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SUMMARY

Alternative translation initiation and stop codon
readthrough in a few well-studied cases have been
shown to allow the same transcript to generate mul-
tiple protein variants. Because the brain shows a
particularly abundant use of alternative splicing, we
sought to study alternative translation in CNS cells.
We show that alternative translation is widespread
and regulated across brain transcripts. In neural cul-
tures, we identify alternative initiation on hundreds of
transcripts, confirm several N-terminal protein vari-
ants, and show the modulation of the phenomenon
by KCl stimulation. We also detect readthrough in
cultures and show differential levels of normal and
readthrough versions of AQP4 in gliotic diseases.
Finally, we couple translating ribosome affinity purifi-
cation to ribosome footprinting (TRAP-RF) for cell-
type-specific analysis of neuronal and astrocytic
translational readthrough in the mouse brain. We
demonstrate that this unappreciated mechanism
generates numerous and diverse protein isoforms
in a cell-type-specific manner in the brain.

INTRODUCTION

‘‘One gene, one protein’’ has long been an obsolete axiom. Cells

use alternative splicing, where a single gene generates multiple

transcripts, each of which may be translated into a protein iso-

form (Graveley, 2001). To further expand proteomic landscapes,

cells can also utilize alternative translation initiation sites (TISs)

and termination sites on a given transcript (Dabrowski et al.,

2015; Kozak, 1999). Alternative splicing is well studied and

known to be modulated by neural activity and disease states

and in a cell-type-specific manner in the CNS (Hermey et al.,

2017; Licatalosi and Darnell, 2006; Parikshak et al., 2016; Ques-

nel-Vallières et al., 2016; Zhang et al., 2014b). However, alterna-

tive initiation and termination have not yet been systematically
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surveyed across the CNS or assessed for variation across neu-

rons and astrocytes. In other tissues, genomic and proteomic

studies have revealed awidespread use of alternative TISs (Slav-

off et al., 2013; Ingolia et al., 2011; Vanderperre et al., 2013; Wan

and Qian, 2014; Zupanic et al., 2014; Menschaert et al., 2013;

Lee et al., 2012) and stop codon readthrough (Dunn et al.,

2013; Jungreis et al., 2011). In the CNS, only single-gene studies

have been done, which have identified alternative open reading

frames for individual transcripts and demonstrated their func-

tional roles in homeostasis and disease (Bergeron et al., 2013;

Chua et al., 2012; De Bellis et al., 2017; Delmas et al., 1992;

Green et al., 2016; Simkin et al., 2008; Studtmann et al., 2014;

Thomas et al., 2008; Vanderperre et al., 2011).

With alternative initiation and termination, ‘‘one transcript,

one protein’’ also becomes an untrue axiom. In conventional

eukaryotic initiation, a 43S preinitiation complex scans the

50 UTR until it encounters an AUG at the annotated TIS (aTIS),

where the 60S ribosomal subunit joins it to form an 80S initiation

complex (Jackson et al., 2010). However, an 80S complex may

assemble at an upstream TIS (uTIS) if the 50 UTR has an optimal

AUG (or near-cognate NUG) or at a downstream TIS (dTIS) if the

aTIS is suboptimal (Kozak, 1999). Similarly, in conventional

termination, the 80S complex concludes translation at the first

in-frame stop codon. For some transcripts, however, it may

read past that stop codon at some frequency and conclude

translation at a second stop codon in the 30 UTR (Dabrowski

et al., 2015). As expected, alternative initiation may generate

N-terminal protein isoforms when in frame or entirely different

protein species when out of frame, whereas stop codon read-

through can give rise to C-terminally extended protein isoforms

(Figure 1A).

Here we profiled and examined the regulation of alternative

TISs and stop codon readthrough in CNS cells. We screened

for uTISs and dTISs genome-wide in neuron-glia cultures using

ribosome footprinting (RF), determined a subset of these protein

products in neurons using liquid chromatography-tandem mass

spectrometry (LC-MS/MS), and then examined how their use is

regulated by KCl depolarization. We also identified transcripts

evidencing stop codon readthrough in cultures and then focused

on one of the candidates, Aqp4, to determine whether the
).
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Figure 1. RF of Homoharringtonine-Treated Neuron-Glia Culture Reveals Translation Initiation Sites

(A) uTISs, aTISs, and dTISs and the corresponding protein products are depicted. uTISs and dTISs give rise to N-terminal variants of the protein when in frame,

but code for completely new polypeptide sequences when out of frame. Stop codon readthrough that generates a C-terminal extension is also depicted.

In this study, Figures 1, 2, and 3 concern TISs, and Figures 4, 5, and 6 concern readthrough.

(B) Experimental workflow for the in vitro study. Mixed neurons and glia from post-natal day (P)0 mice were cultured for 7 days in vitro, exposed to KCl or no KCl,

and subjected to RF and TIS-mapping RF as shown.

(C) Average ribosomal density across transcripts shows a run-off of elongating ribosomes from the proximal 300-nt region of the coding sequence in the HHT-

treated sample as compared to the no-HHT sample. Plot from the KCl-untreated cultures is shown; KCl-treated cultures gave the same density distributions.

(D) The number of high-fidelity TISs in the 426 most robustly expressed transcripts. Most of the transcripts showed >1 TIS. Only the top-five TISs were called.

(E) Codon composition and frame status of TISs across transcripts. TIS codons are shown as ATG or a cognate thereof (NTG). Numbers inside the bars indicate

the percentages of in-frame TISs.

RF, ribosome footprinting; HHT, homoharringtonine; TIS, translation initiation site; u/a/dTIS, upstream/annotated/downstream TIS. Also see Figures S1 and S2

and Table S1.
resulting extended protein is regulated by diseases. Finally, we

coupled translating ribosome affinity purification to RF (TRAP-

RF) to determine the extent to which neurons and astrocytes

use readthrough in vivo.

RESULTS

RF of Homoharringtonine-Treated Neuron-Glia Cultures
Reveals Use of Novel TISs In Vitro

To investigate alternative TISs, we used mouse brain-derived pri-

mary neuron-glia mixed cultures as our experimental platform
because they offer two advantages. First, such cultures can be

rapidly and synchronously treated with homoharringtonine (HHT)

to arrest initiating ribosomes while allowing elongating ribosomes

to run off the transcript (Ingolia et al., 2011). Non-neural cell cul-

tures treated successively with HHT and cycloheximide (CHX), a

drug that immobilizes elongating ribosomes (Schneider-Poetsch

et al., 2010), have been used to identify TISs previously (Ingolia

et al., 2011). Second, KCl treatment of neuronal cultures induces

membrane depolarization, inflow of Ca2+ through L-type Ca2+

channels, and expression of c-Fos and other activity-dependent

genes, thus offering a simple yet effective paradigm for studying
Cell Reports 26, 594–607, January 15, 2019 595



Table 1. Peptide Products of Alternative Translation Initiation

Sites Detected by Mass Spectrometry Analysis of Neuronal

Cultures

Transcript ID

Gene

Symbol

Alternative

Initiation Site Frame

ENSMUST00000031131 Uchl1 +15 in frame

ENSMUST00000031565 Fascn1 +12 in frame

ENSMUST00000106255 Cap1 +9 in frame

ENSMUST00000028981 Mapre1 +12 in frame

ENSMUST00000112229 Gpm6b +12 in frame

ENSMUST00000174548 Hnrnpl +102 in frame

ENSMUST00000007980 Hnrnpa0 �54 in frame

ENSMUST00000067664 Ywhae �66 in frame

ENSMUST00000143971 Minos1 �21 in frame

ENSMUST00000021497 Rtn1 �63 in frame

+ and� indicate downstream and upstream relative to the canonical initi-

ation site, respectively. Also see Table S2.
activity-dependent gene regulation (Bading et al., 1993; Kim et al.,

2010; Greer and Greenberg, 2008).

Accordingly, we utilized neuron-glia cultures with or without

HHT and KCl treatments and subjected them to RF following

CHX treatment (Figure 1B). We first ensured our data had the

characteristics of bona fide ribosome footprints—specifically,

we confirmed that ribosomal P sites primarily correspond to

the correct reading frame and display the characteristic 3-nt

periodicity in the coding sequence (CDS) when compared to

the UTRs (Figure S1). Next, we examined footprint distribution

with HHT treatment, which revealed a near-complete run-off of

ribosomes from the proximal 300-nt region of theCDS 2min after

introducing the drug (Figure 1C). We focused on this 300-nt re-

gion of the most robustly expressed transcripts and developed

a set of stringent criteria (see STAR Methods) to detect high-fi-

delity TISs in both KCl-treated and -untreated cultures. We de-

tected TISs in 426 transcripts, most of which possessedmultiple

TISs, with 89.7%having two ormore and only 11.3%possessing

a single one (Table S1; Figure 1D). Although previous high-

throughput studies on TISs have used non-neural cells, we

compared our list of alternative TISs to published lists generated

from mouse embryonic stem cells (Ingolia et al., 2011) or various

human cultured cells (Vanderperre et al., 2013) and found that

more than 50% of the transcripts in our list overlapped with the

lists from the previous studies. These results convinced us that

RF on HHT-treated neuron-glia culture combined with a strin-

gent analysis is able to detect alternative TISs in neural

transcripts.

Because the number, composition, and frame of TISs are

important determinants of the proteomic complexity of a cell,

we examined these features across the transcripts for which

we detected high-fidelity TISs (Figure 1E). On average, a tran-

script contained 3.18 TISs—with 1.33 uTISs, 0.94 dTIS, and

0.91 aTIS. The aTIS-per-transcript value of <1 resulted from

the absence of an initiation peak at the annotated ATG of

some transcripts, suggesting that these transcripts might be

misannotated or the dominant protein isoform is not the canon-
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ical one in neural cells. ATGs detected at aTISs were always in

frame, consistent with their presence as a key contributor to

the original annotation. Similarly, near-cognate codons such as

CTG, TTG, and GTG detected at aTISs were in frame >99% of

the time. On the other hand, ATGs and cognate codons detected

at uTISs and dTISs were out of frame R47% of the time. These

data suggest that a brain transcript may use multiple TISs, each

at a rate that is regulated in a transcript-specific manner, which

can generate multiple protein variants or completely different

peptide sequences.

LC-MSDetects Protein Products of Alternative Initiation
We next asked whether a subset of the alternative TISs results in

a detectable amount of polypeptides, and were interested to

identify which of these were specifically coming from neurons.

We noted that most uTISs and dTISs are close to their corre-

sponding aTISs, suggesting that a biochemical assay such as

a western blot would not clearly resolve the alternative and

normal protein isoforms. Therefore, we examined a quantitative

proteome of cultured primary mouse cortical neurons using LC-

MS. In spite of the different sensitivities of LC-MS and RF, we

clearly detected variant N-terminal peptides resulting from 10

of the predicted alternative TISs (Table 1). These included a pep-

tide from an in-frame uTIS lying at the�63rd nt ofRtn1, which en-

codes reticulon 1, an endoplasmic reticulum protein expressed

in neuroendocrine cells and potentially involved in vesicle secre-

tion (Chiurchiù et al., 2014), and a peptide from an in-frame dTIS

at the 15th nt of Uchl1, which encodes ubiquitin C-terminal hy-

drolase L1, a neuron-specific deubiquitinating protease with

protective roles in neurodegeneration and Alzheimer’s disease

(Bilguvar et al., 2013; Zhang et al., 2014a) (Figures 2A and 2B).

We also examined the proteome of the mouse brain reported

by others (Sharma et al., 2015) and found variant N-terminal pep-

tides corresponding to 18 alternative TISs—5 as confirmed by

neuronal LC-MS, and 13 additional (Table S2). Thus, at least a

subset of the TISs detected by our algorithm is utilized in the

CNS to produce detectable protein, and alternative translation

does contribute to the diversity in the brain proteome.

To determine whether the identified alternative TISs might

represent evolutionarily important adaptations, we examined

their conservation across phyla. We used PhastCons (Siepel

et al., 2005) in a multi-species alignment of 60 vertebrates to

compute conservation scores for the NTGs (ATG, CTG, GTG,

or TTG) detected as alternative TISs, and tested the hypothesis

that these were more conserved than their background

sequence (the entire 50 UTRs for uTISs and the entire CDSs for

dTISs). We also computed the score for the NTGs not detected

as alternative TISs and the respective 50 UTRs or CDSs. Surpris-
ingly, regardless of alternative TISs or not and in frame or not,

50 UTR NTGs were less conserved whereas CDS NTGs were

generally more conserved than their respective backgrounds

(Figures 2C and 2D). However, NTGs detected both as uTISs

or dTISs were not more conserved than NTGs detected in their

respective backgrounds. When we specifically examined the

conservation of the ten alternative TISs for which we detected

the corresponding peptides with LC-MS (Table 1), we found

eight of them to be highly conserved, one only moderately

conserved, and one not conserved (Figure 2E). In sum, our



Figure 2. Mass Spectrometry Detects the Peptides Resulting from Alternative TISs

(A and B) Peptides resulting from an in-frame uTIS (Rtn1) (A) and an in-frame dTIS (Uchl1) (B). Upper: the percentage of ribosomes at different TISs (red

arrowheads correspond to alternative TISs whose novel products are detected; zeros correspond to aTISs). Middle: the peptide sequences with the amino acids

corresponding to alternative TISs and aTISs in red and green, respectively. Bottom: the tandemmass spectra and mass-to-charge ratios of b and y product ions

confirming peptide sequences. Alternative TISs for Rtn1 and Uchl1 lie at the �63rd and +15th nt relative to the aTIS, respectively.

(C and D) Conservation of uTISs with respect to 50 UTR (C) and of dTISs with respect to CDS (D). Violin plots show the average of the PhastCons scores for the 3 nt

of the ATG, CTG, GTG, or TTG present at the uTISs or dTISs or elsewhere in the 50 UTR or CDS. Wilcoxon test was used to assess the statistical significance.

(E) Conservation of the uTISs and dTISs of mass spectrometry-confirmed peptide products. Plot shows the average of the PhastCons scores of the 3 nucleotides.

Also see Tables S1 and S2.
analyses suggest that specific alternative TISs, particularly those

that are robust enough to generate detectable protein, may be

highly conserved. Yet, the significantly decreased conservation

of NTGs in 50 UTRs, even for the many that show initiation,

also suggests that some modifications of TISs may be a sub-

strate for evolution of gene regulation across species.

TISs Reveal the Complexity of Initiation on Neural
Transcripts
We wanted to examine whether the identified TISs provide sup-

port for the well-accepted scanning model of initiation, which

postulates that the small ribosomal subunit scans the 50 UTR
of a transcript and triggers initiation at an AUG, or near cognate,

surrounded by specific nucleotides (Kozak sequence) (Kozak,

1999). To this end, we quantified the Kozak strength of each

TIS by using the Kozak consensus sequence empirically

derived from a synthetic translation assay as a benchmark

(Sample et al., 2018) and the relative usage of each TIS by

dividing the ribosomal occupancy at that TIS over the total ribo-

somal occupancy across all TISs on a given transcript. Overall,

aTISs possessed significantly stronger Kozak sequences than

uTISs and dTISs (Figure S2A). Comparing the two quantities
across all TISs in all transcripts, we found that TISs with stron-

ger Kozak scores—especially aTISs, as expected—are gener-

ally used more frequently than those with weaker Kozak scores

(Figure S2B). Next, comparing uTIS Kozak scores with aTIS

usage, we observed that uTISs with stronger Kozak scores

are strongly suppressive toward aTISs (Figure S2C), consistent

with the idea that they can act as a sink for the scanning

ribosomal subunits that would otherwise proceed downstream

(Kozak, 1999). Finally, we found that 50 UTRs possess more

uTISs as a function of their length (Figure S2D), and conse-

quently longer 50 UTRs are more suppressive toward aTISs

than shorter 50 UTRs (Figure S2E). Based on a multivariate

analysis, the aTIS Kozak score and uTIS Kozak score are the

best predictors of aTIS usage (R-squared 0.518985) (Fig-

ure S2F). These results reveal an interplay between uTISs and

aTISs that is likely to regulate the amount of canonical proteins

synthesized from neural transcripts.

Similarly, we found that aTISs with stronger Kozak scores

exert suppression toward dTISs; however, this effect was

more modest (Figure S2G), suggesting additional factors might

regulate dTIS usage. Codon bias is known to influence local ri-

bosomal traffic (Tuller et al., 2010), and therefore post-aTIS
Cell Reports 26, 594–607, January 15, 2019 597



codon bias can arguably affect the access of ribosomes to

dTISs (e.g., an inefficiently translating ribosome downstream

of the first aTIS might block access to subsequent dTISs by

scanning ribosomes). When we compared the post-aTIS and

post-dTIS regions for codon composition, we indeed found

specific codons and amino acids to be significantly different be-

tween the two (not shown). However, aside from the expected

increase in ATGs at aTISs relative to dTISs, the remaining ob-

servations (depleted AGG and CAC) did not clearly match any

expectations from codon usage biases. Although these obser-

vations do not rule out the possibility of additional mechanisms

that might regulate dTIS usage, they show that the codons

immediately beyond an aTIS may be skewed more than ex-

pected by chance and potentially regulate ribosomal encounter

with a dTIS.

Transcripts Change TIS Usage in Response to Neuronal
Depolarization
Neuronal activity induces de novo protein synthesis—both

from existing mRNAs and via induction of a specific transcrip-

tional program (Costa-Mattioli et al., 2009; Dalal et al., 2017;

Flavell and Greenberg, 2008). However, it is unclear whether

it can also alter TIS usage on a given transcript. Therefore,

we asked whether KCl depolarization of our neuron-glia culture

model regulates the use of TISs. For this purpose, we removed

transcripts that had only one TIS and/or no aTIS from our list of

transcripts. We found that, of the remaining transcripts with

at least one alternative TIS, 32.5% exhibited a significant

change in the ribosomal occupancies of their aTISs, uTISs,

or dTISs, with a majority showing increased use of aTISs in

response to KCl depolarization (Figure 3A). More importantly,

we observed that an increased use of aTISs was accompanied

by a corresponding decreased use of alternative TISs and vice

versa, with a few exceptions where changes at both TISs went

in the same direction. These results indicate that specific tran-

scripts use their TISs differentially in response to neuronal

depolarization.

We then examined the transcripts exhibiting depolarization-

regulated use of TISs. The increased use of aTISs by the major-

ity of transcripts was consistent with an increase in de novo pro-

tein synthesis from the canonical open reading frame following

stimulation. Transcripts that showed this included Grina and

Hspa4, which code for an NMDA receptor subunit and a heat

shock protein involved in the folding of other proteins, respec-

tively (Garcia-Quintanilla and Miranzo-Navarro, 2016; Stetler

et al., 2010) (Figures 3B and 3C). On the other hand, among

the few transcripts that showed an increased use of uTISs

was Kif1b, which codes for a kinesin superfamily protein

involved in transporting synaptic vesicles (Hirokawa and Take-

mura, 2005) (Figures 3B and 3C). Interestingly, Gfap, which co-

des for an intermediate filament in astrocytes (Middeldorp and

Hol, 2011), also exhibited a modest regulation of its uTIS.

Notably, as shown in Figure 3A, we found that although some

of the uTISs and dTISs with altered usage were in frame, most

were out of frame, suggesting the regulated production of not

only N-terminal protein variants but also novel polypeptides

following activity. Overall, these findings show that stimulation

alters the use of TISs of several transcripts that are involved in
598 Cell Reports 26, 594–607, January 15, 2019
diverse functions, indicating a regulated production of alterna-

tive protein isoforms in neural cells.

RF Identifies Novel C-Terminal Extensions Mediated by
Stop Codon Readthrough In Vitro

As illustrated in Figure 1A, stop codon readthrough is another

mode of alternative translation, and it generates a C-terminally

extended protein variant. Recently, RF was utilized to identify

readthrough in Drosophila embryos (Dunn et al., 2013). Shortly

thereafter, bioinformatics approaches predicted at least 7 read-

through events in human transcripts, of which 4 were validated

as capable of >1% readthrough using luciferase assays in HeLa

cells (Loughran et al., 2014). These included the Aqp4 tran-

script, which encodes a water channel that is highly expressed

in astroglia. A genome-wide screen for transcripts exhibiting

readthrough, however, has not yet been conducted in CNS

cells.

To profile readthrough in our neuron-glia cultures, we used the

RF dataset from HHT-untreated cultures and counted the foot-

prints mapping to the 30 UTR of robustly expressed transcripts.

We carefully excluded any transcripts where alternative splicing

or stop codon SNPs might give rise to such footprints (see STAR

Methods for details). Overall, we identified 18 transcripts with at

least 1% readthrough (Table S3). These include Aqp4, as well as

malate dehydrogenase 1 (Mdh1) (Figure 4A). For an independent

validation of these findings, we cloned a cassette encompassing

the distal CDS and the readthrough region of candidate tran-

scripts into a dual-luciferase vector so that Renilla luciferase

was constitutively expressed whereas firefly luciferase was

expressed only if the stop codon was read through (Fixsen and

Howard, 2010) (Figure 4B). Comparison of the relative luciferase

activities confirmed that the mouse Aqp4 sequence permits

readthrough of 12.5% when compared to a positive control

sequence where the stop codon was mutated to a sense codon

(Figure 4C). This is a level similar to that previously reported for

human AQP4 in HeLa cells (Loughran et al., 2014). Likewise,

the Mdh1 sequence permits readthrough at 5.5%, whereas the

Map2 sequence is not read through. The addition of an extra

stop codon beyond the original stop codons abrogated the read-

through of bothAqp4 andMdh1, indicating luciferase expression

is not due to a cryptic promoter or internal ribosome entry site

sequence.

For another independent validation of readthrough, we

analyzed our neuronal LC-MS data but were unable to detect

any extended peptides (see Discussion). We then resorted to

mouse brain MS data from others (Sharma et al., 2015), and

could detect readthrough peptides for Aqp4, Ttr (transthyre-

tin), and Map1lc3a (microtubule-associated protein 1 light

chain 3 alpha) (Figure S3). We noticed that whereas read-

through of the latter two transcripts was not detected by our

neuron-glia RF, that of several others that are strongly ex-

pressed in the brain and well known to undergo readthrough,

including MDH1 (Hofhuis et al., 2016), was not detected by

MS, suggesting MS negative results should be interpreted

with caution. Interestingly, an arginine was incorporated in

lieu of the TGA stop codon of Aqp4, suggesting that other

amino acids besides those predicted by tRNA wobbling such

as tryptophan (TGG) or a cysteine (TGT, TGC) can be



Figure 3. Neuronal Activity Modulates the Use of TISs

(A) Heatmap shows transcripts with significant changes (false discovery rate %0.05) in the usage of aTISs, uTISs, or dTISs in response to KCl depolarization of

neuron-glia culture.Usageof a TISwas computedas theP site counts at that TIS divided by the total P site counts acrossall TISs for a given transcript. For transcripts

with multiple uTISs and dTISs, combined changes over all uTISs and dTISs is shown. Chi-square was used to test for the difference of P site counts across TISs.

(B) Representative tracts are shown to highlight the abundance of ribosomes at TISs and the use of different TISs in response to KCl depolarization. Numbers on

the x axis indicate nucleotide positions, with zero being the aTIS, and numbers on the y axis indicate the percentages of ribosomes. Arrowheads point to the uTISs

and dTISs.

(C) Boxplot quantifies the KCl-mediated shifts in TIS use of the transcripts shown in (B). n = 3, paired t test. Error bar, SEM.

Also see Table S1.
incorporated, and similar to what has previously been seen by

Hofhuis et al. for Mdh1. Together, our results show the possi-

bility of several readthrough events in the brain, highlight the
conflict between RF and MS in detecting readthrough, and

provide a case of how the stop codon might be recoded in

readthrough.
Cell Reports 26, 594–607, January 15, 2019 599



Figure 4. RF of Cycloheximide-Treated Neuron-Glia Culture Reveals

Stop Codon Readthrough In Vitro

(A) A schematic of footprint mapping and genome browser tracts with exam-

ples of readthrough are shown. Aqp4 andMdh1 display footprints mapping to

the readthrough region, whereas Map2 does not.

(B) Dual-luciferase assay assessing the permissiveness of sequences for

readthrough. A cassette spanning the distal CDS and the readthrough region is

cloned between the Renilla luciferase (RL) and firefly luciferase (FL) such that

the latter is expressed in transfected cells only if ribosomes read past the

cassette. The stop codon is mutated to a sense codon in the positive control,

whereas an extra stop codon is added in the negative control.

(C) Dual-luciferase assay shows that Aqp4 andMdh1 undergo readthrough at

the rates of 12.5% and 5.5%, respectively, and that Map2 does not undergo

readthrough. Readthrough rate is calculated as shown in (B) (n = 3; error bar,

SEM).

CDS, coding sequence; RA,Renilla activity; FA, firefly activity; Ct, control. Also

see Table S3 and Figure S3.
Readthrough Localizes AQP4 to the Perivascular Region
in the CNS
We next wanted to test whether readthrough is of functional sig-

nificance. We focused on AQP4, an astrocyte membrane protein

shown to have a readthrough version in other species by previous

studies (De Bellis et al., 2017; Loughran et al., 2014). To detect

readthrough-extended AQP4 (designated AQP4X hereafter), we

developed a rabbit polyclonal antibody using a peptide from the

readthrough region as an epitope. The antibody recognized

AQP4X but not AQP4 in immunofluorescence staining of cell cul-

tures expressing the respective version of AQP4, thus demon-

strating sensitivity and specificity (Figure S4). Western blot on

mouse brain lysates revealed that anti-AQP4X recognizes the ex-

pected 35-kDa band in the adult brain but not in the developing

brains of postnatal day 9 or younger mice (Figure S5A). This is

interesting because astrocytematuration, particularly the endfeet

at the blood-brain barrier, are not complete until 3 weeks of age

(Caley andMaxwell, 1970). In line with western blot, immunofluo-

rescence staining showed that AQP4X is abundant in the adult

mouse brain (Figure S5B). We noted that AQP4X is significantly

concentrated perivascularly and adjacent to the endothelial cell

marker PECAM-1, whereas AQP4 is also abundant farther from

the blood vessels (Figures S5B and S5C). Similar results were

also recently reported by others with an independently raised

antibody in rats (De Bellis et al., 2017). Thus, readthrough confers

a conserved perivascular localization signal to AQP4.
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Because commercial anti-AQP4 antibodies also recognize

AQP4X, our immunofluorescence data above could not resolve

whether AQP4 also is perivascular to some extent. To address

this, we transduced mouse brains with adeno-associated virus

9 (AAV9) expressing cMyc-Aqp4X� (Aqp4 mRNA with an addi-

tional stop codon to prevent readthrough) or cMyc-Aqp4X+

(Aqp4 stop codon mutated to allow 100% readthrough) under

the astrocytic promotor Gfap and examined cMyc epitope

expression from the two viruses using immunofluorescence stain-

ing (Figure S5D). Although virally expressed proteins showed

slightly unusual subcellular expression patterns (compare Figures

S5B and S5D), possibly due to overexpression relative to binding

partners, AAV9-Gfap::cMycAqp4X� still clearly resulted in signif-

icantly less perivascular cMyc than AAV9-Gfap::cMycAqp4X+

(Figure S5E). These results are consistent with the above data

on endogenous AQP4 and AQP4X, and suggest that AQP4X is

relatively enriched in the perivascular region.

AQP4 is expressed in numerous tissues and required

for their normal functioning (Mobasheri et al., 2007; Nagelhus

and Ottersen, 2013). Therefore, we also asked whether its

readthrough is a brain-specific or a ubiquitous phenomenon.

By immunofluorescence staining, we detected AQP4X in the

retina as well as the kidneys (Figures S5F and S5G). However,

whereas AQP4X was mostly perivascular, and hence distinct

from AQP4 in the retina, it was completely overlapping with

AQP4 in the kidneys. Thus, AQP4 readthrough is not a brain-

specific phenomenon; however, whether it alters subcellular

localization depends on the tissue.

AQP4 and AQP4X Are Differentially Regulated by Gliosis
across Multiple Disease Models
Currently, it is unclear whether readthrough always occurs at a

consistent rate or is regulated in response to conditions in the

brain. The AQP4 gene has been implicated in diverse (patho)

physiological conditions in the brain, including brain water

homeostasis, edema, and ischemia (reviewed in Nagelhus and

Ottersen, 2013). Given the largely mutually exclusive localiza-

tions of AQP4 and AQP4X in the brain, we first examinedwhether

they are independently regulated in ischemia. We induced

ischemia in adult mice by transient middle cerebral artery occlu-

sion (tMCAO). In mice, MCAO results in relatively reproducible

infarcts in the lateral caudatoputamen and frontoparietal cortex

(Sicard and Fisher, 2009). We performed immunostaining for

AQP4 and AQP4X in ischemic mouse brains and quantified their

signals in gliotic peri-infarct regions. We found that compared to

the regions in the contralesional hemisphere, GFAP-labeled peri-

infarct regions showed a 2.5-fold upregulation of AQP4 but only

a disproportionate 1.3-fold upregulation of AQP4X (Figures 5A

and 5B). This difference suggested that AQP4X generation,

degradation, post-translational modification, or folding can be

differentially regulated during pathological processes.

To determine whether this regulation was driven by the

ischemia itself or was more parsimoniously explained as part

of gliosis, we used mice lacking palmitoyl protein thioesterase-

1 (PPT1), a lysosomal enzyme that is absent in human patients

with infantile Batten disease (Gupta et al., 2001). PPT1�/� mice

exhibit several key features of this disease, including neurode-

generation and gliosis (Bible et al., 2004; Gupta et al., 2001).



Figure 5. AQP4 and AQP4X Are Differentially Upregulated in Gliosis
(A, C, and E) Immunostaining for AQP4, AQP4X, and GFAP in brain sections frommice with middle cerebral artery occlusion (A), infantile Batten disease (C), and

injury-induced gliosis (E). Normal and gliotic hemispheres of the same sections are imaged in (A) and (E), and age-matched wild-type littermate controls are used

in (C).

(B, D, and F) Fluorescence intensities in (A), (C), and (E) quantified in (B), (D), and (F), respectively, show that AQP4 is significantlymore upregulated than AQP4X by

gliosis. Regions of interest were drawn to cover the gliotic area and the contralateral normal area in (A), whereas whole images were considered in (B) and (C). 3

mice, 6 sections/mouse, paired t test; error bar, SEM.

(G) Barplot compiles the relative upregulations of AQP4 and AQP4X from (B), (D), and (F).

Scale bars, 20 mm. Also see Figures S4 and S5.
We compared the expression levels of AQP4 and AQP4X in

PPT1�/� and wild-type brains using immunofluorescence stain-

ing and observed that they were indeed differentially regulated in
response to gliosis in the knockout brains. Whereas AQP4

expression was 2.5-fold upregulated, AQP4X was 1.5-fold upre-

gulated (Figures 5C and 5D).
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Figure 6. TRAP-RF Detects Cell-Type-Spe-

cific Stop Codon Readthrough In Vivo

(A) TRAP-RF workflow. mRNAs from transgenic

brains expressing GFP-tagged ribosomes in

neurons (Snap25::Rpl10a-Egfp) or astrocytes

(Aldh1l1::Rpl10a-Egfp) are affinity purified with

anti-GFP-conjugated magnetic beads, and sub-

jected to on-bead digestion with RNase and the

subsequent RF protocol as shown.

(B and C) Log2 (reads per kilobase million [RPKM])

of ribosome footprints mapping to the coding

sequence (B) and proximal 30 UTR (C) was repro-

ducible between the replicate samples for both

Snap25::Rpl10a-Egfp and Aldh1l1::Rpl10a-Egfp.

(D) Comparison of TRAP-RF samples between

neurons and astrocytes shows the expected

enrichment of neuronal (green) and astrocytic (red)

transcripts identified in previous experiments

(Dougherty et al., 2012).

(E) Of the 50 transcripts detected undergoingR1%

readthrough in the brain, 21 are neuronal, 19 are

astrocytic, and the remaining 10 are non-cell-type

specific.

(F) Of the 18 transcripts with R1% readthrough in

neuron-glia culture, 13 do so in vivo as well.

IP, immunoprecipitation. Also see Table S4 and

Figures S3 and S6.
We also examined whether injury-induced gliosis also exerts a

similar regulatory effect on AQP4 and AQP4X, using tissue from

mice having undergone stereotactic injection, which can also

induce gliosis. We marked the site of injection using AAV9 ex-

pressing cMyc-tagged Cyan Fluorescent Protein (CFP) under

the Gfap promoter (Sakers et al., 2017). A robust expression of

cMyc and CFP (data not shown) and mild gliosis were evident

along the injected line after 1 month (Figure 5E). We then

repeated the immunostaining as above and found gliotic regions

to express AQP4 at �3-fold and AQP4X at 1.5-fold more

intensely as compared to the uninjected contralateral side (Fig-

ures 5E and 5F). Overall, our results indicate that diseases and

conditions accompanied by gliosis differentially regulate the

two isoforms of AQP4 (Figure 5G).

TRAP-RF Identifies Novel, Cell-Type-Specific,
C-Terminal Extensions Mediated by Stop Codon
Readthrough In Vivo

We finally sought to rule out the possibility that many alternate

translation events are due to the unnatural conditions of cell cul-

ture, and to determine whether the phenomenon is regulated in

a cell-type-specific manner. Therefore, we assessed alternative

translation in vivo, specifically focusing on readthrough, which,

unlike TISs, can be detected without pharmacological manipula-
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tion of the brain. Further, to analyze read-

through in a cell-type-specific manner,

we used mouse lines that express GFP-

tagged ribosomes in either neurons

(Snap25::Rpl10a-Egfp) or astrocytes

(Aldh1l1::Rpl10a-Egfp), thus allowing the

affinity purification of neuronal or astro-
cytic ribosome-bound mRNA (Dougherty et al., 2012; Doyle

et al., 2008).We subjected the transgenic brains to TRAP followed

by RF, an approach we call TRAP-RF (Figure 6A), similar to one

recently described by Gonzalez et al. (2014). The resulting foot-

prints mapping to the transcriptome were highly reproducible be-

tween replicates (Figures 6B and 6C) and showed 3-nt periodicity

in the CDS (Figures S6A and S6B), indicating a good reliability of

the approach we have developed.

We confirmed enrichment of neuronal and astrocyte marker

genes in Snap25::Rpl10a-Egfp and Aldh1l1::Rpl10a-Egfp

TRAP-RF data, respectively, matching prior non-footprinted ex-

periments using these lines (Dougherty et al., 2012; Doyle et al.,

2008), indicating we were indeed profiling ribosomes enriched

from the cell types of interest (Figure 6D). To be sure this

was not due to any TRAP-specific artifact, we also confirmed

robust enrichment of cell-type-specific markers derived from

neuron- and astrocyte-specific immune-panned transcriptomes

reported by Zhang et al. (2014b) (not shown). We went on and

applied the same stringent criteria as used for in vitro cultures

above to detect readthrough events and identified 50 transcripts

with at least 1% readthrough in the TRAP-RF data (Table S4),

and these were reproducible across replicates. To confirm these

were likely coding, we examined the codon bias of these regions.

Protein-coding regions show a conserved preference for



particular codons, and comparing the readthrough fragments to

an equivalent number of length-matched fragments from tran-

scripts without readthrough revealed a significantly enriched

codon bias in the readthrough fragments (p < 0.002) that

matched the codon preferences of standard CDSs (not shown),

consistent with coding potential. Of the 50 transcripts, 21 were

neuron enriched, 19 were astrocyte enriched, and the remaining

10were non-cell-type specific (Figure 6E). Comparing the in vitro

and in vivo results, we found that 13 out of the 18 in vitro candi-

dates had clearly detectable readthrough in vivo (Figure 6F),

including Aqp4 and Mdh1.

Finally, we analyzed the 50 readthrough candidates to deter-

minewhether any cis-regulatory elements in the nearby sequence

mediate this phenomenon. Of the three standard stop codons, we

found TGA to be overrepresented in the readthrough candidates

(Figure S6C), consistent with prior studies (Jungreis et al., 2011).

Similarly, motifs for specific RNA-binding proteins were enriched

in readthrough regions as compared to shuffled sequence con-

trols and readthrough-negative controls, suggesting these pro-

teins might regulate specific aspects of readthrough candidates

(Figures S6D and S6E). In contrast to prior studies in other sys-

tems, however, we saw no bias for CUAG immediately down-

stream of the stop codon (Loughran et al., 2014). Further, we

found that readthrough regions were only moderately, but not

significantly, conserved as compared to the analog regions in

readthrough-negative transcripts (odds ratio 1.83, p = 0.19) (Fig-

ure S6F). Finally, we noticed that readthrough regions contain less

free energy than the analogous regions in readthrough-negative

transcripts (Figure S6G), suggesting the possibility that in addition

to the motifs for specific RNA-binding proteins, stable RNA

secondary structures might influence the phenomenon. Overall,

our TRAP-RF analysis identified both cell-type-specific and

shared readthrough candidates that possess specific sequence

features and possibly generate functionally important C-termi-

nally extended protein variants in the brain.

DISCUSSION

Initially identified as viral strategies to diversify protein repertoire

(Sangar et al., 1987; Schwartz et al., 1992; Weiner and Weber,

1971), non-canonical translational events were later also re-

ported in eukaryotes, including humans (Bazykin and Kochetov,

2011; Dunn et al., 2013; Ingolia et al., 2011; Jungreis et al., 2011;

Loughran et al., 2014). Now we present the first study showing

their extensive use in the brain. Specifically, we show that hun-

dreds of neural transcripts use uTISs and dTISs in vitro, and

dozens undergo stop codon readthrough in specific cell types

of the brain in vivo. Our MS data demonstrate that several of

the uTISs and dTISs do give rise to measurable protein products

from neurons. Although MS did not identify any readthrough

peptides (more below), we ascertained the presence of AQP4X

in vivo using a readthrough-specific antibody. Thus, we establish

that non-canonical translation contributes to the heterogeneity

of the neural proteome.

We also provide two lines of evidence that the products of

non-canonical translation are likely to have functional signifi-

cance in the brain but are not simply abnormal proteins destined

for immediate degradation. First, we found that they are regu-
lated: more than one hundred transcripts altered their preference

for different TISs in response to KCl stimulation. De novo protein

synthesis in the brain is required for not only housekeeping func-

tions but also specialized functions such as long-term potentia-

tion (Kandel, 2001). It is conceivable that the protein isoforms

induced by depolarization are involved in carrying out such brain

functions. Second, we found that readthrough localizes AQP4 to

astrocyte endfeet that enwrap the blood-brain barrier, and the

amounts of AQP4 and AQP4X are differentially altered in diverse

pathological conditions involving gliosis. These findings on

AQP4 and AQP4X might be of importance in the context of dis-

eases such as stroke, in which cerebral edema is often a fatal

complication (Rosand and Schwamm, 2001), and infantile

Batten disease, in which the blood-brain barrier is disrupted

(Saha et al., 2012). Intriguingly, endfoot-polarized AQP4 is

required for the efficient removal of amyloid beta from the brain

(Iliff et al., 2012; Kress et al., 2014) and is lost in mousemodels as

well as human patients with Alzheimer’s disease (Park et al.,

2014; Yang et al., 2011; Zeppenfeld et al., 2017), suggesting

that promoting AQP4X biosynthesis improves the disease

outcome. Identification of regulators of Aqp4 readthrough and

generation of AQP4X�/� mice will allow the explicit testing of

the possible role of AQP4X in these diseases. Overall, we provide

compelling evidence that alternative protein isoforms have

implications in both normal brain functions and neurological

diseases.

Thus far, we have confirmed alternative isoforms for only a

subset of proteins by MS, although RF suggested the possibility

of hundreds of such isoforms. To some extent, this reflects the

fact that peptide-based measures are inherently more chal-

lenging and less sensitive than sequencing-based ones. For

instance, Menschaert et al. detected only 16 N-terminally

extended proteins in mouse embryonic stem cells using MS

(Menschaert et al., 2013), although Ingolia et al. had shown the

possibility of 570 of such proteins in the same cells using RF (In-

golia et al., 2011). Similarly, Sendoel et al. detected 13 peptides

corresponding to uTISs in transformed epidermal cells, although

they had identified 215 uTISs using RF (Sendoel et al., 2017).

Some of the alternative isoforms might exist in very small

amounts or be rapidly degraded after translation, further limiting

the ability of MS to detect them. In addition, our MS experiment

was conducted on a purer neuronal population cultured from a

younger age than the RF studies and hence was insensitive to

astrocyte-specific proteins such as AQP4. Another challenge is

that it is not entirely clear which amino acid would be included

in the peptide chain in lieu of the stop codon, and thus the

expected MS spectra of readthrough peptides are inherently

unpredictable. Indeed, the peptide found for Aqp4 had a

mass-to-charge ratio indicating it included arginine at the stop

position. It is also quite possible that many alternative TIS and

readthrough events do not produce stable proteins but serve

regulatory functions by engaging ribosomes. uTISs specifically

have been reported to serve regulatory functions in several tran-

scripts (Calvo et al., 2009), often serving as decoys to suppress

the usage of the aTIS in a regulated manner. A prevalence of

such sequences would be consistent with the difficulty in detect-

ing protein products, the relatively high frequency of movement

of ribosomes from uTISs to aTISs during stimulation, and
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potentially even significantly lower conservation of NTGs in UTR

sequences in general. Evolution across species is posited to be

driven more by changes in gene regulation (King and Wilson,

1975), typically interpreted with regard to enhancer usage

(Rubinstein and de Souza, 2013). The same logic may be true

at the level of regulation of translation initiation, and thus

evolution of new uTISs might serve to modulate protein levels

across species. Thus, negative results from the MS study should

be interpreted cautiously.

Our findings on TISs and readthrough highlight the several

potential mechanisms that may warrant future investigation.

We found that many alternative TISs are differentially used in

response to KCl, which is known to stimulate neurons by phos-

phorylating CREB protein via an influx of Ca2+ through L-type

Ca2+ channels (Macı́as et al., 2001). Previously, we have shown

that KCl stimulation of neural cultures modulates the ribosomal

occupancy of specific CDSs (Dalal et al., 2017). Others have

shown that KCl stimulation of neuronal cultures enhances TIS

by promoting the expression and activity of EIF4E (Moon

et al., 2009). What remains to be shown is how exactly the

KCl pathway influences the choice of a TIS by ribosomes. It is

intriguing to speculate whether it does so by regulating cis

elements like RNA secondary structures or phosphorylation

and regulation of trans factors such as RNA-binding proteins.

Likewise, we found that AQP4 readthrough is of functional

significance, and AQP4X level is differentially regulated by

gliosis. This, together with the conservation of several read-

through peptides in humans (De Bellis et al., 2017; Dunn

et al., 2013; Eswarappa et al., 2014; Stiebler et al., 2014), sug-

gests that there are pathways that actively regulate the process.

Targeted manipulation of any such pathways may help define

the role of stop codon readthrough in the brain or other tissues.

Until then, targeting individual transcripts for deep analysis, as

was done for Aqp4 (De Bellis et al., 2017), may continue to

uncover novel roles for individual products arising from such

alternative translation events.
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Critical Commercial Assays

Dual Luciferase Reporter Assay Promega E1960

Deposited Data
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STAR (version 2.3.1z8) Dobin et al., 2013 https://github.com/alexdobin/STAR/

Bowtie2(version 2.2.2) Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/index.shtml

riboSeqR Bioconductor 10.18129/B9.bioc.riboSeqR
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Specificity Index Dougherty et al., 2010 https://cran.r-project.org/web/packages/pSI/
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MaxQuant software version 1.5.2.10 http://www.coxdocs.org/

doku.php?id=maxquant:start

MaxQuant

riboWaltz Lauria et al., 2018 https://github.com/LabTranslationalArchitectomics/

RiboWaltz
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ViennaRNA Package 2.0 Lorenz et al., 2011 https://www.tbi.univie.ac.at/RNA/

Biostrings Bioconductor 10.18129/B9.bioc.Biostrings
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Joseph

D. Dougherty (jdougherty@genetics.wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All procedures involving mice conformed to the Washington University institutional animal care and use committee. FVB

and C57BL/6J mice were purchased from the Jackson Laboratory. We have previously described Snap25::eGFP-RpL10a and

Aldh1l1::eGFP-RpL10a mice (Dougherty et al., 2012; Doyle et al., 2008), and others have described Ppt1�/� mice (Gupta et al.,

2001). For immunostaining, tMCAO and viral transduction experiments, three mice (per test group where applicable) were used.

Except tMCAO, for which only male mice were used, all mouse experiments included both sexes. Mouse ages were embryonic

day {E} 16.5 (LC-MS); postnatal day {P} 0 (in vitro RF); P1 (viral experiment for perivascular proportions of Aqp4 and Aqp4X);

E17.5, P0, and P21 (Western blot); P21 (TRAP-RF, Aqp4X immunostaining); 14 weeks (tMCAO); 3 months (needle injury); and

6 months (immunostaining in Ppt1�/�).

Cell Lines and Primary Cultures
DBT glioblastoma cell line, derived from female mice, was used in dual-luciferase and antibody validation experiments has been pre-

viously reported (Kumanishi et al., 1973) and was obtained from Dr. Keith M. Rich’s laboratory at Washington University in St. Louis.

Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 5% fetal calf serum and 100 units/mL each of penicillin and

streptomycin and incubated at 37�C and in a humidified atmosphere with 5% CO2.

We have previously described themouse primary neuron-glia cultures used for RF (Dalal et al., 2017) and primary neuronal cultures

used for LC-MS (Prabakaran et al., 2014).

METHOD DETAILS

Culture
Neuron-glia mix cultures from the cortices of full litters of P0 FVB mouse pups were generated as described (Dalal et al., 2017). After

7 days in vitro, cells were treated with 2 mg/ml HHT ((LKT lab) and compared to parallel cultures treated with DMSO (Dalal et al., 2017)

(Sigma) for 2min, and then with 100ug/ml CHX (Sigma) for 7 min at 37�C before being lysed for RF (Ingolia et al., 2011). For examining

activity-induced TISs, cells were depolarized with 55mM KCl for 3 h (Bading et al., 1993; Kim et al., 2010) before HHT and CHX treat-

ments. RF was conducted in duplicates.

RF
RF of cultured cells was performed as described (Dalal et al., 2017; Ingolia et al., 2011). Briefly, the cell lysates were treated with

RNaseI and subjected to sucrose-cushion ultracentrifugation for pelleting monosomes. mRNA fragments were isolated from the

monosomes, size-selected in a polyacrylamide, ligated to cloning linkers, and converted to cDNAs. The cDNAs were then circular-

ized, depleted of rRNAs, PCRed and size-selected and finally deep-sequenced on Illumina Hiseq 2000 (50 bp, single end). Ribosomal

profiles of replicate cultures were highly reproducible, with Pearson’s r > 0.96.
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TRAP-RF
P21 Snap25::eGFP-RpL10a, Aldh1l1:: eGFP-RpL10a, along with their eGFP-negative littermates were euthanized, and their brains

frozen in liquid nitrogen and stored at �80�C until use. Two brains were pooled per sample, and replicate experiments were done.

TRAP was performed as described (Heiman et al., 2008) with a few modifications. Briefly, the brains were homogenized in ice in a

buffer (20 mM pH 7.4 HEPES, 150 mM KCl, 5 mM MgCl2, 0.5 mM dithiothreitol, 100 mg/ml CHX, Turbo DNase, protease inhibitors,

and RNase inhibitors). The lysates were cleared by centrifuging at 2000 xg for 10 min at 4�C and then treated with DHPC (to 30mM,

Avanti) and NP-40 (to 1%, Ipgal-ca630, Sigma) for 5 min in ice. Lysates were then further cleared by centrifuging at 20,000 xg for

15min at 4�C and thenmixed with protein L-coatedmagnetic beads (Invitrogen), previously conjugated with amix of twomonoclonal

anti-GFP antibodies (Doyle et al., 2008), and incubated with rotation for 4 h at 4�C. Beads were washed 5 times with a high-salt

buffer (20mMpH7.4HEPES, 350mMKCl, 5mMMgCl2, 1%NP-40, 0.5mMdithiothreitol, and 100 mg/ml CHX) and then resuspended

in normal-salt buffer (150 mM KCl, otherwise as above). To couple to RF, on-bead RNA digestion was performed with RNase I

(Invitrogen) for 1 h with end-to-end rotation, followed by washing three times with normal-salt buffer. Small ribosomal subunits

with the mRNA fragments were eluted with ribosome dissociation buffer as described (20 mM pH7.3 Tris-HCl, 250 mM NaCl,

0.5% Triton X-100, 50mM EDTA) (Gonzalez et al., 2014). RNA was extracted with phenol-chloroform, quality-tested with Agilent

BioAnalyzer, and then subjected to dephosphorylation and subsequent library preparation as described for RF above.

Analysis of Sequence Data
Culture and TRAP-RF sequencing results were quality-tested using FastQC (version 0.11.2) (Simon, 2010), and one culture RF sam-

ple was removed due to low read depth. Trimmomatic (version 0.32) was used to trim low-quality bases from the ends of reads and to

remove adaptor sequences (Bolger et al., 2014). Only fragments 25-35 nt in length were retained for subsequent analysis. Reads

aligning to the mouse rRNA were removed using STAR (version 2.3.1z8) (Dobin et al., 2013). Surviving reads were then aligned, using

bowtie2(version 2.2.2) (Langmead and Salzberg, 2012), to the mouse transcriptome (downloaded from Ensembl Release 75) after

first removing degenerate sequences from the transcriptome as described (Dunn et al., 2013; Ingolia et al., 2009), retaining both

uniquely mapped and multi-mapped reads.

d TIS identification

For TIS analysis on neuron-glia culture RF data, we focused on the 50-UTR region and proximal 300bp of the CDS and excluded the

downstream region where ribosome runoff after HHT treatment was not complete. In order to calculate TIS score, we used riboSeqR

package and identified ribosomal P sites, which are known to exist at the 12th, 13th or 14th nts of the footprints of lengths 28-29, 30-31,

and 32-33 nts, respectively (Ingolia et al., 2009; Lee et al., 2012). To redress small possible errors in the P site estimation, the P site

counts were smoothed by taking an average of the total counts in a 3 nt window, one nt on each side of the initially identified P site. TIS

score at every nt position on a transcript was calculated as:

D=RHHT--RCHX

Where RHHT = XHHT / NHHT * 10 andRCHX = XCHX / NCHX * 10. X is the smoothed P site count at a position, andN is the total counts in the

50UTR and the proximal 300 nt region of the transcript.

The following procedure was used to call TISs

(1) 10 candidate peaks were found in each transcript. The first peak was picked based on highest TIS scores. On each side of this

peak, the locations were masked when finding the next peaks if: the location is less than k-bp (k = 9) away from the current

peak; or TIS scores keep decreasing from the current peak. The next peaks are selected the sameway in the unmasked region

of the transcript.

(2) Assuming that there is at least one TIS per transcript, the first peak is always called a TIS.

(3) If m (m < 10) of the 10 candidate peaks were already called as TISs, for the next peak, a score Sm+ 1 =Dm+1=
Pm

i = 1Di is calc-

uated, whereDi is the TIS score at the i-th peak. If Sm+ 1 > 0:08, this peak is also called as a TIS. Otherwise, only the previousm

TISs are called for this transcript. This step assures we are only focusing on TISs capturing at least �8% of initiating ribo-

somes.

Using this algorithm, TISs were called based on the total P site counts in KCl treated and untreated samples. TISs for a transcript in

the two samples were considered the same if they were% 3bp away from each other. For each TIS, the P site count rate was calcu-

lated as the P site count over the total counts over all TIS positions. A TIS was excluded if the average rate in KCl+ and KCl- samples

was < 0.08. Although we started off with 10 candidate peaks, not all of them could be reliably detected across samples; therefore, at

this step we kept only the top five that were reliably detectable across most samples. If more than 5 TISs were called for a transcript,

only the top 5 TISs with the highest total P site count rates across KCL+ and KCL- samples were kept. If a NUG codon lay within 3bp

from the called TIS, the TIS was considered overlapping and hence relocated to the position of that NUG codon.

With above criteria, only transcripts with high P site counts at TIS locations can be used to get reliable TIS calls across samples.

Requiring the peak P site counts ofR 32 in the considered region of a transcript in the HHT treated group for both KCl+ and KCl-, a

total of 426 transcripts were kept for TIS evaluations.
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d Readthrough identification

In order to count reads aligning to non-overlapping regions for readthrough analysis in culture and TRAP-RF data, we used the

BEDTools intersect command (Quinlan and Hall, 2010). Then, similar to prior work (Dunn et al., 2013), we removed reads aligning

to the following positions: 12 nts after the start codon; 15 nts before and 9 nts after the first stop codon, and 15 nts after the second

stop codon. This resulted in four remaining transcriptomic regions: 50UTR, CDS, readthrough region, and distal 30UTR. Reads were

counted in each of these regions using the uniq Unix utility.

Readthrough analysis was performed in R. Transcripts were filtered based on CDS counts as follows: in culture RF, transcripts with

R 320 CDS counts across all samples were retained, and in TRAP RF, transcripts withR 128 CDS counts across replicates in either

the Aldh1l1 or Snap25 samples were retained. Subsequently, to avoid false positive identification of readthrough events because of

alternative splicing, if a gene was annotated as having multiple isoforms with stop codons at different genomic locations, only the

transcript with the downstream-most stop codon was retained.

Using edgeR (Robinson et al., 2010), counts were normalized to RPKM, and readthrough rate was defined for each transcript as the

ratio of readthrough region RPKM to CDS RPKM. Next, transcripts with R 32 readthrough region counts across samples were re-

tained. In both culture RF and TRAP-RF datasets, surviving transcripts with R 1% readthrough rate in at least 2 samples were re-

tained for readthrough analysis. Genes with R 100% readthrough or with RPKM (distal 30UTR) R RPKM (readthrough region), for

any transcript isoform or in any sample, were labeled false positives and eliminated.

d Identification of cell type-specific transcripts in TRAP-RF data

For quality assessment and filtering of TRAP-RF data, CDS counts were normalized to CPM using the edgeR package. Due to the

expression of some glial transcripts in neuronal samples and vice versa, transcripts were classified as either detectable with high

confidence in neurons or astrocytes or as nonspecific background, consistent with prior work (Dougherty et al., 2010). Transcripts

were classified as neuron-detectable by first calculating the average log2-fold-change (logFC) in expression between Aldh1l1 and

Snap25 samples for genes identified as neuronal markers (Dougherty et al., 2012). Among those transcripts surviving initial CDS

count filtering, transcripts with logFC greater than this average plus two standard deviations were identified as detectible in neurons

with 96%confidence. Astrocyte-detectable transcripts were identified analogously. Remaining transcripts were designated non cell-

type specific.

Proteomics
d Sample preparation

Neuronal MS data were obtained similar to the method of Prabakaran et al., 2014 (Prabakaran et al., 2014). In short, E16.5 cortical

neurons were cultured for 7 days (3 biological replicates) and depolarized with 55 mM potassium chloride (KCl) for 0, 15, 30, 60, 90,

120 m. For each time point, proteins were extracted in Qproteome mammalian cell lysis buffer (Complete mini and PhosphoSTOP

tablets added (Roche)) using a probe sonicator (15sec, 2x). Protein extracts were reduced with 50 mM dithiothreitol (20 min,

56�C), alkylated with iodoacetamide (30 min, RT), diluted with 8M urea in 50mM triethyl ammonium bicarbonate (TEAB) and digested

using filter aided sample preparation (FASP Protein Digestion Kit, Expedeon). Digestion was performed overnight 37�C with 2 ng/ml

trypsin (Sequencing Grade Modified Trypsin, Promega) in 50 mM TEAB and peptides were subsequently labeled on-filter using

isobaric tags (TMT6plex, Thermo Fisher) according to the manufacturer’s instructions. Labeling was quenched using 5% hydroxyl-

amine and peptides were eluted from the filters using 500 mM NaCl and acidified with 2% formic acid. 10 uL of each peptide eluate

were pooled, desalted using C18 silica tips (Nestgroup) to assess labeling efficiency and to adjust sample amounts to ensure 1:1 total

protein ratios across channels prior to analysis of the remaining samples. Labeled samples were mixed 1:1 and samples were de-

salted using Oasis HLB columns (Waters). One half of the sample volume was fractionated using high-pH HPLC fractionation on

an Xbridge C18 (3.5mm) 10cm column (Waters) into 55 fractions, the other half by isoelectric focusing on off-gel pH 3-10 Immobiline

Dry Strips (GE Healthcare) into 24 fractions. HPLC fractions were combined based on peptide chromatogram intensities into 22 frac-

tions, whereas isoelectric focusing fractions were desalted using C18 silica tips (Nestgroup). Post vacuum drying, fractions were re-

constituted in sample buffer (5% formic acid, 5% acetonitrile) for MS analysis.

d MS analysis

Samples were analyzed on a QExactive mass spectrometer (Thermo) coupled to a micro-autosampler AS2 and a nanoflow HPLC

pump (Eksigent). Peptides were separated using an in-house packed C18 analytical column (Magic C18 particles, 3 mm, 200 Å,

Michrom Bioresource) on a linear 120 min gradient starting from 95% buffer A (0.1% (v/v) formic acid in HPLC-H2O) and 5% buffer

B (0.2% (v/v) formic acid in acetonitrile) to 35% buffer B. A full mass spectrum with resolution of 70,000 (at mass-to-charge of 200)

was acquired in amass range of 300-1500mass-to-charge (AGC target 33 106, maximum injection time 20ms). The 10most intense

ions were selected for fragmentation via higher-energy c-trap dissociation (HCD, resolution 17,500, AGC target 2 3 105, maximum

injection time 250 ms, isolation window 1.6 mass-to-charge, normalized collision energy 27%).

Raw data were analyzed by MaxQuant software version 1.5.2.10 and peptide lists were searched against the mouse Uniprot pro-

tein sequence database (February 2016, reviewed entries appended with common laboratory contaminants [cRAP database, 247

entries]) appended with the alternative translational products using the Andromeda search engine. The following settings were

applied: trypsin (specificity set as C-terminal to arginine and lysine) with up to two missed cleavages, mass tolerances set to 20

ppm for the first search and 4.5 ppm for the second search.Methionine oxidation andN-terminal acetylation were chosen as dynamic

modifications and carbamidomethylation of cysteine and TMT labeling of peptide N-termini and lysine residues were set as static
Cell Reports 26, 594–607.e1–e7, January 15, 2019 e4



modifications. Theminimumpeptide length was set to seven amino acids. False discovery rates (FDR) were set to 1%on peptide and

protein levels as determined by reverse database search. Peptide identification was performedwith an allowed initial precursor mass

deviation up to 7 ppm and an allowed fragment mass deviation of 20 ppm. For all other search parameters, the default settings were

used.

In Silico Analysis of TISs and readthrough
d Conservation analysis of uTISs and dTISs and readthrough regions

For computing conservation scores of uTIS per transcript, phastCons format files were downloaded from UCSC Table Browser,

querying the coordinates of uTIS codon from the table of phastCons60way. Next, the average score of the three nucleotides was

calculated to define the codon conservation score. Each non-uTIS NTGs in the 50UTR was annotated using a sliding window

approach, and then the codon conservation score was extracted using a similar strategy as for uTISs. These codons were further

classified into in-frame and out-of-frame based on their location relative to translation start site. To compare uTIS codon score

with average score of 50UTR, average score of the entire 50UTR given transcripts with uTIS was calculated. dTISs were analyzed simi-

larly, except that the corresponding CDSs were considered in place of the 50UTRs.
For the readthrough region, phastCons format files were downloaded using stop codon coordinates, and the average of the con-

servation scores of the nucleotides in the region was calculated.

d Three nucleotide periodicity

Three-nucleotide periodicity was plotted using the riboWaltz R package as described (Lauria et al., 2018).

d Kozak score computation

A Kozak score of each TIS was computed by comparison to a position weight matrix derived from an empirical assay of ribosome

recruitment on synthetic sequences (Sample et al., 2018). Briefly, from a pool of 300,000 randomized 50UTRs driving a reporter

expression, the repressive strength of all out-of-frame uTISs was calculated considering all permutations of NNNAUGNN (except

when NNN is AUG). Using the 20 most repressive sequences (i.e., competent to recruit ribosomes), a position weight matrix was

created, based onwhich the scores for Kozak sequences in natural 50 UTRs studied here were calculated using ‘‘log2probratio’’ func-

tion in Biostrings package.

d Motif analysis

Analysis of motif enrichment in the readthrough region was done using CISBP-RNA mouse specific database as described (McLeay

and Bailey, 2010). As controls, 1080 shuffled sequences derived from the readthrough region or 46 readthrough-negative transcripts

were used. Readthrough-negative transcripts were selected to be have robust brain expression and comparable lengths between the

first and second stop codons. Position weight matrices were created using WebLogo (Crooks et al., 2004).

d Free energy computation

Minimum free energies of 48 readthrough transcripts and the 46 readthrough-negative transcripts with comparable lengths between

the first and second stop codons were calculated using ViennaRNA Package 2.0 as described (Lorenz et al., 2011).

d Codon bias analysis

Sequences of interest were selected using BioMart in R, and relative synonymous codon usage (RSCU) (Sharp et al., 1986) was

calculated using the seqinr package for candidate sequences. For readthrough fragments, a codon bias was calculated for each

amino acid as RSCU of the most preferred codon – RSCU of the least preferred codon, and a paired t test was used to compare

this bias calculated from the readthrough positive fragments and a matched set of readthrough negative fragments (defined as

above). For dTIS compared to aTIS, we analyzed codon frequency for 36 nucleotides, starting from the ATG for all sequences

and analyzing only the dTIS with highest confidence for coding potential (in frame, starting with NUG). We tested for alteration of

codon usage using a Chi-test, with Benjamin Hochberg multiple testing correction.

Dual-luciferase assay
Aqp4 test cassette (the last 15 nts of the CDS + 1st stop + 84 nts before the 2nd stop), a negative control (extra stop added after the 1st

stop) or a positive control (1st stop mutated to a sense codon) was cloned between the Renilla and Firefly luciferases of pdLUC, a

dual-luciferase vector that expresses Renilla luciferase constitutively but Firefly luciferase only if the cloned construct is read by ri-

bosomes (Fixsen and Howard, 2010). The test and control plasmids were transfected into DBT glioblastoma cell cultures. After 48 hr,

the two luciferase activities were quantified using the Dual-Luciferase Assay System and GloMax Luminometer with dual injectors

(Promega) following manufacturer’s instructions. Readthrough rate was calculated as described (Grentzmann et al., 1998) and as

follows:

ðFirefly activity=Renilla activityÞtest
ðFirefly activity=Renilla activityÞ+Ct

X100
Immunofluorescence staining
Brain sections, except for those from mice with MCA occlusion, were collected and processed as follows. Adult mice were

euthanized and perfused transcardially with 15 mL ice-cold PBS and then 20 mL 4% ice-cold paraformaldehyde in PBS. Brains

were harvested, fixed in 4% ice-cold paraformaldehyde overnight, and cryoprotected with 10%, 20%, and 30% ice-cold sucrose
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in PBS for 4 h, 4 h, and overnight, respectively. Brains were then frozen in OCT (Sakura Inc), sectioned at 40 mm, and stored at 4�C in

PBS+0.01%NaN3 until staining. For staining, floating brain sections were blocked with 5% normal donkey serum plus 0.3% Triton�
X-100 in PBS at room temperature for 1 h, incubated with primary antibody in block at 4�C overnight, washed three times with PBS,

incubated with Alexa fluorophore-conjugated secondary antibodies (1:500, Invitrogen) in block at room temperature for 1 h, washed

two times with PBS, incubated with 300nM DAPI (Sigma) at room temperature for 5 m, washed two times with PBS, and mounted for

confocal imaging (Perkin Elmer).

Brain sections from mice with MCA occlusion were prepared as follows. After transcardial perfusion and overnight fixation as

above, the brains were sliced at 1.5 mm, washed with cold PBS for 1 hr and then dehydrated in a series of ethanol concentrations

(50%, 70%, 80%, 95%, 100%, 100%, and 100%, each for 1.5 h). After clearing twice with xylene and vacuum-infiltering twice with

58�C paraffin, each time for 1 hr, slices were aligned in molds containing 580C paraffin and embedded in the same paraffin letting the

paraffin cool down. Sections were made at 7 um, collected on charged slides, and dried overnight. For staining, slides were first re-

hydrated by treating in Xylene (3 X 5 m), 100% ethanol (2 X 10 m), 95% ethanol (1 X 5 m), 80% (1 X 5m), 70% (1 X 5m), 50% (1 X 5m)

and distilled water (2 X 5 m). Antigen unmasking was then performed by dipping the slides in 99�C 10 mM sodim citrate buffer and

letting the buffer cool down on bench top for 30 m. Slides were then washed 2 X 5 m with PBST, and then blocked and stained as

described for floating sections above.

Staining of coverslip cultures were done as described previously (Dalal et al., 2017). Processing and staining of the retinas and

kidneyswere done as described for floating brain sections above, except that 14 um-thick sectionswere collected on charged slides.

Primary antibodies and dilutions were: mouse anti-V5 (Sigma, V8012, 1:1000), mouse anti-GFAP (Biogenex, MU020-UC, 1:1000),

rabbit anti-cMyc (Sigma, C3956, 1:100), mouse anti-cMyc (Santa Cruz, 9E10, 1:100), goat anti-AQP4 (Santa Cruz, SC-9888, 1:100),

rat anti-PECAM-1 (BD Pharmigen, 550274, 1:50), and rabbit anti-AQP4X (made in collaboration with Cell Signaling Technology,

60789, 1:1000). The anti-AQP4X was a polyclonal antibody generated by immunizing rabbits with a synthetic peptide corresponding

to residues surrounding Asp333 of mouse AQPX and purifying the antibody with protein A and peptide affinity chromatography.

Western blot
Mice were euthanized, and their brains were rapidly homogenized on ice in RIPA buffer (50 mM pH 8.0 Tris-HCl, 150 mM NaCl, 1%

NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1mM NaVO4, 1mM NaF, Roche complete protease inhibitor tablet). Lysates were

cleared by centrifuging at 16,000 xg at 4�C for 10 m. Protein concentration was measured using a BCA kit (ThermoScientific). An

aliquot of 30 mg of protein was boiled for 5min in an equal volume of 2x Laemmli buffer (BioRad) and electrophoresed in Mini-Protean

Precast gels (BioRad) for 1h at 120 V. Proteins were transferred to a polyvinyl membrane using Semi-Dry Transfer Cell (BioRad) for

30 min at 10 V and following manufacturer’s instructions. The blot was then blocked in 5% non-fat dried milk in tris-buffered saline

with 0.1% Tween-20 (TBST) for 1 h at room temperature, incubated with anti-AQP4X in block (1:2000, Cell Signaling Technology)

overnight at 4�C, washed three times with TBST, incubated with HRP-conjugated secondary antibody in block (1:5000, BioRad)

for 1 h at room temperature, washed three timeswith TBST, and finally developed using Signal-Fire ECL reagent (Cell Signaling Tech-

nology) and My ECL imager (ThermoScientific).

Transfection
DBT glioblastoma cell line was grown in 6 well plates in DMEMwith 10 fetal bovine serum (Sigma) and 1x penicillin and streptomycin.

At 60% confluency, the cells were transfected with 1.5 mg of plasmids using Lipofectamine 2000 (Invitrogen) and following manufac-

turer’s instructions. Medium was changed 24 h post-transfection, and immunofluorescence staining was done 48 h post-

transfection.

AAV preparation and intracranial injection
A cMyc tag was cloned at the 50 ends of the Aqp4 cDNA containing an extra stop codon beyond the first stop codon (cMycAqp4X-),

Aqp4 cDNA with the first stop codon mutated to a sense codon (TGA to TGG, cMycAqp4X+), and CFP cDNA. Modified cDNAs were

then cloned into pAAV-GFAP-EGFP after removing the EGFP with AgeI and HindIII. The plasmids were packaged into AAV9 by the

HopeCenter Viral Vector Core atWashingtonUniversity. Two uL of the viruseswere intracranially injected into P1 (AAV9-Gfap::cMyc-

Aqp4X- and AAV9-Gfap::cMyc-Aqp4X+) or P90 (for AAV9-Gfap::cMyc-CFP) mice. After 3 weeks, the mice were processed for

floating brain section immunofluorescence.

tMCAO
tMCAO was performed as described previously (Miller et al., 2001). Briefly, 14 week-old C57BL/6 mice were anesthetized with iso-

flurane, and the left common carotid artery (CCA) was exposed through a midline cervical incision. A 6.0-gauge nylon suture coated

with silicone was inserted in the CCA lumen and advanced through the internal carotid artery to the origin of the MCA. Interruption of

the blood flow in theMCA territory was confirmedwith laser Doppler. After 60m, the suture waswithdrawn, and the reperfusion of the

MCA territory was confirmed by inspection with an operating microscope and more distally by laser Doppler. After the procedure,

animals recovered in an incubator before returning to home cages. The brains were harvested after 24 h and processed for

immunofluorescence staining as mentioned above.
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QUANTIFICATION AND STATISTICAL ANALYSIS

P site counts (Figures 1E, 2A, 2B, 3, S1, and S6; Table S1), readthrough rate calculations (Tables S3 and S4), Pearson correlation

calculations (Figures 6B, 6C, S2B, S2C, S2E, and S2G) and statistical tests for significance were performed in R. Identification of

cell-type-specific transcripts in the TRAP-RF dataset (Figure 6D) was done with the Specificity Index package (Dougherty et al.,

2010). For uTIS and dTIS conservation analysis (Figures 2C and 2D) and minimum free energy analysis for readthrough candidates

(Figure S6), levels of significancewere calculated usingWilcoxon’s rank sum test since the score distributions appeared bimodal. For

quantifying immunofluorescence signals (Figures 5 and S5), three mice per condition and six sections per mouse were analyzed,

and t test was used. KCl depolarization-mediated changes in TIS usage were tested for significance using either Chi-square test

(Figure 3A, across individual transcripts) or paired t test (Figure 3C, pairwise comparisons). Overall difference in Kozak strengths

of the three TISs was tested post hoc using Tukey’s HSD test, whereas pairwise differences were tested using t test (Figure S2A).

Statistical tests and results are also reported in the text, figure panels and figure legends. Difference was deemed significance

when p < 0.05.

DATA AND SOFTWARE AVAILABILITY

Raw and analyzed sequencing data are available at GEO GSE77076 (Cell culture RF without HHT and with or without KCl),

GSE115483 (in vivo TRAP-RF) and our lab URL http://genetics.wustl.edu/Dougherty_Data/SapkotaEtAl_2018_upload_jdlab/ (Cell

culture RF with HHT and with or without KCl).

Scripts used for sequencing data processing as well as R codes used for downstream analyses are available upon request.
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Figure S1. Neuron/glia culture ribosome footprints indicate bona fide translation. Related to Figure 

1. A) More than 60% of P-sites detected in the footprints mapping to the CDS shows the translation of the 

correct reading frame. B) P-sites detected in the footprints mapping to the CDS exhibit 3-nucleotide 

periodicity of ribosomes. Data are from a ‘no HHT, No KCl’ sample, and the same pattern was observed 

with other samples.  

 

  



 

Figure S2. Identified TISs reveal the complexity of initiation from neural transcripts. Related to 

Figure 1. A) Kozak strength varies significantly between TISs. Overall comparison of Kozak strengths was 

done using post hoc Tukey’s Honestly Significance Difference test and showed a highly significant 

difference (p = 0, not shown in the box). Pair-wise comparison was done using t tests (***: p  0.001; ****: 

p  0.0001). B) Comparison of TIS usage and Kozak strength shows that TISs with higher Kozak scores, 

especially aTISs, are more favorably used for initiation (C) uTISs with higher Kozak scores inhibit initiation 

from aTISs. The Y axis represents the sum of the kozak scores of all uTIS in a given transcripts. (D-E) 

Longer 5’UTRs contain more uTISs (D) and inhibit initiation from aTISs more strongly than shorter 5’UTR 

(E). (F) Regression-based model prediction shows the Kozak scores of aTIS and uTIS as the strongest 

determinants of initiation from aTISs (R-squared 0.519). (G) aTISs with higher Kozak scores moderately 

reduce initiation from dTISs. r = Pearson correlation coefficient. TIS usage was calculated as the P-site 

counts at a TIS over total P-site counts across all TISs on a given transcript. Kozak Strength was 

calculated by comparing the TIS context sequences with a position weight matrix derived from an a 

polysome profiling experiment determining ribosome loading on synthetic sequences as described in 

Sample et. al., 2019 and shown in arbitrary unit in the Y axis, with 1 indicating the best strength.  

 

 

  



 

Figure S3. Detection of readthrough peptides in mouse brain mass spectrometry data. Related to 
Figures 4 and 6. (A) Peptides corresponding to three readthrough regions are shown. Stop codon-
recoded amino acids are in red. (B) Tandem mass spectra and mass-to-charge ratios (m/z) of b and y 
product ions corresponding to the Aqp4 readthrough peptide is shown. Mouse brain mass spectrometry 
data reported by Sharma et al 2015 were examined setting the posterior error probability cut off value at 
0.01.  

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Validation of anti-Aqp4X antibody. Related to Figures 5 and S5.  DBT glioblastoma cells 

were transfected with constructs expressing normal Aqp4 with an N-terminal cMyc tag (A) or Aqp4X with 

a C-terminal V5 tag (B). Immunostaining of the transfected cells shows that a cMyc-positive cell does not 

express Aqp4X, whereas a V5-positive cell does. Scale bars = 20 μM.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S5. Readthrough confers the perivascular localization ability to AQP4 in the central 
nervous system. Related to Figure 5. A) Western blot on brain lysates detects the expected 35 kD band 
in the adult brain but not in the developing brain. Note that high molecular weight smear accompanied the 
expected band, as is commonly seen for other AQP4 antibodies89. B) Immunostaining of the adult 
mouse brain shows diffused expression of AQP4 and PECAM 1-overlapping perivascular expression of 
AQP4X in different regions. C) Quantification of MFIs from B shows the signal from anti-AQP4X is 
significantly more perivascular than the total (AQP4 + AQP4X) signal from anti-AQP4. D) AAV9-mediated 
astrocytic expression of cMyc-tagged AQP4X- (an extra stop codon added to prevent readthrough) or 
AQP4X+ (stop mutated to allow constitutive readthrough) in the brain followed by immunostaining shows 
that cMycAQP4 is less contiguous with the perivascular PECAM-1 than cMycAQP4X. Regions of interest 
were drawn around PECAM-1 to distinguish perivascular cMyc. E) Quantification of cMyc MFIs from D 
shows that perivascular cMyc accounts for 4% and 14% of the total cMyc in AAV9-Gfap::cMycAqp4X- 
injected brain and AAV9-Gfap::cMycAqp4X+ injected brain, respectively. F, G) Immunofluorescence 
staining of the retina (F) and kidney (G) from adult mice shows the expression of AQP4X in these tissues. 
Note that AQP4X largely perivascular in the retina but completely overlaps with AQP4 in the kidney. The 
nuclear stain DAPI is removed from the single channel images for the retina to highlight the presence of 
AQP4 outside the perivascular region (arrow). For C and E: 3 mice; 6 sections/mouse. Unpaired t-test; 
error bars, standard errors of mean. MFI, mean fluorescence intensity; AAV9, Adeno-associated virus 9. 
Scale bars = 20 μM in B, 50 μM in D, G and G.   



 

Figure S6. Readthrough candidates show 3-nucleotide periodicity in the CDS and specific 

sequence features in the readthrough region. Related to Figure 6. A, B) P sites detected globally in 

Snap25::Rpl10a-Egfp TRAP-RF and Aldh1l1::Rpl10a-Egfp TRAP-RF are plotted in A and B, respectively. 

C) Position weight matrix reveals TGA as the commonest stop codon in transcripts undergoing 

readthrough. Inset shows the magnification of the 20-nucleotide readthrough window. D, E) Analysis of 

motif enrichment for readthrough candidates using shuffled sequences as controls (D) and readthrough-

negative candidates as controls (E) shows the overrepresented motifs for specific RNA-binding proteins. 

F) Conservation analysis of sequence between the first and second stop codons suggests that 

readthrough positive regions tend to be conserved, but not significantly, as compared to readthrough 

negative regions. Fisher’s exact test was performed on the odds ratios of positive and negative groups. 

PhastCons scores greater than 0.5 are considered to represent conservation arbitrarily. G) Wilcoxon test 

to compare minimum free energies reveals a more stable secondary structure (less free energy) between 

the first and second stop codons of readthrough candidates. 48 in vivo readthrough candidates were used 



in all analyses (2 were removed due to transcript ID problem). 46 readthrough-negative transcripts with 

matched lengths between the first and second stop codons were used in E, F and G. In C, D and E, Y 

axis represents conservation in bits.  

 

 

  



Table S2. Peptide products of alternative translation initiation sites detected in the mouse brain 

mass spectrometry data from Sharma et al, 2015. Related to Figure 2 and Table 1. “+” and “-” indicate 

downstream and upstream relative to the canonical initiation site, respectively.  

 

 

  

SN Transcript ID Gene name Alternative initiation site Frame 

1.  ENSMUST00000020657 Ube2b -24 In frame 

2.  ENSMUST00000067664 Ywhae -66 In frame 

3.  ENSMUST00000021933 Ctsl -27 In frame 

4.  ENSMUST00000030134 Rad23b -277 Out of frame 

5.  ENSMUST00000021674 Fos -46 Out of frame 

6.  ENSMUST00000100802 Nufip2 -45 In frame 

7.  ENSMUST00000067664 Ywhae -49 Out of frame 

8.  ENSMUST00000110082 Calm1 -100 Out of frame 

9.  ENSMUST00000103008 Sdcbp -54 In frame 

10.  ENSMUST00000027377 Igfbp5 -405 In frame 

11.  ENSMUST00000111230 Tagln2 7 Out of frame 

12.  ENSMUST00000031131 Uchl1 15 In frame 

13.  ENSMUST00000106255 Cap1 9 In frame 

14.  ENSMUST00000031565 Fscn1 12 In frame 

15.  ENSMUST00000112172 Tmsb4x 7 Out of frame 

16.  ENSMUST00000112229 Gpm6b 12 In frame 

17.  ENSMUST00000110082 Calm1 12 In frame 

18.  ENSMUST00000108857 Atox1 6 In frame 



Table S3. Transcripts showing at least 1% readthrough identified in vitro. Related to Figure 4.  

 

 

  

SN Transcript symbol Readthrough rate 

1.  2010107E04Rik 0.033 

2.  Aqp4 0.382 

3.  Brk1 0.048 

4.  Ctxn1 0.327 

5.  Dlx1 0.185 

6.  Dynll2 0.106 

7.  Gpm6a 0.056 

8.  Mdh1 0.154 

9.  Mlc1 0.055 

10.  Mt1 0.024 

11.  Mt2 0.041 

12.  Ncan 0.014 

13.  Pea15a 0.015 

14.  Pfn2 0.015 

15.  Plat 0.102 

16.  Ptms 0.027 

17.  Ssna1 0.322 

18.  Tmem261 0.230 



Table S4: Transcripts with at least 1% readthrough in vivo.  Related to Figure 6. Readthrough rates are an 

average of two Snap25::Rpl10a-Egfp and two Aldh1l1::Rpl10a-Egfp samples for neuron- and astrocyte-enriched transcripts, 

respectively, and an average of all four for cell type-nonspecific transcripts.  

 

 

 

 
 

 

Neuronal  Astrocytic  Non cell type-specific 

Transcript  Readthrough rate  Transcript  Readthrough rate  Transcript  Readthrough rate 

Atp1a3 0.017  Aldoc 0.065  2010107E04Rik 0.051 

Celf5 0.24  Aqp4 0.189  Arl3 0.026 

Clstn3 0.041  Atp1a2 0.025  Brk1 0.023 

Cox6a1 0.023  Clu 0.014  Camk2n1 0.035 

Ctxn1 0.18  Csrp1 0.014  Fam195b 0.08 

Dynll2 0.02  Cst3 0.019  Lmtk3 0.319 

Eef1a2 0.024  Fam19a5 0.15  Ssna1 0.294 

Fam163b 0.182  Manbal 0.078  Triap1 0.17 

Fxyd7 0.015  Fopnl 0.445  Tmem88b 0.33 

Hint1 0.064  Map4 0.317  Ubl3 0.095 

Lynx1 0.035  Mbp 0.012  

Map1lc3a 0.025  Mlc1 0.139  

Mdh1 0.071  Mt1 0.098  

Pld3 0.014  Mt2 0.037  

Prr24 0.209  Ndrg2 0.024  

Ptms 0.023  Pea15a  0.023  

Serp2 0.179  Sparc 0.009  

Thy1 0.014  Smim7 0.119   

Tmem240 0.041  Ttr 0.033  

Tmem261 0.209  

Yaf2 0.243  
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