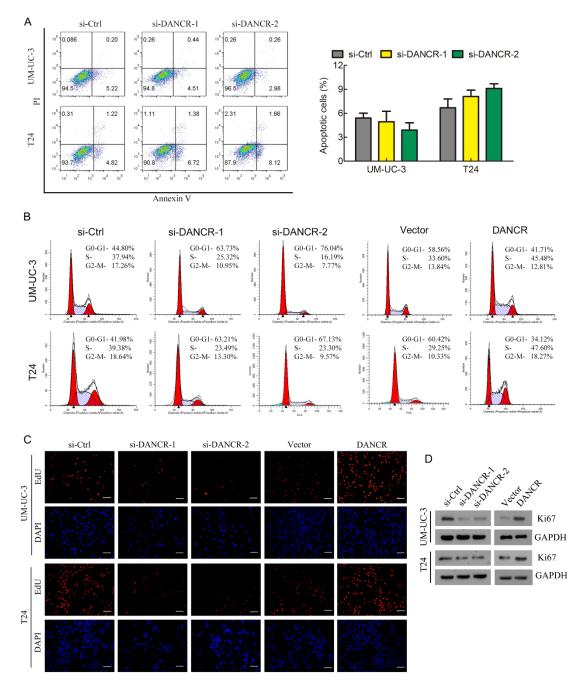
YMTHE, Volume 27

Supplemental Information


DANCR Promotes Metastasis and Proliferation

in Bladder Cancer Cells by Enhancing

IL-11-STAT3 Signaling and CCND1 Expression

Ziyue Chen, Xu Chen, Ruihui Xie, Ming Huang, Wen Dong, Jinli Han, Jingtong Zhang, Qianghua Zhou, Hui Li, Jian Huang, and Tianxin Lin

Supplementary figure

(A) The apoptosis analysis of *DANCR*-knockdown and control cells was performed after 48h transfection. The histogram shows the percentage (%) of apoptotic cells. (B) Representative images of flow cytometric analysis of T24 and UM-UC-3 cells transfected with *DANCR* siRNA or stably overexpressing *DANCR* compared with the corresponding control cells, as indicated. (C) Representative images of EdU assay measurement of the proportion of the cell population in the S phase. Blue, nucleus;

red, S-phase cells. Scale bars: white, 100 μ m. (**D**) The expression of Ki67 was detected by western blotting. GAPDH was used as the internal control.

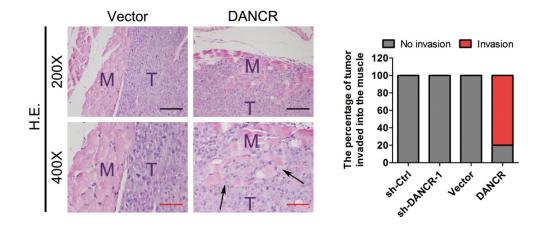


Figure S2. Representative images showing that tumors invaded into the surrounding muscle in *DANCR* overexpression groups and respective controls. M represents muscle and T represents tumor. The arrow indicates the invasive tissues. Histogram shows the percentage of the tumor invade into the surrounding muscle in *DANCR* knockdown or overexpression groups and the control group. Scale bars: red, 50 μ m. black, 200 μ m.

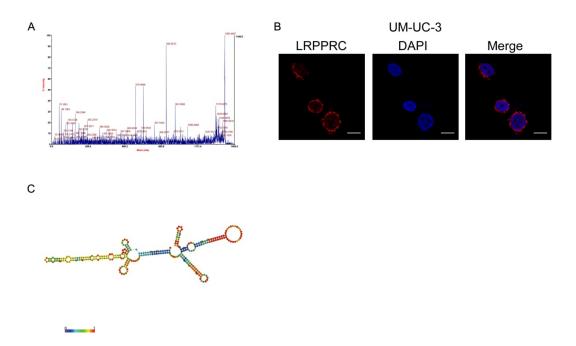


Figure S3. *DANCR* directly interacts with LRPPRC to play key roles in bladder cancer

(A) MS/MS profiles of target band (corresponding peptide sequences of LRPPRC) retrieved by *DANCR*. (B) The subcellular distribution of LRPPRC was visualized by immunofluorescence in UM-UC-3 cells. Scale bars: white, 10 μ m. (C) Prediction of 350–670 nt *DANCR* structure was based on minimum free energy (MFE) and partition function (http://rna.tbi.univie.ac.at/).

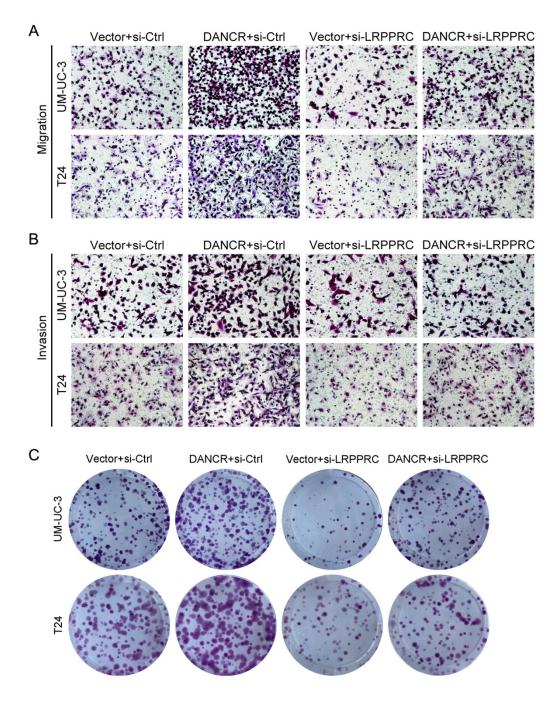


Figure S4. *DANCR* regulates metastasis and proliferation of BCa cells in an LRPPRC-dependent manner.

(A, B) Representative images of migration and invasion assays using *DANCR* overexpression or control cells combined with LRPPRC knockdown. (C) Representative images of colony formation were analyzed using *DANCR* overexpression or control cells combined with LRPPRC knockdown.

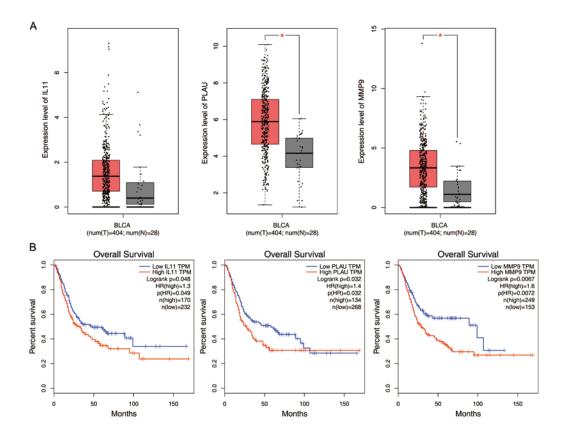


Figure S5. IL-11, PLAU and MMP9 were upregulated in BCa tissues and correlated positively with poor overall survival in BCa from TCG) cohort.

(A) The expression of IL-11, PLAU and MMP9 from the TCGA databases was analyzed in BCa patients. (B) Kaplan-Meier survival analysis of OS in BCa patients with expression profile of IL-11-high vs IL-11-low in TCGA databases. The similar analysis was performed in PLAU and MMP9. The data was obtained from GEPIA (http://gepia.cancer-pku.cn/index.html). The log-rank (Mantel-Cox) test was used to calculate p-values. p<0.05 was considered statistically significant.

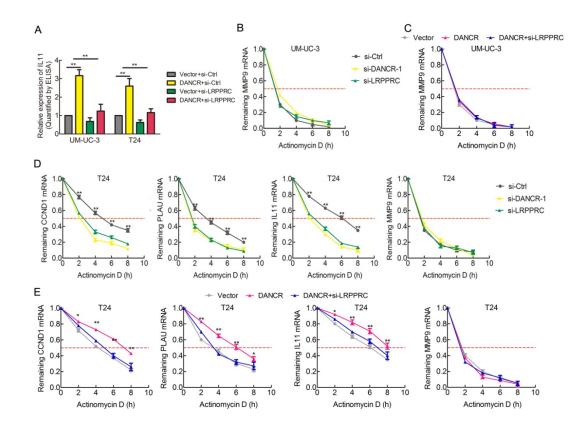


Figure S6. *DANCR* regulates mRNA stability via guiding LRPPRC to target genes.

(A) The secreted IL-11 expression was detected in *DANCR* overexpression or control cells combined with LRPPRC knockdown using ELISA. (**B**, **D**) UM-UC-3 and T24 cells expressing control siRNA, DANCR siRNA-1 or LRPPRC siRNA were treated with actinomycin D (5 µg/mL) for the indicated periods of time. (**C**, **E**) UM-UC-3 and T24 cells stably expressing control, DANCR or DANCR+LRPPRC siRNA were treated with actinomycin D (5 µg/mL) for the indicated periods of time. Total RNA was purified and then analyzed using qRT-PCR to examine the mRNA half-life of CCND1, PLAU, IL11 and MMP9. *p < 0.05, **p < 0.01.

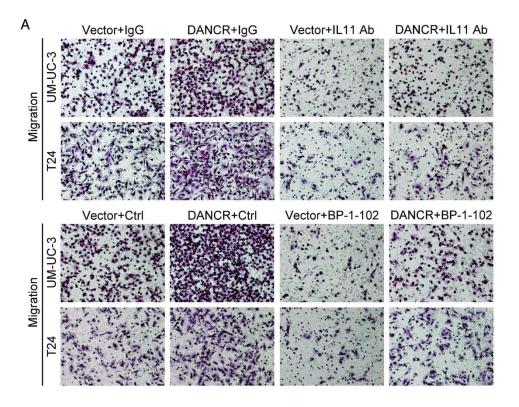


Figure S7. *DANCR* regulates metastasis of BCa cells in an IL-11-STAT3 signaling pathway-dependent manner.

(A) Representative images of migration and invasion assays using *DANCR* overexpression or control cells combined with anti-IL-11 antibody or STAT3 inhibitor (BP-1-102).

Characteristic	eristic Patient frequency DANCR		Pearson	p value	
		Low	High	Chi-square	
Total	120	60	60		
Gender					
Male	94(78.3%)	47	47	0.000	1.000
Female	26(21.7%)	13	13		
Age					
≤65	67(55.8%)	39	28	4.089	0.043
>65	53(44.2%)	21	32		
Tumor number					
Single	70(58.3%)	33	37	0.730	0.393
Multiple	50(41.7%)	27	23		
Tumor size					
≤3cm	53(44.2%)	28	25	0.304	0.581
>3cm	67(55.8%)	32	35		
Pathologic tum	or stage				
Ta-1	55(45.8%)	44	11	36.554	<0.001
T2-4	65(54.2%)	16	49		
Pathologic tum	or grade				
Low	23(19.2%)	16	7	4.357	0.037
High	97(80.8%)	44	53		
Pathologic L.N	. status				
N(-)	89(74.2%)	54	35	15.701	<0.001
N(+)	31(25.8%)	6	25		

Supplementary Table 1. Correlation between DANCR expression and
clinicopathological characteristics of bladder cancer patients.

Supplemental table 2 Univariate and multivariate analysis of factors associated with

	Univariate		Multivariate			
Variable	HR	95% CI	р	HR	95% CI	р
Age, years (>65/≤65)	1.197	0.681-2.105	0.532			NA
Gender (female/male)	0.458	0.195-1.076	0.073			NA
Histological grade (High/Low)	1.480	0.714-3.067	0.292			NA
Tumor stage (T2–T4/Ta–T1)	2.567	1.409-4.675	0.002	1.428	0.626-3.255	0.397
Nodal metastasis (N1-N2/N0)	2.420	1.343-4.361	0.003	1.567	0.788–3.116	0.200
Tumor size (>3 cm/ \leq 3 cm)	1.264	0.719-1.264	0.415			NA
Tumor number (multiple/single)	0.829	0.465-1.478	0.525			NA
DANCR (high/low)	2.642	1.468-4.754	0.001	1.879	0.906-3.899	0.090

disease-free survival in bladder cancer.

Univariate and multivariate analysis. Cox proportional hazards regression model. Variables associated with survival by univariate analyses were adopted as covariates in multivariate analyses. Significant P-values are shown in bold font. HR > 1, risk for death increased; HR < 1, risk for death reduced.

	No. total LNs	No. metastatic LNs	Metastatic ratio (%)
sh-Ctrl	10	5	50.0
sh-DANCR-1	10	0	0
Vector	10	4	40.0
DANCR	10	9	90.0

Supplemental table 3 The number of metastatic LNs in UM-UC-3 xenograft mice.

Primer Name	Sequence 5'-3'		
DANCR Forward	TCGGAGGTGGATTCTGTTAGG		
DANCR Reverse	TCGGTGTAGCAAGTCTGGTGA		
GAPDH Forward	CAAGGCTGAGAACGGGAAG		
GAPDH Reverse	TGAAGACGCCAGTGGACTC		
DANCR(1-350) Forward	GCCCTTGCCCAGAGTCTTCCCG		
DANCR(1-350) Reverse	AGGGATAGTTGGCTTAAGTCAATTGAA		
DANCR(1-700) Forward	GCCCTTGCCCAGAGTCTTCCCG		
DANCR(1-700) Reverse	TCCCCCGTGCCACCCAGAGGG		
DANCR(320-915) Forward	GTATTTCAATTGACTTAAGCCAACTA		
DANCR(320-915) Reverse	GTCAGGCCAAGTAAGTTTATTAACCT		
DANCR(670-915) Forward	TACACCGAAGCCCTCTGGGTGG		
DANCR(670-915) Reverse	GTCAGGCCAAGTAAGTTTATTAACCT		
LRPPRC Forward	GAGAGATGCCGGAATTGAGC		
LRPPRC Reverse	CTCGGACTTCTCCACCTTCT		
IL-11 Forward	TATGGGACAAAGCTGCAAGGT		
IL-11 Reverse	GGTGGCGTTCTATCCACAGAT		
PLAU Forward	CCGCATGACTTTGACTGGAAT		
PLAU Reverse	GCCATTCTCTTCCTTGGTGTG		
MMP-9 Forward	ACGCAGACATCGTCATCCAGT		
MMP-9 Reverse	GGACCACAACTCGTCATCGTC		
CCND1 Forward	GCTGCGAAGTGGAAACCATC		
CCND1 Reverse	CCTCCTTCTGCACACATTTGAA		
U6 Forward	CTCGCTTCGGCAGCACATATAC		
U6 Reverse	AACGCTTCACGAATTTGCGTGTC		
MALAT1 Forward	GACGGAGGTTGAGATGAAGC		
MALAT1 Reverse	ATTCGGGGGCTCTGTAGTCCT		

Name	Sequence 5'-3'
siRNA	
Si-Ctrl	UUCUCCGAACGUGUCACGUTT
Si-DANCR-1	GAGCUAGAGCAGUGACAAUTT
Si-DANCR-2	GCGUACUAACUUGUAGCAATT
Si-LRPPRC	GGAGGAGCAUUUGAGACAATT
shRNA	
Sh-Ctrl	CAACAAGATGAAGAGCACCAA
Sh-DANCR-1	AGGAGCTAGAGCAGTGACAAT

Supplementary Table 5. Sequences of siRNA oligos, shRNAs used in this study.

Probe Name	Sequence 5'-3'	Label
Uesd in FISH		
DANCR-1	CGCGCAACTCCAGCTGACAA	5'- and 3'-CY3
DANCR-2	GTGAACATGAAGCACCTGCT	5'- and 3'-CY3
DANCR-3	TGCCAGGCTTCTCCACCAGT	5'- and 3'-CY3
U6- probe	CACGAATTTGCGTGTCATCCTT	5'- and 3'-CY3
Uesd in RNA Pulldov	vn	
DANCR-even-1	CGCCCGAAACCCGCTACATA	3'-Biotin
DANCR-even-2	TGCACTTCCGCAGACGTAAG	3'-Biotin
DANCR-even-3	CTTATTAGAGGCACTTTCCT	3'-Biotin
DANCR-even-4	GTGAACATGAAGCACCTGCT	3'-Biotin
DANCR-even-5	TTGAGTTAGCGGGGGGGGGAG	3'-Biotin
DANCR-even-6	GTGCCACCCAGAGGGCTTCG	3'-Biotin
DANCR-even-7	TCATGACCGGCTTACAATAT	3'-Biotin
DANCR-even-8	TGCCAGGCTTCTCCACCAGT	3'-Biotin
DANCR-odd-1	CGCGCAACTCCAGCTGACAA	3'-Biotin
DANCR-odd-2	GGAGCTCAAGGTCGGCTGGG	3'-Biotin
DANCR-odd-3	ACAGGACATTCCAGCTTCAA	3'-Biotin
DANCR-odd-4	TGTGGCACTGCACGGACACG	3'-Biotin
DANCR-odd-5	GTCCCTAACAGAATCCACCT	3'-Biotin
DANCR-odd-6	TATAGCGCCTAGATAACGGT	3'-Biotin
DANCR-odd-7	ACAAGGGGGTGTAATCCACG	3'-Biotin
DANCR-odd-8	TTATATGGGGGGAGAGAGACC	3'-Biotin
LacZ-1	CCAGTGAATCCGTAATCATG	3'-Biotin
LacZ-2	TCACGACGTTGTAAAACGAC	3'-Biotin
LacZ-3	ATTAAGTTGGGTAACGCCAG	3'-Biotin
LacZ-4	AGGTTACGTTGGTGTAGATG	3'-Biotin
LacZ-5	AATGTGAGCGAGTAACAACC	3'-Biotin
LacZ-6	GTAGCCAGCTTTCATCAACA	3'-Biotin
LacZ-7	AATAATTCGCGTCTGGCCTT	3'-Biotin
LacZ-8	AGATGAAACGCCGAGTTAAC	3'-Biotin

Supplementary Table 6. The probes used in this study.

The full-length blots of manuscript are presented. Figure 5C

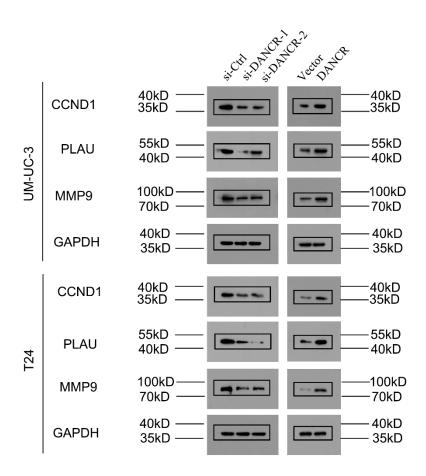
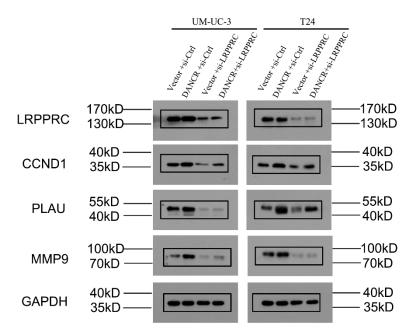



Figure 6C

Figure 7A

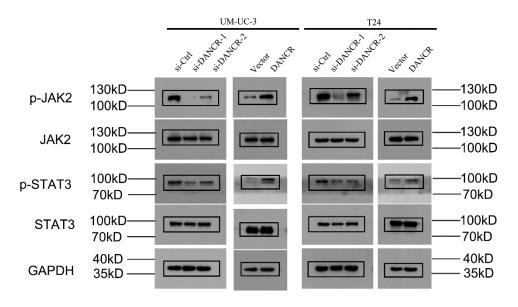


Figure 7B

		Percentification of the percen	224 2000 T24 2000 T24 7000 T24 7000 T24 7000 T24 7000 T24 7000 T24	Charles
LRPPRC	170kD —— 130kD ——			——170kD ——130kD
p-JAK2	130kD —— 100kD ——			——130kD ——100kD
JAK2	130kD —— 100kD ——			——130kD ——100kD
p-STAT3	100kD —— 70kD ——			——100kD ——70kD
STAT3	100kD —— 70kD ——			100kD 70kD
GAPDH	40kD 35kD			—— 40kD —— 35kD

Figure 7G

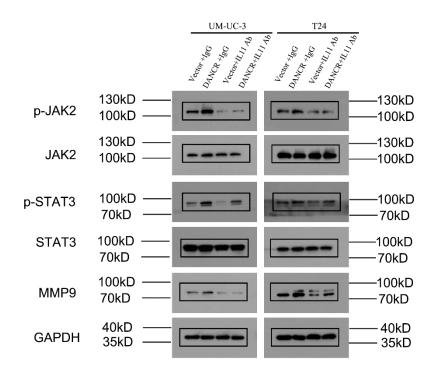
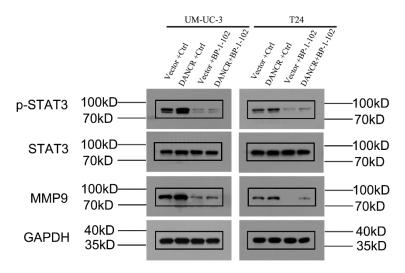
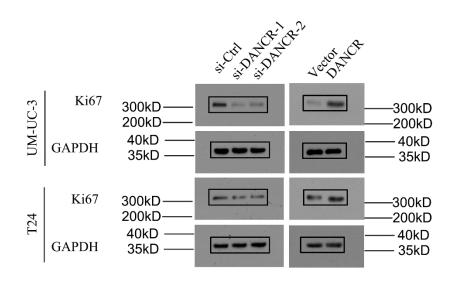




Figure 7H

Figure S1D

