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Table S1. Summary of normalization methods for metabolomics.[a] 

 Category Name Main Features 

Physiological Urine output (UO) Concentrations are multiplied by the volume of urine 

excreted per hour per kilogram of mass 

Osmolality (OSM) 

Concentrations are divided by the osmolality of each 
sample. It reflects physiological mechanisms but 
requires intensive lab work 

Internal Standard (IS) Concentrations are divided by the concentration of 
physiologically motivated internal standard (i.e. 
creatinine for urines) 

Analytical External standard[1] 
(ES) 

Intensities are divided by the signal intensity of a proper 
external standard of known concentration 

Numerical (developed 
or mainly used for 
metabolomics) 

Total area (TA) A binned spectrum (or a list of concentrations) is divided 
by the total sum of all spectral bins (or of all 
concentrations). Different variations exist depending on 
whether specific spectral regions (or specific 
metabolites) are excluded in the total sum calculation 
(e.g. urea region, or lactate concentration)   

Total Vector Length[2] 
(TVL) 

The procedure is the same of TA, but instead of dividing 
by total sum (1-norm), the total vector length (2-norm) is 
used 

Probabilistic Quotient 
Normalization (PQN) 

A reference spectrum is calculated (e.g. the median 
spectrum). For each spectrum, each bin is divided by 
the corresponding bin in the reference spectrum, and 
the median of all these quotients is taken as the 
normalization factor. It outperforms other normalization 
methods in different comparisons 

EigenMS (EMS) Scaling factors are estimated via singular value 
decomposition of the residuals matrix calculated by an 
ANOVA model. Developed for MS, never tested for 
NMR 

Multiplicative Scatter 
Corection[3] (MSC) 

Developed and mainly used for near and mid infrared 
spectra. Applicable also to NMR 

Normalization to Noise 
(Amix Manual, Bruker) 
(NN) 

The mean intensity of the noise is taken as a 
normalization parameter in NMR spectra. It corrects 
only for scale factors due to technical reasons  

Numerical (originally 
developed for 
transcriptomics) 

Cyclic loess 
normalization (CLN) 

A normalization curve is fitted using non-linear local 
regression (loess) 

Contrast normalization 
(CN) 

Data are firstly mapped in a contrast space, then 
normalizing curves are fitted, using a robust distance 
measure based on the Euclidean norm 

Quantile normalization 
(QN) 

Data (bins or metabolites) are converted in quantiles, in 
a way that the set of intensities become the same set of 
values in all the samples, however, distributed 
differently 

Linear baseline 
normalization (LBN) 

The scaling factor is computed for each spectrum as the 
ratio of the mean intensity of the baseline to the mean 
intensity of the spectrum 

Non-linear baseline 
normalization (N-LBN)  

The scaling factor is computed by fitting a non-linear 
normalization curve that map a spectrum to the baseline 



Cubic-spline 
normalization (CSN) 

Normalization curves are computed using robust cubic 
splines built on quantiles. 

Shapiro–Wilk (SW) Metabolites showing high variability in concentration are 
iteratively removed, and only low-variability metabolites 
are used as references for data normalization 

Linear mixed (LM) A mixed model is fitted to metabolite concentration to 
estimate the correlation matrix and scaling factors 

Variance stabilization 
normalization (VSN) 

VSN methods are set of non-linear methods that keep 
the variance constant over the entire data range, 
leading to roughly equal variable variance. Found to 
work well with NMR data 

Compositional data 
analysis 

Centered log-ratio 
(CLR) 

The set of data (concentrations or bins) is divided by the 
geometric mean and the logarithms of the ratios are 
taken 

Additive log-ratio (ALR) The set of data (concentrations or bins) is divided by an 
arbitrary reference and the logarithms of the ratios are 
taken 

Isometric log-ratio 
(ILR) 

The set of data (concentrations or bins) is isometrically 
transformed using an appropriate orthonormal basis 

Pairwise log-ratios 
(PLR) 

All pairwise log-ratios among all variables (bins or 
concentrations) are calculated and used in place of the 
original variables. Reported as the best performing log-
ratio method for metabolomic data, comparable with 
PQN 

[a] The table is mainly adapted from,[4] and it includes information taken from [5] and [6]additional methods from.[7] 
See[4–6] for references. 



Table S2. Summary of the main multivariate statistical techniques used in metabolomics. 

Category Name Main Features Remarks References 

Unsupervised 

Methods 

 

 

Projection  

Principal 

Component 

Analysis (PCA) 

Builds new variables 

(principal components) 

from linear combinations of 

the original ones that are 

orthogonal each other, and 

maximize the variations in 

the samples, in a way that 

few PCs are the most 

accurate representation of 

the original data.  

For metabolomic data PCA 

is mostly used as an 

exploratory technique for 

visualization, outlier 

detection, and data 

reduction. 

[8–11] 

Independent 

Component 

Analysis (ICA) 

Decomposes a multivariate 

signal into original 

independent components.   

For metabolomic spectral 

data ICA attempts to 

extracts from the spectra 

the signals of the individual 

metabolites. 

[12,13] 

Multilevel 

Component 

Analysis (MLCA) 

Component analysis of 

multilevel data  

It is useful for the 

exploratory analysis of 

metabolomic data obtained 

by repeated sampling of the 

same individuals. 

[14] 

Simultaneous 

Component 

Analysis (SCA) 

Extension of PCA for 

simultaneous analysis of 

variables observed in 

several populations or in 

different occasions. 

Several extensions of this 

procedure, including a 

multilevel version (MSCA), 

are available. 

Useful for the analysis of 

metabolomics data 

collected in different cohorts 

or with different 

experimental conditions. 

[15,16] 

Group-Wise 

Principal 

Component 

Analysis (GPCA) 

A sparse version of PCA 

that use clusters of 

variables. For each 

calculated component, only 

the variables in the same 

cluster have non-zero 

loadings.  

At variance with PCA, in 

GPCA each loading ideally 

contains only signals of 

biologically correlated 

metabolites. 

[17] 

Clustering  

K-Means 

(KM) 

This method groups 

objects on the basis of their 

distances.  

Can be used to group 

individuals based on the 

similarity of their metabolic 

profiles. 

[18–20] 

Partition Around 

Medoids (PAM) 

A clustering algorithm 

related to K-means with 

improved robustness to 

noise and outliers. 

[21] 

Spectral Clustering 

(SC) 

A clustering technique 

based on the graph theory 

that exploit the eigen 

decomposition of the graph 

Laplacian. 

[22,23] 

Hierarchical 

Clustering (HC)  

A family of algorithms that 

groups data by creating a 

hierarchy of clusters 

organized in a tree 

(dendrogram). 

Useful to obtain a visual 

representation of how 

different metabolic profiles 

are related. 

[24,25] 



Knowledge 

Discovery by 

Accuracy 

Maximization 

(KODAMA) 

An unsupervised and semi 

supervised learning 

algorithm for feature 

extraction from noisy and 

high-dimensional data, 

driven, driven by an 

integrated procedure of 

cross-validation of the 

results. 

Particularly effective with 

metabolic data. 
[26,27] 

Neural 

Networks  

Self-Organizing 

Map (SOM) 

A neural network that 

produces a distribution of 

input data using a regular 

grid such that topological 

relations are preserved. 

SOM transform 

metabolomics data into a 

visually 

interpretable map that 

captures inherent 

relationships 

among metabolites. 

[28,29] 

Autoencoder 

(AE) 

An artificial neural network 

that learn a representation 

(encoding) of the input data 

for the purpose of 

dimensionality reduction.  

Can be used like PCA but it 

can learn both linear and 

nonlinear transformations. 

[30,31] 

Supervised 

Methods 
Projection  

Linear Discriminant 

Analysis (LDA) 

Finds projections that 

simultaneously maximize 

the between groups 

variance and minimize the 

within groups variance. 

Fails when the number of 

variables exceed the 

number of samples, 

that is a common feature of 

metabolomics datasets. 

However, can be applied 

after a data reduction (e.g. 

PCA) step. 

[32,33] 

Partial Least 

Squares (PLS) 

PLS is similar to PCA, but 

instead of maximizing the 

variance of the data, it 

maximizes the covariance 

between the data and the 

response variable. Many 

different variants of the 

original procedure exist.   

A fundamental and 

ubiquitous method in 

metabolomics. Used both 

for regression and 

classification.  

[34–37] 

Orthogonal Partial 

Least Squares 

(OPLS) 

The extracted components 

are separated into 

“predictive”, i.e. related to 

the target variable, and 

“orthogonal”, i.e. 

uncorrelated with the target 

variable. 

The most common variant 

of PLS used in 

metabolomics due to its 

improved interpretability. 

[38] 

Analysis of 

Variance 

Simultaneous 

Component 

Analysis (ASCA) 

A direct generalization 

of the univariate analysis of 

variance for multivariate 

case.  

It was designed explicitly 

with metabolomics in mind. 

It can model different 

experimental designs. 

[39] 

Multilevel Partial 

Least Squares 

(MPLS) 

A modified PLS to extend 

the univariate paired t-test 

to multivariate data.  

MPLS find systematic 

variations in metabolic 

profiles in paired 

experiments, for example 

after a drug or nutritional 

challenge. 

[40,41] 

Group-Wise Partial 

Least Squares 

(GPLS) 

The PLS adaptation of 

GPCA. It is an efficient 

sparse version of PLS 

GPLS improve the 

interpretability of the model 

helping to find meaningful 

[42] 



were loading vectors are 

defined by using only 

separated groups of 

correlated variables.  

biologically connected 

clusters of metabolites. 

Machine 

Learning 

K-Nearest 

Neighbours (K-NN) 

One of the  simplest 

classification algorithms. It 

classifies an unknow 

instance depending on the 

class of the majority of its 

nearest neighbours. 

Classification techniques 

that can be used to classify 

a unknown sample, given a 

train set of metabolomics 

data. 

[25,43] 

Support Vector 

Machines (SVMs) 

An SVM model maps the 

input data into a high- or 

infinite-dimensional space 

so that the different groups 

are separated by a gap 

that is as wide as possible. 

Unknown data are then 

mapped into the same 

space and are predicted to 

belong to a group based on 

which side of the gap they 

fall. 

SVMs can efficiently 

perform a non-linear 

classification because 

items that are not linearly 

separable in the actual 

space became separable 

in the transformed space. 

[44,45] 

Boosting 

(BO) 

A general family of very 

successful algorithms that 

use an ensemble of weak 

classifier to build a final 

strong classifier. 

[46,47] 

Random Forest 

(RF) 

Uses data from the training 

set to build an ensemble of 

uncorrelated decision 

trees. Each tree is build 

using only a random 

subset of both the data 

items and of the variables. 

The final classifier is 

obtained by pooling the 

decisions of each tree in 

the forest.  

Although RF is not 

commonly used in 

metabolomics, it has 

several benefits: i) it 

compares in accuracy to 

SVM, ii) it generates an 

estimate of the error of the 

model, iii) it computes 

proximities between pairs of 

samples that can be used 

for visualization and 

clustering. 

[48,49] 

Neural 

Networks 

Multilayer 

Perceptron (MLP) 

A kind of feedforward 

neural network made by 

layers of nodes (neurons) 

that can learn bot linear 

and non-linear 

classification problems. 

Seldom used in 

metabolomics but 

potentially very effective to 

classify, integrate and 

model different kind of data 

(e.g. metabolomics data, 

clinical data, demographical 

data). Usually these 

approaches require large 

amount of experimental 

data. 

[50,51] 

Deep Learning 

(DL) 

A class of neural networks 

algorithms that use a 

cascade of multiple layers 

of nonlinear processing 

units for feature extraction 

and classification.  

[31,52] 



Table S3. Summary of the main univariate statistical tests for comparing different groups used in 

metabolomics studies*.  

Number of 
Groups 

Type of  
Groups 

Category 
Name of the 

test 
Main Features References 

Population Independent 

Parametric 
One-sample t-

test 
Tests to assess whether the 
mean (median) of a normally 
distributed population (given 

a sample) has the 
hypothesized value. 

[53] 

Non-Parametric 
One sample 
median test 

[54] 

2 

Independent 

Parametric Student’s t-test Used to determine whether 
two independent samples 

were selected from 
populations having the same 

distribution. The normality 
assumption of the t-test is not 
required for Wilcoxon-Mann-

Whitney 

[55] 

Non-Parametric 
Wilcoxon-Mann-

Whitney test 
[56] 

Paired 

Parametric Paired t-test Tests to be used for 
dependent groups in the 
paired design, e.g. same 

individuals before and after 
treatment.  

[55] 

Non-Parametric 
Sign test or 

Wilcoxon signed 
ranks test 

[57] 

>2 

Independent 

Parametric 

One-way 
analysis of 
variance 
(ANOVA) 

Collection of procedures to 
analyse different 

experimental designs. In its 
simpler form can be used to 
test the differences among 

group means. Kruskal-Wallis 
test is its non-parametric 

counterpart. 

[58] 

Non-Parametric 
Kruskal-Wallis 

test 
[59] 

Paired 

Parametric 
Repeated 
measure 
ANOVA 

Extension of ANOVA for 
paired samples, when the 
measures are repeated at 
multiple times, e.g. same 

individuals at different time 
points. 

[60] 

Non-Parametric 
Friedman test or 

Quade test 

The multigroup extensions of 
sign and signed ranks tests. 

According to Conover, 
Friedman test is typically 
more powerful when the 

number of groups is ≥ 5, and 
vice versa. 

[54] 

* An exhaustive compendium of statistical tests can be found in [61] 
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