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S1: Equations of motion

The dimensionless equation that governs the dynamics of the drum is

ẍ+ 2ζẋ+ x+ αx3 = λ cosωF t. (1)

In our formulation the displacement of the membrane’s center q is normalized with respect to

the membrane radius R, i.e. x = q/R. The time variable τ is made dimensionless by making
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use of the resonant frequency ω. The overdot in eq. (1) means differentiation with respect to

the dimensionless time t = ωτ . The amplitude and frequency of the excitation are f and ΩF

, related to their dimensionless counterparts λ = f/ (Rω2meff) and ωF = ΩF/ω, respectively.

The symbol meff indicates the effective mass of the drum. The membrane damping c is

scaled to the dimensionless damping ratio 2ζ = c/ (ωmeff). Finally, α = R2k3/ (ω2meff) is

the dimensionless conjugate of the cubic stiffness coeficient k3.

In order to analyze the slow dynamical evolution of the system, the solution is assumed

to have the form

x(t) = P (t) cosωF t+Q (t) sinωF t, (2)

in which P (t) and Q (t) are slowly varying functions of time representing the real and imag-

inary part coefficients of the solution. This can be realized by expressing the dimensionless

displacement of the membrane x(t) in complex functions u1(t), u2(t) with u2(t) complex

conjugate of u1(t):1

x = u1 expiωF t +u2 exp−iωF t . (3)

By exploiting Euler’s formula and dividing real and imaginary parts we recast eq. 2 to

P = (u1 + u2) and Q = i(u1 − u2) which are the real and imaginary part coefficients,

respectively.

Following the method of variation of parameters, the solution is subject to the condition:2

Ṗ (t) cosωF t+ Q̇ (t) sinωF t = 0. (4)

By substituting eq. 2 with its corresponding time derivatives into eq. 1, and making use of

eq. 4, we obtain:
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The deterministic system of eqs. (5) is then perturbed by two independent Gaussian white

noise processes with equal intensity σ in the equations for Ṗ and Q̇, respectively. The system

of stochastic differential equations (SDE) with additive noise is:
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in which W1(t) and W2(t) are independent Wiener processes, normally distributed random

variables with mean zero and variance dt. Note that neither W nor the state variables P

and Q are anywhere differentiable now that the system is converted to a set of stochastic

differential equations. For the integration of eq. 6, the Itô scheme will be employed.3
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