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1 Posterior distribution of N

We find the posterior predictive distribution of N by marginalizing over subgraphs ĜS ∈
C(GR,d), N , and p,

Pr(N |Y) =
∑

ĜS∈C(GR,d)

∫ 1

0

∫ ∞
0

Pr(N, p|ĜS,Y) Pr(ĜS, λ|Y) dλ dp

=
π(N)

κ(Y)

∑
ĜS∈C(GR,d)

π(ĜS)

κ(ĜS,Y)

∫ ∞
0

L(ĜS, λ; Y)π(λ) dλ

×
∫ 1

0

L(N, p; ĜS,Y)π(p) dp.

(1)

The integral over λ is

∫ ∞
0

L(ĜS, λ; Y) π(λ) dλ =

∫ ∞
0

∏
j /∈M

sj

λn−m exp[−λs′w]
ξηλη−1e−ξλ

Γ(η)
dλ

=
ξηΓ(n−m+ η)

∏
j /∈M sj

Γ(η)(s′w + ξ)n−m+η

(2)
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and the integral over p is∫ 1

0

L(N, p|ĜS,Y) π(p) dp =

[
n∏
i=1

(
N − i
dui

)]∫ 1

0

pD
u

(1− p)nN−(n+1
2 )−Du pα−1(1− p)β−1

B(α, β)
dp

=

[∏n
i=1

(
N−i
dui

)]
B(α, β)

∫ 1

0

pD
u+α−1(1− p)nN−(n+1

2 )−Du+β−1 dp

=

[
n∏
i=1

(
N − i
dui

)]
B
(
Du + α, nN −

(
n+1

2

)
−Du + β

)
B(α, β)

(3)

where the dui ’s are computed from ĜS and d, Du =
∑n

i=1 d
u
i , and B(·, ·) is the Beta function.

The marginal posterior distribution of N is therefore

Pr(N |Y) =
π(N)

κ(Y)

∑
ĜS

π(ĜS)

κ(ĜS,Y)

ξηΓ(n−m+ η)
∏

j /∈M sj

Γ(η)(s′w + ξ)n−m+η

×

[
n∏
i=1

(
N−i
dui

)] B
(
Du + α, nN −

(
n+1

2

)
−Du + β

)
B(α, β)

.

(4)

2 Conditions for existence of moments of Pr(N |Y)

The marginal posterior mass function of N is given by (4). We seek sufficient conditions
for the posterior mass function to be proper and to have finite first and second moments
when π(N) ∝ N−c. First, note that the sum over ĜS ∈ C(GR,d) is finite, so it suffices to
consider only the conditional posterior for a particular GS. Let dui and Du =

∑n
i=1 d

u
i be

defined from knowledge of GS and d. Then the posterior mass of N given GS is

Pr(N |GS,Y) ∝

[
n∏
i=1

(N − i)!
(N − i− dui )!

]
Γ(nN −

(
n+1

2

)
−Du + β)

Γ(nN −
(
n+1

2

)
+ α + β)

N−c (5)

where we have used the definition of the Beta function as a ratio of Gamma functions. We
first provide a bound for the product term, then the ratio of Gamma functions. Each term
in the product obeys the bound

(N − i)!
(N − i− dui )!

≤ (N − i)N−i+1/2e−(N−i)+1

√
2π(N − i− dui )N−i−d

u
i +1/2e−(N−i−dui )

≤ e−d
u
i +1

√
2π

(
N

N − n− dmax
i

)N−i+1/2

(N − n− dmax
i )d

u
i

(6)

(via Stirling’s approximation) where dmax
i = maxidi. Then

n∏
i=1

(N − i)!
(N − i− dui )!

≤ const×
(

N

N − n− dmax
i

)nN−(n+1
2 )+n/2

(N − n− dmax
i )D

u

. (7)
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where the dui ’s are computed from ĜS and d and Du =
∑n

i=1 d
u
i . Second,

Γ(nN −
(
n+1

2

)
−Du + β)

Γ(nN −
(
n+1

2

)
+ α + β)

≤
(nN −

(
n+1

2

)
−Du + β − 1)nN−(n+1

2 )−Du+β−1/2e−(nN−(n+1
2 )−Du+β−1)+1

√
2π(nN −

(
n+1

2

)
+ α + β − 1)nN−(n+1

2 )+α+β−1/2e−(nN−(n+1
2 )+α+β−1)

=

(
nN −

(
n+1

2

)
−Du + β − 1

nN −
(
n+1

2

)
+ α + β − 1

)nN−(n+1
2 )+β

×
(nN −

(
n+1

2

)
−Du + β − 1)−D

u

(nN −
(
n+1

2

)
+ α + β − 1)α

eD
u+α+1

√
2π

≤
(
nN −

(
n+ 1

2

)
+ β − 1

)−Du−α
eD

u+α+1

√
2π

.

(8)

Combining (7) and (8), we have

Pr(N |Y) ≤ const×
(

N

N − n− dmax
i

)nN−(n+1
2 )+n/2

(N − n− dmax
i )D

u

×
(
nN −

(
n+ 1

2

)
+ β − 1

)−Du−α

N−c

= const×
(

N

N − n− dmax
i

)nN−(n+1
2 )+n/2

(
N − n− dmax

i

nN −
(
n+1

2

)
+ β − 1

)Du

×
(
nN −

(
n+ 1

2

)
+ β − 1

)−α
N−c

(9)

The first term converges to one, the second to a constant that does not depend on N , while
the last two terms dominate in the right-hand tail, and for large N we have

Pr(N |Y) ≈
(
nN −

(
n+ 1

2

)
+ β − 1

)−α
N−c

∝ N−(α+c).

(10)

It follows that a sufficient condition for the posterior distribution to be proper is α+ c > 1.
The condition α+ c > 2 ensures that the posterior mean exists, and α+ c > 3 ensures that
the second moment exists, and hence the posterior variance.

3 Monte Carlo algorithm

3.1 Sampling GS

Crawford (2016) describes a procedure for drawing a proposal subgraph ĜS uniformly from
the set of compatible subgraphs C(GR,d). Let m = |M | be the number of seeds. The
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posterior distribution of GS is

Pr(ĜS|Y) ∝
∏

j /∈M sj

(s′w + ξ)n−m+η
π(ĜS). (11)

Suppose GS = (VS, ES) is the current estimate of the recruitment-induced subgraph. We
propose a new subgraph by adding or removing an edge from this graph. To draw a new
sample from C(GR,d), we select vertices i and j, with i 6= j at random. Then if {i, j} /∈ ES,
ui > 0, and uj > 0, we propose to add the edge {i, j} to ES. If {i, j} ∈ ES and {i, j} /∈ ER,
we propose to remove the edge {i, j} from ES. Otherwise, we select a different {i, j} and
try again. The vector of the number of susceptible vertices just before each recruitment is
s = lowerTri(AC)′1 + C′u using the current subgraph estimate GS and let s+ and s− be
the corresponding vectors obtained by adding or removing an edge between i and j. It is
not necessary to compute s via matrix multiplication. Instead, Crawford (2016) provides
the update expressions

s+
k = sk − 1{k > j}Cik − Cjk

s−k = sk + 1{k > j}Cik + Cjk,
(12)

for k = 1, . . . , n. Now let t∗i be the time at which vertex i used all its coupons or the end
of the study, whichever came first. Then the change in total edge-time is given by

s+′
w = s′w − (t∗i −min(tj, t

∗
i ) + t∗j − tj)

s−
′
w = s′w + (t∗i −min(tj, t

∗
i ) + t∗j − tj).

(13)

Using these expressions, the ratio of posterior probabilities for N reduces to a simple form.
To illustrate, suppose we wish to add the edge i, j to GS = (VS, ES), where {i, j} /∈ ES,
ui ≥ 1, and uj ≥ 1. For a proposal G+

S = (VS, E
+
S ) identical to GS except that {i, j} ∈ E+

S ,
u+
i = ui − 1, and u+

j = uj − 1, the ratio is

Pr(G+
S |Y)

Pr(GS|Y)
=

∏
j /∈M

s+
j

sj

( s′w + ξ

s+′w + ξ

)n−m+η
π(G+

S )

π(GS)
. (14)

To illustrate the ratio for removing the edge i, j, suppose GS = (VS, ES) has {i, j} ∈ ES
and {i, j} /∈ ER. For a proposal G−S = (VS, E

−
S ) identical to GS except that {i, j} /∈ E−S ,

u−i = ui + 1, and u−j = uj + 1, the ratio is

Pr(G−S |Y)

Pr(GS|Y)
=

∏
j /∈M

s+
j

sj

( s′w + ξ

s−′w + ξ

)n−m+η
π(G−S )

π(GS)
. (15)

Suppose G∗S is the proposal graph and let Pr(G∗S|GS) be the probability of proposing G∗S
from GS, with N fixed. To decide whether to accept G∗S, we form the Metropolis-Hastings
acceptance probability,

ρ = min

{
1,

Pr(G∗S|Y)

Pr(GS|Y)

Pr(GS|G∗S)

Pr(G∗S|GS)

}
. (16)

The form of Pr(G∗S|GS) is given by Crawford (2016).
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3.2 Sampling N given GS

The posterior distribution of N conditional on a given compatible subgraph GS is

Pr(N |GS,Y) ∝

[
n∏
i=1

(
N − i
dui

)]
B

(
Du + α, nN −

(
n+ 1

2

)
−Du + β

)
π(N) (17)

Although this conditional distribution does not have a standard form, we can derive a close
approximation using the negative binomial distribution when Pr(N |GS,Y) has a mode.
Let du1 , . . . , d

u
n be the number of pendant edges emanating from each sampled vertex at the

moment they are recruited, calculated from GS. Suppose for now that N is continuous-
valued. We can calculate analytic derivatives of `(N) = log Pr(N |GS,Y) as follows:

∂`

∂N
=

[
n∑
i=1

ψ(N − i+ 1)− ψ(N − i− dui + 1)

]

+

[
ψ

(
nN −

(
n+ 1

2

)
−Du + β

)
− ψ

(
nN −

(
n+ 1

2

)
+ α + β

)]
n− c

N

∂2`

∂N2
=

[
n∑
i=1

ψ(1)(N − i+ 1)− ψ(1)(N − i− dui + 1)

]

+

[
ψ(1)

(
nN −

(
n+ 1

2

)
−Du + β

)
− ψ(1)

(
nN −

(
n+ 1

2

)
+ α + β

)]
n2 +

c

N2

(18)

where ψ(x) = ∂ log Γ(x)
∂x

is the digamma function and ψ(1)(x) = ∂2 log Γ(x)
∂x2

is the polygamma

function. Let N̂ = argmaxN`(N) be the mode of Pr(N |GS,Y) and let

v =

(
− ∂2`

∂N2

∣∣∣∣
N=N̂

)−1

(19)

be an approximation to the variance. To draw from Pr(N |GS,Y) we employ a proposal
distribution to generate a candidate N∗ and use a Metropolis-Hastings correction to draw
from the relevant conditional posterior. We will use N̂ and v to construct a proposal
distribution for N given GS. Consider N∗ ∼ NegBin(N̂ , r), where we have parameterized
the negative binomial distribution by its mean and size r. The variance of the proposal
distribution under this parameterization is N +N2/r, so to achieve a proposal variance of
v, where v > N , set r = N2/(v −N). The proposal distribution is

Pr(N∗ = k|N̂) =

(
N̂

r + N̂

)k
Γ(r + k)

k!

/
∞∑

j=Nmin

(
N̂

r + N̂

)j
Γ(r + j)

j!Γ(r)
, (20)

where we have normalized by the probability that N∗ ≥ Nmin. Then the Metropolis-
Hastings ratio for the proposal N∗ conditional on GS is

ρ = min

{
1,

Pr(N∗|GS,Y)

Pr(N |GS,Y)

Pr(N |N̂)

Pr(N∗|N̂)

}
. (21)

The infinite sum in the denominator of (20) cancels in the ratio (21).
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Figure 1: Posterior estimates of N when the prior mean of p is not equal to the true value
ptrue. We set the prior mean to E[p] = fptrue for f ∈ {0.5, 0.75, 1, 1.25, 1.5} and evaluate
estimates for different values of α.

4 Simulation results under mis-specification

4.1 Simulation results under mis-specification of the prior mean

First, we evaluate posterior estimates of N = 105 when the prior mean for p is not equal
to the true value. To evaluate the sensitivity of estimates under mis-specification of the
prior mean, we specify the Beta prior for p such that Eπ[p] = fptrue, where f > 0 is
the fraction by which the prior mean of p is mis-specified. We investigate estimates of N
with f ∈ {0.5, 0.75, 1, 1.25, 1.5}, shown in Figure 1, for different values of α. The middle
column in the figure corresponds with f = 1, giving a match between the prior mean and
the true value of p. Overall, specifying E[p] < ptrue results in over-estimation of N , and
specifying E[p] > ptrue results in under-estimation of N . In most cases, the 95% posterior
quantile intervals for N cover the true value of N in the simulation. The worst results are
obtained when the prior mean is highly mis-specified, and large α gives high prior precision.
Overall, the requirement that the first two moments of the posterior distribution for N exist
necessitates a somewhat informative prior distribution, and gross misspecification of this
prior (along with high prior precision) can skew estimates away from the true value of N .

4.2 Simulation results under mis-specification of the population
graph model

Real-world social networks exhibit more complex structure than Erdős-Rényi networks, so
it is of interest to understand the properties of the proposed estimation framework when
the Erdős-Rényi assumption does not hold. Handcock et al (2014) assess estimates under
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an graph model in which vertices are of two types, with different connection probabilities
within and between types. We consider a simple undirected graph G = (V,E) with |V | = N
in which there are two types of vertices V = (V0, V1). Edges between type-0 vertices
occur independently with constant probability p00, edges between type-1 vertices occur
with probability p11, and edges between type-0 and type-1 vertices occur with probability
p01 = p10. This graph model is a 2-block case of the general stochastic blockmodel, in
which connection probabilities within groups are homogeneous, and there are possibly
different connection probabilities between groups. To evaluate estimates of N = 105 under
mis-specification of the population graph model, we keep the average number of edges in
the graph constant, and perturb the connection probabilities. Fix p ∈ (0, 1) and fix the
expected number of edges E[|E|] =

(
N
2

)
p. For notational ease, let n0 = |V0| and n1 = |V1|.

4.2.1 Balance in within-block connection probabilities

Let h ≥ 0 and let

p00 = p+ h

p11 = p+ h

p01 = p− h
(
n0

2

)
+
(
n1

2

)
n0n1

be the within- and between-group connection probabilities. The expected number of edges
is

E[|E|] =

(
n0

2

)
p00 +

(
n1

2

)
p11 + n0n1p01

=

(
n0

2

)
(p+ h) +

(
n1

2

)
(p+ h) + n0n1

(
p− h

(
n0

2

)
+
(
n1

2

)
n0n1

)

=

(
N

2

)
p

Therefore by changing the value of h, we can scale continuously between a graph with
Erdős-Rényi distribution, and a 2-block model, while keeping the expected number of
edges constant.

However, not every positive value of h is possible. In order for the connection probabil-
ities to reside in the [0, 1] interval, we must have 0 ≤ h ≤ hmax, where

hmax = min

{
1− p, pn0n1(

n0

2

)
+
(
n1

2

)}

Define ε ∈ [0, 1] let h = εhmax. Then keeping N = 105, n0, n1, and p constant and varying
ε from 0 to 1, we have a graph model whose average number of edges is preserved, that
scales continuously from an Erdős-Rényi graph to a disconnected 2-block model with equal
within-block connection probabilities. Choosing ε = 0 yields the Erdős-Rényi graph with
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density p. We use this procedure to generate population graphs G for given p and ε, and
estimate N using the proposed methodology.

Figure 2 shows posterior estimates on the relative error scale. Let q = n0/N be the
fraction of vertices in the smaller block. Estimates appear to exhibit small dependence on
the value of ε, with some positive bias evident when the model is maximally mis-specified
and ε = 1. These results indicate relative robustness of inferences to minor deviations to
the Erdős-Rényi assumption, in which block structure exists, but the blocks have relatively
constant connection probabilities, p00 = p11 with E[|E|] =

(
N
2

)
p. As we show below,

when these within-block connection probabilities differ substantially, estimates can exhibit
appreciable bias.

4.2.2 Imbalance in within-block connection probabilities

Suppose n0 < n1, g ∈ R and let

p00 = p+ g

p11 = p− g

p01 = p+ g

(
n1

2

)
−
(
n0

2

)
n0n1

be the within- and between-group connection probabilities. As before, the expected number
of edges is E[|E|] =

(
N
2

)
p, but the within-group connection probabilities p00 and p11 can

differ substantially. Constraints on the connection probabilities imply that gmin ≤ g ≤ gmax,
where

gmin = max

{
−p, p n0n1(

n0

2

)
−
(
n1

2

)}

gmax = min

{
p, 1− p, (1− p) n0n1(

n1

2

)
−
(
n0

2

)}
Then letting δ ∈ [0, 1], setting g = gmin + δ(gmax − gmin) allows us to scale continuously
between the extremes of g. For different values of δ, the model scales continuously from an
Erdős-Rényi graph to a 2-block model in which one block of vertices has greater or lesser
density than the other block. Choosing δ = −gmin/(gmax − gmin) so that g = 0 yields the
Erdős-Rényi graph with density p.

This type of mis-specification under extreme imbalance can result in biased estimates.
Figure 2 shows posterior estimates on the relative bias scale. Let q = n0/N be the fraction
of vertices in the smaller block. We observe positive bias when δ is close to the extremes
δmin and δmax, with the largest bias occurring when q is small. Bias is smallest, as expected,
when δ takes an intermediate value, and the underlying network is close to Erdős-Rényi in
structure. Estimates are more accurate as α increases, and prior variance decreases.

5 An approximation for prior elicitation

Suppose we wish to find values of α and β that place the prior mean of N approximately
equal to N̂ , a prior estimate of N . Recall that dui follows the Beta-Binomial distribution,
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and let p̄ = α/(α + β). Then E[dui ] = (N − i)p̄ and

E

[
n∑
i=1

dui

]
= p̄

(
nN −

(
n+ 1

2

))
. (22)

Equating observed and expected values of dui and rearranging, we have an estimator for N
given p̄,

Ñ =
n+ 1

2
+

1

p̄n

n∑
i=1

dui (23)

or an estimator for p̄ given N ,

p̃ =

∑n
i=1 d

u
i

nN −
(
n+1

2

) . (24)

Now let N = N̂ in (24). Since GS is not directly observed in an RDS study, the dui ’s are
not available. However, we can place a sharp lower bound on the numerator of (24) by
conditioning on the observed degrees. Let ri be the number of subjects recruited by subject
i over the course of the study. The number of edges belonging to vertex i connecting to
unrecruited vertices at the time of its recruitment cannot be smaller than ri. But at most
i− 1 edges of i can connect to already-recruited vertices, so max{ri, di− (i− 1)} is a lower
bound for dui . Recall that M is the set of seeds. Then we have the lower bound

max{ri, di − i+ 1} ≤ dui (25)

This leads us to a lower bound for p̄ that depends only on N̂ and information contained in
d and GR: ∑n

i=1 max{ri, di − i+ 1}
nN̂ −

(
n+1

2

) ≤ p̃ (26)

Let plo denote this lower bound. One strategy for prior elicitation is to restrict the prior
distribution of p so that Pr(p < plo) is small. We therefore fix α and find β so that
Pr(p > plo|α, β) = 0.99.

6 Results of SS-size method on the St. Petersburg

dataset

Table 1 shows the estimated number of PWID in St. Petersburg using the SS-size method
implemented in the “sspse” package (Handcock and Gile, 2015; Handcock et al, 2014, 2015).
Table 2 shows the results of regression analyses to determine whether the reported degrees
in the St. Petersburg data decrease over time as the sample accrues. We estimated the
change in expected degree as a function of recruitment order, with and without an outlier
who reported a degree of 200. Figure 4 shows the reported degrees.
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Prior Parameters Estimates Implied Prevalence
n/N Max N Size Mean 2.5% 97.5% 20-45yrs All
Beta(γ = 1) 200000 raw 2735 2209 3206 0.18% 0.06%
Beta(γ = 5) 200000 raw 2714 2209 3206 0.18% 0.06%
Beta(γ = 10) 200000 raw 2731 2209 3405 0.18% 0.06%
Beta(γ = 1) 500000 raw 2056 1812 2312 0.14% 0.04%
Beta(γ = 5) 500000 raw 2059 1812 2312 0.14% 0.04%
Beta(γ = 10) 500000 raw 2066 1812 2312 0.14% 0.04%
Beta(γ = 1) 200000 imputed 43996 12976 99110 2.93% 0.96%
Beta(γ = 5) 200000 imputed 38456 12577 78574 2.56% 0.84%
Beta(γ = 10) 200000 imputed 38192 10982 81265 2.55% 0.83%
Beta(γ = 1) 500000 imputed 25223 6809 73274 1.68% 0.55%
Beta(γ = 5) 500000 imputed 23018 6809 48783 1.53% 0.50%
Beta(γ = 10) 500000 imputed 26611 6809 63774 1.77% 0.58%
Flat(γ = 1) 200000 raw 1436 1212 1611 0.10% 0.03%
Flat(γ = 5) 200000 raw 1430 1212 1611 0.10% 0.03%
Flat(γ = 10) 200000 raw 1427 1212 1611 0.10% 0.03%
Flat(γ = 1) 500000 raw 1352 1313 1812 0.09% 0.03%
Flat(γ = 5) 500000 raw 1351 1313 1812 0.09% 0.03%
Flat(γ = 10) 500000 raw 1355 1313 1812 0.09% 0.03%
Flat(γ = 1) 200000 imputed 30896 3804 92730 2.06% 0.67%
Flat(γ = 5) 200000 imputed 31690 3206 91334 2.11% 0.69%
Flat(γ = 10) 200000 imputed 19562 3006 48267 1.30% 0.43%
Flat(γ = 1) 500000 imputed 25639 3311 74767 1.71% 0.56%
Flat(γ = 5) 500000 imputed 29026 2812 101250 1.94% 0.63%
Flat(γ = 10) 500000 imputed 34214 4311 103249 2.28% 0.74%

Table 1: Estimates from the “sspse” software of the number of people who inject drugs
in St. Petersburg, Russia. We obtained posterior estimates under the flat (uniform) prior
and Beta prior for the sample proportion n/N . The Conway-Maxwell-Poisson (CMP)
distribution is the prior for the population degree distribution f(d|η). We obtain results
under two values for the maximum possible N : 200,000 and 500,000. We set the prior
mean of N to 83118 and the prior standard deviation to γ × 5799 where γ ≥ 1, based on
the estimate by (Heimer and White, 2010). By increasing γ to 5, 10, and 20, we obtain
priors for N with greater variance. We set the mean, standard deviation, and maximum of
the degree distribution equal to their sample counterparts.
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All degrees Excluding d = 200
Method Slope SE p-value Slope SE p-value
Linear 9.24× 10−4 1.27× 10−3 0.47 8.91× 10−4 7.92× 10−4 0.26
Poisson 9.00× 10−5 4.67× 10−5 0.54 8.88× 10−5 4.73× 10−5 0.06
M (Huber) 1.23× 10−3 6.68× 10−4 1.23× 10−3 6.69× 10−4

M (Bisquare) 1.26× 10−3 6.73× 10−4 1.26× 10−3 6.74× 10−4

Table 2: Regression results for the slope of the time-ordered sample of degrees in the
St. Petersburg data. The SS method of Handcock et al (2014) and Handcock et al (2015)
assumes that the average degree of recruited subjects decreases as the sample accrues. We
fit linear, Poisson, and M estimates with Huber and bisquare weighting for the full set of
degrees, and with one outlier (d = 200) removed. Estimated slope for the regression line is
always positive, indicating that degrees appear to increase in this sample.
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Figure 4: Degrees of recruited subjects in the St. Petersburg study of PWID. The mean re-
ported degree is 10.26, with SD 8.5. One subject reported degree 200. The linear regression
line, with slightly positive slope, is overlaid.
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