: AChE <i>in silico</i> site-directed mutagenesis docking simulation results	page S7
42 43 44	Table S4: AChE in silico site-directed mutagenesis docking simulation results continued	page S8
45	Table S5: EcR in silico site-directed mutagenesis docking simulation results	page S9
46	References	page S10
47		
48	Supplementary Data File	
49		
50		
51		
52		
53		
54		
55		

Figure S1 Test compounds for organophosphates (Lee & Barron 2015).

Figure S2 Test compounds for carbamates (Lee & Barron 2015; Temeyer et al 2014).

Compound	Wild_different species			Wild_Sandfly ^d			Mutation		
	F326 & G153			C326 & G153			C326 & S153		
	Exp pIC ₅₀	Classification	Cal pIC ₅₀	Exp pIC ₅₀	Classification	Cal pIC ₅₀	Exp pIC ₅₀	Classification	Cal pIC ₅₀
Paraoxon	8.64	Inhibitor	8.98	8.54	Inhibitor	7.86	5.42	Inhibitor	7.86
Malaoxon	8.01	Inhibitor	8.41	8.36	Inhibitor	7.62	5.71	Inhibitor	5.11
Eserine	7.55	Inhibitor	7.24	8.50	Inhibitor	7.24	7.07	Inhibitor	7.24
Propoxur	5.84-6.89	Inhibitor	7.24	6.66	Inhibitor	7.24	2.37	Non-inhibitor	-
Carbofuran	7.60	Inhibitor	7.24	7.62	Inhibitor	7.24	3.91	Inhibitor	7.24
1	-	-	-	7.85	Inhibitor	7.24	3.63	Non-inhibitor	-
2	-	-	-	7.44	Inhibitor	7.24	3.91	Non-inhibitor	-
3	-	-	-	7.89	Inhibitor	7.07	6.63	Inhibitor	6.45
4	-	-	-	7.13	Inhibitor	7.24	5.32	Inhibitor	5.12
5	-	-	-	7.12	Inhibitor	7.24	5.67	Inhibitor	5.12

Table S1 AChE in silico site-directed mutagenesis docking simulation validations.^{a,b,c}

^a Amino acids represented by acronyms is listed in Table 1.
 ^b Acronyms: experimental (Exp), calculated (Cal), 50 % inhibition concentration (IC₅₀), -log of the IC₅₀ (pIC₅₀).
 ^c Exp pIC₅₀ values published previously (Temeyer et al 2014).

^d Sandfly (*Phlebotomus papatasi*).

Compound	pIC50						
	Exp_wild ^d	Cal_wild	Cal_F326Y				
Paraoxon	8.54	8.980	8.189				
Carbofuran	7.62	7.865	7.074				
Propoxur	6.66	7.241	6.450				

Table S2 AChE in silico site-directed mutagenesis docking simulation validations continued.^{a,b,c}

^a Amino acids represented by acronyms is listed in Table 1.

^b Acronyms: experimental (Exp), calculated (Cal), -log of the 50 % inhibition concentration (pIC₅₀).
 ^c Exp pIC₅₀ values published previously (Temeyer et al 2014).
 ^d AChE from *Phlebotomus papatasi* (Temeyer et al 2014).

				pIC ₅₀			
Compound	Experimental						
	(wild)	wild	W117Y	W117A	G152A	A235S	W317A
Carbamate 41	5.52	7.24	6.45	6.45	7.07	7.07	7.07
Carbamate 42	7.50	7.24	7.29	7.29	7.24	7.24	7.24
Carbamate 44	8.09	7.86	8.08	8.08	7.24	7.24	7.24
Carbamate 47	6.38	6.45	6.45	6.45	7.28	6.45	7.07
Carbamate 58	7.55	7.86	7.29	7.29	7.24	7.24	7.24
Carbamate 60	8.00	7.57	7.57	7.57	4.23	7.57	7.57
Carbamate 64	7.89	7.57	7.57	7.57	5.04	7.57	7.57
Carbamate 65	5.41	5.04	5.04	5.04	4.23	5.04	5.04
Carbamate 69	5.00	5.64	8.08	8.08	7.24	7.24	5.83
Carbamate 70	5.26	5.83	7.57	7.57	5.04	7.57	7.57
Chlorpyrifos-oxon	9.47	9.60	8.98	8.98	9.60	9.60	9.60
Dibutyryl dichlorovinyl phosphate	9.03	8.75	8.75	8.75	8.75	8.75	6.23
Paraoxon	8.64	8.98	8.98	8.98	8.89	8.89	8.89
Tolyl saligenin phosphate	7.55	7.86	6.23	6.23	6.45	6.45	6.45
Phenyl saligenin phosphate	6.59	6.23	6.23	6.23	6.23	6.23	6.23
Dichlorvos	6.46	8.41	7.62	7.62	7.62	8.41	7.62
Diisopropyl phosphorofluoridate	6.72	5.90	7.62	7.62	5.11	5.11	5.11
Trichlorfon	5.92	5.90	5.12	5.12	5.90	5.90	5.90
Malaoxon	8.01	8.41	8.41	8.41	8.41	7.62	7.62
Miapfox	4.89	5.11	7.62	7.62	6.23	5.11	5.11

Table S3 AChE in silico site-directed mutagenesis docking simulation results.^{a,b}

^a Amino acids represented by acronyms is listed in Table 1. ^b Acronym: -log of the 50 % inhibition concentration (pIC₅₀).

				pIC ₅₀			
Compound	Experimental			Pre	Predicted		
	(wild)	wild	F368A	F368W	F369L	F369S	F369W
Carbamate 41	5.52	7.24	6.45	6.84	6.45	6.45	7.07
Carbamate 42	7.50	7.24	7.24	7.01	7.24	6.45	7.07
Carbamate 44	8.09	7.86	7.24	7.01	7.24	7.24	7.24
Carbamate 47	6.38	6.45	6.45	6.22	7.07	6.45	6.45
Carbamate 58	7.55	7.86	7.24	7.63	7.01	7.01	7.01
Carbamate 60	8.00	7.57	7.57	6.76	6.45	6.45	4.23
Carbamate 64	7.89	7.57	7.57	7.34	6.45	6.45	4.23
Carbamate 65	5.41	5.04	5.04	5.04	6.45	6.45	4.23
Carbamate 69	5.00	5.64	7.24	5.12	6.45	6.43	6.45
Carbamate 70	5.26	5.83	7.57	4.76	6.45	5.04	4.23
Chlorpyrifos-oxon	9.47	9.60	8.98	8.89	8.48	8.89	8.48
Dibutyryl dichlorovinyl phosphate	9.03	8.75	8.75	9.37	7.34	6.23	7.62
Paraoxon	8.64	8.98	8.98	8.89	8.89	8.89	7.86
Tolyl saligenin phosphate	7.55	7.86	6.23	7.31	6.23	6.23	5.11
Phenyl saligenin phosphate	6.59	6.23	6.23	7.31	6.23	6.23	6.23
Dichlorvos	6.46	8.41	5.11	7.62	6.21	7.62	7.62
Diisopropyl phosphorofluoridate	6.72	5.90	5.11	5.11	5.11	5.11	7.62
Trichlorfon	5.92	5.90	5.90	5.90	5.90	6.23	5.90
Malaoxon	8.01	8.41	7.62	8.41	6.21	5.11	7.62
Miapfox	4.89	5.11	5.11	5.11	5.11	5.11	5.11

Table S4 AChE in silico site-directed mutagenesis docking simulation results continued.^{a,b}

^a Amino acids represented by acronyms is listed in Table 1. ^b Acronym: -log of the 50 % inhibition concentration (pIC₅₀).

Mutant	Ligand	Relative Score ^a
D506E	E20	0.7
D506P	E20	14.2
T537A	E20	6.1
A592G	E20	0.3
A592F	E20	7.3
A592V	E20	0.9
N695A	E20	6.3

Table S5 EcR *in silico* site-directed mutagenesis docking simulation results.^{a,b}

^a Amino acids represented by acronyms is listed in Table 1. ^b Binding free energy of mutant model relative to binding free energy of wild-type model.

References

Lee, S., Barron, M.G. (2015). Development of a 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, molecular docking, and structure-based pharmacophore approaches. *Toxicol. Sci.* **148(1)**, 60-70.

Temeyer, K.B., Tong, F., Totrov, M.M., Tuckow, A.P., Chen, Q., Carlier, P.R., Perez de Leon,
A.A., Bloomquist, J.R. (2014). Acetylcholinesterase of the sand fly, Phlebotomus papatasi
(Scopoli): construction, expression and biochemical properties of the G119S orthologous mutant. *Para. Vectors.* 7, 577.