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Web-based Supplementary Materials for “Estimation of the Optimal Surrogate Based on a

Randomized Trial” by Brenda L. Price, Peter B. Gilbert, and Mark J. van der Laan

Web Appendix A: Inference on the clinical treatment effect in a future study

based on the previously estimated optimal surrogate, accounting for estimation

error and failure of the transportability assumptions

In Sections 3.1 and 3.2 of the main article we showed conditions on the new study P and

current study P0 under which the P0-optimal surrogate is also the P -optimal surrogate. That

is the best possible scenario as statistical inference for the causal effect of treatment on the

P0-optimal surrogate outcome in the new trial corresponds exactly with statistical inference

for the causal effect of treatment on the outcome of interest in the new trial. We now consider

a situation in which the new study evaluates a new treatment A∗ and we are not willing to

assume that the intermediate variables S completely block the effect of treatment (current

and new) on the outcome; this situation will be very common. Now we can be certain that

the P0-optimal surrogate EP0
(Y | W,A, S) is not equal to the P -optimal surrogate, and,

since the P0-optimal surrogate is a function of A which is not measured/evaluated in the

new study, one needs to decide how to even define a surrogate for the future study based on

EP0
(Y | W,A, S). One can imagine that one would use EP0

(Y |W,A, S) as a surrogate if we

feel that the treatment A = 1 in the P0-study is most comparable with the treatment A∗ = 1

in the new P -study. Even though we now have no guarantees, EP0
(Y | W,A, S) will often

be a good candidate surrogate for such a future study (i.e., one that may approximately

satisfy the Prentice definition of a valid surrogate in the future P -study), but one needs

to be concerned about the difference between EP (Y
∗ | W ∗ = w,A∗ = a, S∗ = s) and

EP0
(Y | W = w,A = a, S = s) for a ∈ {0, 1}.

To address this issue, suppose that ψn converges to ψ0 at a rate r(n) in the sense that
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d0(ψn, ψ0) = OP (r(n)), where dP0
(ψ, ψ0) = P0L(ψ)−P0L(ψ0) is the loss-based dissimilarity.

We also have that d0(ψn, ψ0) = OP (r(n)), but for simplicity we work with ψn. For con-

creteness, let us consider the squared error loss L(ψ)(O) = (Y − ψ(W,A, S))2. Consider a

new study P with data structure (W ∗, A∗, S∗, Y ∗) for which the Equal Conditional Means

condition holds, and for which we only collect the surrogate ψn(W
∗, A∗, S∗) instead of Y ∗.

In this new study the data structure is (W ∗, A∗, S∗, ψn(W
∗, A∗, S∗)) and one would target

the parameter θ∗P = θ∗ψ(P ) = EP [EP (ψn(W
∗, 1, S∗) | A∗ = 1,W ∗)]− EP [EP (ψn(W

∗, 0, S∗) |

A∗ = 0,W ∗)]. The clinical treatment effect target parameter of this study is EP (Y
∗

1 −Y ∗

0 ) =

θ∗P = θ∗ψ(P )

EP [EP (ψ0(W
∗, 1, S∗) | A∗ = 1,W ∗)]− EP [EP (ψ0(W

∗, 0, S∗) | A∗ = 0,W ∗)] .

Suppose that dP (W ∗ = w,A∗ = a, S∗ = s)/dP0(W = w,A = a, S = s) < M < ∞ P -a.e.

for (w, a, s) in a support of (W ∗, A∗, S∗). In that case, it follows that

dP (ψn, ψ
∗) =

∫
(ψn − ψ∗)2(W ∗, A∗, S∗)dP (W ∗, A∗, S∗) 6MdP0

(ψn, ψ
∗)

where MdP0
(ψn, ψ

∗) = OP (r(n)). Thus, under this condition, θψn
(P )− θ∗ψ(P ) = OP (r(n)).

From this we learn that the estimand defined by the average causal effect of treatment on

the surrogate ψn(W
∗, A∗, S∗) in the future study P will be within distance OP (r(n)) from the

desired average causal effect of treatment on the actual outcome Y ∗. Suppose that one is only

interested in picking up causal effects on Y ∗ that are larger than some minimal value δ∗. Then,

one would want to make sure this remainder OP (r(n)) < δ∗ so that | θψn
(P )− θ∗ψ(P ) |< δ∗.

The difference θψn
(P ) − θ∗ψ(P ) equals [θψn

(P )− θψ0
(P0)] + [θψ0

(P0) − θ∗ψ(P )], showing that

the first source of the OP (r(n)) remainder is the discrepancy between the estimated optimal

surrogate and the true optimal surrogate in the original trial, and the second source is

any violations of the Equal Conditional Means condition. Therefore, under this condition,

if the original study were very large such that the first discrepancy is negligible, then the
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surrogate parameter θψ∞
(P ) studied in the new trial equals the target parameter of interest

θ∗ψ(P ). Thus an infinite original study plus Equal Conditional Means implies that point

and confidence interval estimates for θ∗ψ(P ) can be obtained simply by point and confidence

interval estimates for the surrogate effect θψ∞
(P ). In addition, for a finite-sample original

study, under Equal Conditional Means [θψn
(P )− θψ0

(P0)] measures the bias for estimating

θ∗ψ(P ) based on the estimated optimal surrogate instead of on Y ∗. Clearly, the idea is that

the estimated optimal surrogate must be a good estimate of the true optimal surrogate in

the original study, and EP0
(Y | W = w,A = a, S = s) must be a reasonable approximation

of EP (Y
∗ | W ∗ = w,A∗ = a, S∗ = s) in the future study, in order to trust our surrogate

outcome as a surrogate for the outcome in a future study.

Future work is needed to obtain confidence intervals for θ∗ψ(P ) = EP (Y
∗

1 − Y ∗

0 ) based on

the estimated optimal surrogate instead of on the true optimal surrogate. This problem is

readily solved if ψn were estimated using a parametric model, in which case the delta method

would yield a confidence interval for ψ0 and for θ∗ψ(P ), and this parametric model could

be selected data-adaptively. However, obtaining a confidence interval when estimating ψn

nonparametrically through super-learning as we do is much harder, because ψ0 is a function

that is not estimable at root-n rate. For example, the nonparametric bootstrap theoretically

fails for machine learning based estimators because of their slower than root-n rate.

Web Appendix B: Connection of the optimal surrogate framework to other

surrogate frameworks

Joffe and Greene (2009) classified statistical methods for evaluating the validity of candi-

date surrogate endpoints into four frameworks, which may be referred to as the Prentice

replacement endpoint, controlled direct effects, principal stratification, and meta-analysis

frameworks. Prentice (1989) catalyzed the field with his definition of a valid surrogate

endpoint and operational criteria, as “a response variable for which a test of the null
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hypothesis of no relationship to the treatment groups under comparison is also a valid test of

the corresponding null hypothesis based on the true endpoint.” Prentice (1989) also provided

operational criteria for checking whether an intermediate endpoint satisfies this definition,

the most important being the ‘full mediation’ criterion that the distribution of the clinical

endpoint conditional on the surrogate is the same as the distribution of the clinical endpoint

conditional on the surrogate and treatment, and many subsequent papers developed methods

for evaluating these criteria or related criteria [e.g., Freedman et al. (1992); Lin, Fleming, and

DeGruttola (1997); Wang and Taylor (2002); Buyse and Molenberghs (1998); Alonso (2006);

Weir and Walley (2006); Kobayashi and Kuroki (2014)]. Noting that the Prentice approach

is based purely on statistical parameters and the study of associations between observable

random variables, Joffe and Greene (2009) suggested an alternative framework based on

controlled direct and indirect causal parameters that assume experimental manipulation

of the hypothesized surrogate, a framework also studied by Robins and Greenland (1992)

and Pearl (2001). While this controlled effects framework has major advantage to address

questions about how interventions on the surrogate causally effect the clinical outcome, it

is challenged by questions of conceivability of the causal target parameters in some settings

(Gilbert, Hudgens, and Wolfson, 2011) and by difficulties in justifying assumptions used to

identify the causal parameters.

Observing that many early methods for assessing the Prentice criteria did not account for

the fact that baseline predictors of both the surrogate and clinical outcome must be correctly

controlled for, Frangakis and Rubin (2002) introduced the principal stratification framework

that studies how the clinical treatment effect varies over principal strata subgroups defined

by the potential surrogate endpoints under each of the two treatment assignments. Many

statistical methods papers in this framework have followed, including Gilbert and Hudgens

(2008), including Taylor, Wang, and Thiebaut (2005), Gilbert and Hudgens (2008), van der
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Weele (2008), Li, Taylor, and Elliott (2010), Huang, Gilbert, and Wolfson (2013), and Gilbert

et al. (2015). The meta-analysis framework studies the association of treatment effects on the

surrogate outcome with treatment effects on the clinical outcome [e.g., Daniels and Hughes

(1997), Buyse et al. (2000), and Gail et al. (2000)], with advantage that the treatment effects

are causal effects based on the randomization and are estimable from standard assumptions.

VanderWeele (2013) reviewed how these four frameworks relate to criteria for guaranteeing

a consistent surrogate, and Gilbert et al. (2015) studied relationships between principal

stratification criteria and the Prentice definition. Except for a segment of the meta-analysis

literature, there is quite limited surrogate endpoint evaluation literature on methods for

applying and assessing the validity of a surrogate endpoint in a new trial for inferring the

causal treatment effect in that trial without including clinical endpoint data (Gilbert et al.,

2015). The small size of this literature may be surprising given the centrality of this objective

in biomedical applications. Pointing to this gap in the literature, Pearl and Bareinboim (2011,

2012) introduced the causal selection diagram approach, to estimation and testing of the

clinical treatment effect in a new setting based on a surrogate and baseline covariates, which

may be viewed as a fifth framework for surrogate endpoint evaluation.

Our newly proposed approach does not fit squarely into any of the five frameworks, thereby

constituting a sixth framework that we name the optimal surrogate approach. It departs from

the principal stratification and controlled effects frameworks, aligning more closely with the

other three, in being based purely on statistical parameters that are estimable under the basic

assumptions typically made in randomized clinical trials. In particular, it aligns with the

Prentice framework by taking as its starting point the excellent Prentice definition of a valid

surrogate endpoint. In fact, the optimal surrogate is constructed to guarantee satisfaction of

the Prentice definition, a unique advantage compared to previous approaches. Our approach

also departs from previous approaches by defining the optimal surrogate as an unknown
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parameter, such that its predicted values are used as the surrogate endpoint. Because this

estimated optimal surrogate is consistent under standard assumptions, in trials with large

sample sizes it approximately satisfies the Prentice definition.

The optimal surrogate approach is related to Prentice’s (1989) operational criteria. First,

the best optimal surrogate will have treatment and candidate surrogate separately highly

predictive of the final outcome, similar to the first two Prentice criteria. Second, it posits

a no direct effect criterion for licensing correct inferences on the clinical treatment effect

in the new trial, which is a conditional mean version of Prentice’s ‘full mediation’ criterion.

Moreover, our approach departs from the Prentice criteria by applying both to settings where

the studied surrogate varies in both treatment arms and to settings where it only varies in

the active treatment arm, which is important given the many applications where the latter

scenario attains (Gilbert and Hudgens, 2008, Gilbert et al., 2015), whereas in contrast the

Prentice approach only applies to the former scenario, e.g., Chan et al. (2002) and Gilbert,

Qin, and Self (2008). This is important because the latter scenario is quite common, for

example in trials where the candidate surrogate is a biomarker response endpoint that is

structurally negative/zero for all placebo/control group recipients (Gilbert and Hudgens,

2008).

The optimal surrogate approach is related to the meta-analysis framework by addressing

the common objective of inference on the clinical treatment effect in a future study without

collecting the clinical outcome in that study (Gail et al., 2000). However, it tackles this

objective based on a single (or few) efficacy trial plus transportability assumptions that

are different from the ‘extrapolation’ assumptions needed via meta-analysis– meta-analysis

bases inference on the association of trial-level surrogate and clinical treatment effects

estimated from a series of trials and the assumption that the series of trials forms a correct

basis for extrapolating the clinical treatment effect to the new setting not included in
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the series. Finally, the optimal surrogate approach breaks new ground by treating the

surrogate endpoint problem as a supervised statistical learning problem. While historically

methods evaluate a pre-selected univariable or low-dimensional vector candidate surrogate,

the optimal surrogate approach allows all collected baseline and intermediate response data

to potentially contribute to the optimal surrogate, based on unbiased machine learning, and

does not require parametric modeling assumptions.

Web Appendix C: Proof of Theorem 3

The first statement of Theorem 3 is established by Theorem 2, so that we only need to show

the last statement. By assumption a → EP0
(Y | W = w,A = a, S = s) is constant in a for

P0-a.e (w, s). Thus, a → EP0
(Ya | W = w, Sa = s) is constant in a for P0-a.e. (w, s), but

since EP (Y
∗ | W ∗ = w,A∗ = a, S∗ = s) = EP0

(Y | W = w,A = a, S = s) for all P -a.e.

(w, s) (since the support of (W ∗, S∗) is contained in the support of (W,S)), we also have

that a → EP (Y
∗ | W ∗ = w,A∗ = a, S∗ = s) is constant in a, and, by randomization of A∗,

the latter is equivalent to a→ EP (Y
∗

a | W ∗ = w, S∗

a = s) is constant in a. 2

Web Appendix D: Super-learning of the P0-optimal surrogate

Estimation of the P0-optimal surrogate is a standard prediction problem. That is, we estimate

E0(Y | W,A, S) with a minimizer of the risk of a loss: ψ0 = argminψ P0L(ψ), with Pf ≡
∫
f(o)dP (o). For example, one could use squared error loss L(ψ)(O) = (Y − ψ(W,A, S))2.

To construct an optimal estimator among any given class of candidate estimators, we use

loss-based super-learning. The oracle inequality for the cross-validation selector guarantees

that the estimator is asymptotically at least as good as any candidate in the set of candidate

estimators (van der Laan, Polley, and Hubbard, 2007; van der Laan and Rose, 2011).

Let Ψ̂j : MNP → Ψ(M) be a candidate estimator that maps an empirical distribution of

(O1, . . . , On) (i.e., an element of the nonparametric model MNP of probability distributions)
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into the parameter space Ψ(M) = {Ψ(P ) : P ∈ M}, j = 1, . . . , J . This library of candidate

estimators could include a variety of parametric model based estimators as well as a variety of

machine learning algorithms, possibly coupled with different dimension reduction strategies,

and possibly indexed by a variety of tuning parameters.

Let Bn ∈ {0, 1}n be a random split of the sample into a training sample {i : Bn(i) = 0}

and validation sample {i : Bn(i) = 1}. For example, if we use V -fold cross-validation defined

by a partitioning of the sample in V equal size groups, then Bn has V possible realizations,

each occurring with probability 1/V , and each split corresponds with setting the components

of Bn in one of the V -folds equal to 1 and setting the other components equal to 0. Let P 0
n,Bn

and P 1
n,Bn

be the empirical distributions of the training and validation sample corresponding

with split-vector Bn, respectively. The cross-validated risk of the j-th candidate estimator is

then defined as EBn
P 1
n,Bn

L(Ψ̂j(P
0
n,Bn

)), where L(·) should be chosen as squared error loss to

be consistent with our proposed criterion (1) from the main article for the optimal surrogate.

One could now define the cross-validation selector

Jn = argmin
j
EBn

P 1
n,Bn

L(Ψ̂j(P
0
n,Bn

))

as the selector of the winner, and the corresponding discrete super-learner is then defined

as Ψ̂(Pn) = Ψ̂Jn(Pn). One could also propose a parametric family {fα : α} of functions from

IRJ to the real line that represents a family of combinations of all the J estimators:

Ψ̂α(Pn) = fα(Ψ̂j(Pn) : j = 1, · · · , J),

and where α represents a multivariate vector. For example, one might define Ψ̂α =
∑J

j=1 αjΨ̂j

as a weighted linear combination of the candidate estimators, where the weights αj are

restricted to be non-negative and sum to 1. One now defines the cross-validation selector for

this continuous family of candidate estimators {Ψ̂α : α} accordingly:

αn = argmin
α
EBn

P 1
n,Bn

L(Ψ̂α(P
0
n,Bn

)).
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The super-learner is then defined as Ψ̂(Pn) = Ψ̂αn
(Pn). By the oracle inequality for the cross-

validation selector, the super-learner is asymptotically equivalent with the oracle selected

estimator, as long as the realistic assumption holds that none of the candidate estimators is

a correctly specified parametric model (van der Laan, Polley, and Hubbard, 2007).

In addition, we can evaluate the super-learner by its cross-validated risk, using a cross-

validation scheme Sn (e.g., using V -fold cross-validation again as in the super-learner):

CV-RISK = ESn
P 1
n,Sn

L(Ψ̂(P 0
n,Sn

)), (1)

which involves rerunning the super-learner on learning samples {i : Sn(i) = 0} and evaluating

it on test samples {i : Sn(i) = 1}, and averaging the performance across the different splits.

This represents an estimator of the true conditional risk

ESn
R(Ψ̂(P 0

n,Sn

) | P0) ≡ ESn
P0L(Ψ̂(P 0

n,Sn

)),

and one can also construct a Wald-type 95% confidence interval for the latter parameter

ESn
R(Ψ̂(P 0

n,Sn

) | P0) given by CV-RISK± 1.96σn/
√
n, where σ2

n = ESn
P 1
n,Sn

{
L(Ψ̂(P 0

n,Sn

))−

ESn
P 1
n,Sn

L(Ψ̂(P 0
n,Sn

))
}2

. The theory behind the asymptotic correctness of this data adaptive

confidence interval is given in van der Laan, Hubbard, and Pajouh (2013). A super-learner

can be built and fitted with the R package superlearner available at CRAN.

One can also define a cross-validated R2:

CV-R2 = 1− CV-RISK/ESn
P 1
n,Sn

L(Ψ̂0(P 0
n,Sn

)), (2)

where Ψ̂0(Pn) =
∫
ydPn(y) is the empirical mean of the Yi-values. This provides a universal

measure of the strength of the estimated surrogate Ψ̂, allowing us to compare different

candidate surrogate estimators across studies and within a study. For example, one might

construct a super-learner Ψ̂δ based on δ-specific subsets (Wδ, Sδ) of the complete (W,S),

where δ is a measure of the complexity of the resulting surrogate as a function of (W,S).
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One could now plot CV-R2 of Ψ̂δ against δ for a sequence of δ-values, and the user can decide

on a choice of δ taking into account both complexity and strength of the surrogate. This

analysis is practically important given that all of the variables (Wδ, Sδ) used in the estimated

optimal surrogate need to be collected in a future trial to use the estimated optimal surrogate

in that trial; in practice some variable sets may be selected based on their high likelihood of

being collected.

Web Appendix E: Additional analyses of the CYD14 and CYD15 dengue

vaccine efficacy trial data sets

Supplemental Figures 1–4 display Month 13 PRNT50 and Microneutralization Version 2

(MNv2) neutralization titers to the four dengue serotypes in the CYD-TDV vaccine (S) by

protocol-specified age and sex covariate categories (W ) and the treatment category A (where

A = 1 for vaccine and A = 0 for placebo). For both CYD14 and CYD15 it is apparent that

older children tend to have higher neutralization titers to all 4 serotypes than do younger

children, based on both assays. Additionally, for both studies, there is an observable difference

in the distributions of Month 13 neutralization titers between the vaccine and placebo groups,

with higher Month 13 titers seen on average for the vaccine group. This is expected given that

one of the designed purposes of vaccination is to generate neutralizing antibody responses.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]
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Web Appendix F: Diagnostic checking of the conditions of Theorem 2 for the

dengue vaccine efficacy trials application

In Theorem 2 we established that the estimated optimal surrogate is still a valid surrogate

in a new study under the following four conditions:

(1) (Randomization:) A∗ remains randomized, conditional on W ∗,

(2) (Equal Conditional Means:) The conditional mean of Y given (W,A, S) is the same as

the conditional mean of Y ∗ given (W ∗, A∗, S∗),

(3) (Contained Support:) The support of (W ∗, A∗, S∗) is contained in the support of (W,A, S),

and

(4) (Positivity:) P (A∗ = a|W ∗) > 0 a.e. for a ∈ {0, 1}.

We check the four conditions treating CYD14 as the original study and CYD15 as the new

study.

Condition 1 (Randomization) is met by the fact that both CYD14 and CYD15 randomized

study participants to treatment (vaccine versus placebo).

Condition 2 (Equal Conditional Means) is explored in Supplemental Figures 5 and 6,

which display the difference between the targeted estimated optimal surrogate ψ#14
n (W,A, S)

built using CYD14 data and the targeted estimated optimal surrogate ψ#15
n∗ (W ∗, A∗, S∗)

built using CYD15 data. For each fixed level of the observations in CYD15, denoted by

(W ∗, A∗, S∗) = (w, a, s), ψ#14
n (w, a, s) = Ê[Y |W = w,A = a, S = s] was calculated and

subtracted from ψ#15
n∗ (w, a, s) = Ê[Y ∗|W ∗ = w,A∗ = a, S∗ = s]. Should the conditional mean

of Y given (W,A, S) be identical to the conditional mean of Y ∗ given (W ∗, A∗, S∗), these

differences, d(w, a, s) ≡ Ê[Y ∗|W ∗ = w,A∗ = a, S∗ = s]− Ê[Y |W = w,A = a, S = s] should

be close to zero for all observations in the CYD15 data set. As can be seen in Supplemental

Figures 5 and 6, these differences generally cluster around zero and are centered around

zero. The values are plotted by categories of age, sex, and treatment group, and are plotted
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against the PRNT50 Month 13 (Supplemental Figure 5) and Microneutralization Version 2

(MNv2) Month 13 neutralization titer values (Supplemental Figure 5). For both PRNT50

and MNv2 titer values, the older age category of 12–14 years for vaccinated individuals has

a smaller spread of the differences d(w, a, s) around 0, which was verified by the standard

deviations for each category (results not shown). No other clear differences between covariate

categories or between neutralization titer values are apparent.

[Figure 5 about here.]

[Figure 6 about here.]

Condition 3 (Contained Support) requires the support of (W ∗, A∗, S∗) to be contained

in the support of (W,A, S). The contained-support assumption holds for the age and sex

covariates, because CYD14 included 2–14 year-old children and the analysis of CYD15

was restricted to 9–14 year-old children, and both studies included large numbers of male

and female participants including sizable subgroups at each numeric age level. However the

contained-support assumption appeared to be somewhat violated for the neutralization titer

variables (Month 13 PRNT50 and MNv2 readouts to the four dengue serotypes). Although all

titer variables had the same minimum values, and the PRNT50 and MNv2 serotype-specific

neutralization titers were also relatively similar between the two studies, maximum titer val-

ues were slightly different in CYD15 than in CYD14. The maximum PRNT50 neutralization

titer values for serotype 1 and for serotype 3 were 14% higher and 18% higher for CYD15

than for CYD14, respectively, but all other maximum PRNT50 titer values were smaller for

CYD15 when compared to CYD14. For MNv2 titers, the serotype 1 maximum titer value

was 9% greater, the serotype 3 maximum titer value was 17% greater, and the serotype 4

maximum titer value was 1% greater for CYD15 when compared to the maximum titers for

CYD14. In sum, there are minor violations of the contained-support assumption that are

expected to have a minor-to-moderate influence on the results.
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Condition 4 (Positivity) requires that P (A∗ = a|W ∗) > 0 a.e. for a ∈ {0, 1}. The

baseline covariates consist of discrete age categories crossed with gender crossed with the

four continuous variables the estimated serotype frequencies of placebo recipients in the

participant’s country crossed with the baseline titer variables. CYD15 was a large study

with over 20,000 participants, providing ample data to check positivity by comparing the

distribution of W ∗ between the treatment groups (results not shown). The age × gender ×

serotype frequency distributions highly overlapped across the treatment groups, supporting

positivity. Moreover the baseline titer distributions in vaccine and placebo recipients had

similar ranges (Supplemental Figures 1–4), consistent with the positivity assumption.

Web Appendix G: Two simulation studies of the proposed methodology

We conduct two simulation studies to illustrate that the targeted estimated optimal surrogate

will generally provide unbiased estimation of θ0 = E0(Y1 − Y0) in the original trial, for any

distribution of (W,A, S, Y ), whereas in contrast a proportion of treatment effect explained

based approach that has been popular in practice does not. We then evaluate how well the

surrogate built from the original study can be used to estimate θ0 in a new study that only

measures (W,A, S), when the Equal Conditional Means assumption fails.

Data generating distribution

Building upon an example in VanderWeele (2013), we simulate data illustrating the surro-

gate paradox. The data set is comprised of an outcome Y , a randomized treatment A ∈ {0, 1},

and 10 candidate surrogates Sk, each with three levels Sk ∈ {0, 1, 2} for k = 1, . . . , 10. For

each k the joint potential outcomes Ska for a ∈ {0, 1} have the following distribution: P (Sk1 =

0, Sk0 = 0) = P (Sk1 = 1, Sk0 = 1) = P (Sk1 = 2, Sk0 = 2) = 0.1, P (Sk1 = 1, Sk0 = 0) = 0.5, and

P (Sk1 = 1, Sk0 = 2) = 0.2. The outcome Y =
∑3

k=1

[
0.1 ∗ k ∗ I(Sk = 1) + I(Sk = 2)

]
+ ǫY ,

where ǫY ∼ N(0, 0.12). In this setting θ0 = E0(Y1−Y0) = −0.18, whereas E0(S
k
1 −Sk0 ) = 0.3

for each k, such that the surrogate paradox occurs for each k.
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Methods for estimating θ0 based on a surrogate

The estimated optimal surrogate ψ#
n (A, S) and the resulting estimate θTMLE

ψ
#
n

of θ0 are

calculated as for the example. We compare performance of θTMLE

ψ
#
n

to an alternative approach

that estimates the Proportion of the Treatment Effect Captured (PCS) (Kobayashi and

Kuroki, 2014) by each of the ten candidate surrogate endpoints to select the best single

surrogate variable as the one that maximizes the estimated PCS, which we refer to as SPCSopt.

Specifically, for each of 100 bootstrapped data sets, the index k maximizing the estimated

PCS in a linear regression model of Y on I(Sk = 1) and I(Sk = 2) was selected, and SPCSopt

was taken to be the Sk most frequently selected. Then θ0 was estimated by θPCSopt
n defined as

the difference in average predicted Y values for group a = 1 minus a = 0 in the fitted model

Ê0(Y |SPCS
opt = s, A = a) = β̂0+ β̂1∗I(s = 1)+ β̂2∗I(s = 2). Since a perfect surrogate captures

all of the effect of the treatment A (indicated by PCS=1 in the proportion-of-treatment-effect

explained paradigm), A was not included in the model. The true PCS values are 0.87, 0.2,

and 0.002 for the first three Sk’s that are predictive of Y .

Simulation 1: Comparison for estimating θ0 in the original trial

For each of 200 hundred simulated data sets each with 2000 subjects, θ0 was estimated

based on the SL-TMLE surrogate and the PCS-selected surrogate as described above. Supple-

mental Figure 8(a) shows the concordance of the surrogate-based estimates of θ0 and the gold-

standard estimates based on the known clinical outcomes, θ̃TMLE
n = Ê0(Y1)− Ê0(Y0), where

the Ê0(Ya)’s are simply sample averages because no baseline covariates W are considered.

The targeted estimated optimal surrogate-based estimates θTMLE

ψ
#
n

much more closely align

with the direct Y -based estimates than those based on θPCSopt
n , with average θTMLE

ψ
#
n

of -

0.18 and average θPCSopt
n of 0.02, compared to the true value θ0 = −0.18. The surrogate

paradox defined by positive θPCSopt
n occurred for 191 (96%) of 200 repetitions, whereas it

never occurred based on θTMLE

ψ
#
n

. The PCS-based approach fails because it is not able to
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capture the 3-variable relationship from the data generating distribution, with CV-R2 of

-0.01 between the SPCSopt-estimated Ŷ values and the Y values, compared to CV-R2 of 0.98

from the estimated optimal surrogate.

Simulation 2: Comparison for estimating θ∗P in a second trial

Our second simulation generates 200 pairs of data sets (D1, D2) with D1 generated as for

Simulation 1 (the original trial) and D2 under a new data generating distribution where Y ∗

also depends on the fourth candidate surrogate: Y ∗ =
∑4

i=1

[
0.1 ∗ k ∗ I(S∗k = 1) + I(S∗k = 2)

]
+

ǫY ∗ , where ǫY ∗ ∼ N(0, 0.12). The surrogates ψ#
n (A, S) and S

PCSopt(A, S) are calculated from

D1 as in Simulation 1. Then, based on the (A∗, S∗) values in the paired data set D2, surrogate-

based estimates of θTMLE

ψ
#
n

(P ) = θTMLE,1

ψ
#
n

(P )− θTMLE,0

ψ
#
n

(P ) are calculated as in Section 6 and

θPCSopt
n (P ) = (1/n∗

1)
∑n∗

i=1A
∗

i Ê[Y |S
∗PCSopt
i , A∗

i = 1]−(1/n∗

0)
∑n∗

i=1(1−A∗

i )Ê[Y |S∗PCSopt
i , A∗

i =

0]. The D2 data set is chosen such that the Equal Conditional Means assumptions is violated,

as depicted in Supplementary Figure 7, which shows that EP [Y
∗

a |S∗4
a = s] − EP0

[Ya|S4
a = s]

varies widely in s for each a ∈ {0, 1}.

[Figure 7 about here.]

Supplemental Figure 8(b) displays the θTMLE

ψ
#
n

(P ) and θPCSopt(P ) estimates versus the

gold-standard estimates θ̃TMLE
n∗ based on the actual clinical outcomes Y ∗. Both approaches

demonstrate some bias for estimating θ∗P (dotted line); however θTMLE

ψ
#
n

(P ) does much better

at estimating the effect in the correct direction (negative), while θPCSopt
n (P ) estimates the

effect near zero (the true treatment effect θ∗P is -0.10, compared to an average estimate

θTMLE

ψ
#
n

(P ) of -0.18 and an average θPCSopt
n (P ) of 0.02). Of the 200 simulation runs, 95%

of the PCS-based estimates exhibit the surrogate paradox, compared to 0% for the SL-

TMLE method. Therefore, in addition to demonstrating that the Equal Conditional Means

assumption is necessary for valid inference on θ∗P in a new setting, this simulation illustrates
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that when Equal Conditional Means is majorly violated, the SL-TMLE approach can still

preserve some accuracy in bridging the clinical treatment effect to a new setting.

[Figure 8 about here.]

Web Appendix H: Dummy CYD14 and CYD15 data sets and R code for

producing the results of Section 6 for the dummy data sets

Because it is not possible to share the real CYD14 and CYD15 data sets, we provide the

code for analyzing dummy versions of the CYD14 and CYD15 data sets, that have the same

structure and variables as the real data sets. This code produces the same outputs that

were produced for the real data sets (in particular, Figures 1 and 2 and Tables 2 and 3

of the main article are re-produced using the dummy data, and additionally Figures S1–

S6 are re-produced using the dummy data). In this appendix, we provide the code used to

analyze these dummy data sets, and the resulting tables and figures. This allows readers to

re-produce the analysis and check that the same answers are obtained.

Figures 13–18 provide the results using the CYD14 dummy and CYD15 dummy data sets.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]
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[Figure 18 about here.]

The R code consists of a single file “BiometricsPriceGilbertVanDerLaanDummyDataDengue-

ExampleCode.R”

This file is available at the second author’s website (and its contents are printed below):

http://faculty.washington.edu/peterg/programs.html?

BiometricsPriceGilbertVanDerLaanDummyDataDengueExampleCode.R

##############################################

# "Estimated Optimal Surrogate Example: CYD14 and CYD15 Dengue Vaccine Efficacy Trials"

# author: "Brenda Price"

# In Price BL, Gilbert PB, van der Laan MJ. R code for implementing the Application for

# dengue vaccine efficacy trials (on dummy data sets) in "Estimation of the Optimal

# Surrogate Based on a Randomized Trial" (2017)

# Dec 8, 2017

# R script used to produce results for the example reported in the paper

# USING DUMMY DATA--data sets were simluated to have similar structure as the actual data

#############################################

#######################

# Set working directory

# Enter the path for the working directory

setwd("...")

#######################

# install any of the packages needed

wants <- c("SuperLearner","tmle","xtable","Hmisc","gam","polspline",

"class","survival","ggplot2","glmnet","gridExtra","pROC","cvAUC",

"arm","lme4","stats","plyr")

has <- wants %in% rownames(installed.packages())

if(any(!has)) install.packages(wants[!has])

library(SuperLearner)

library(tmle)

library(ggplot2)

options(warn=-1)
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#######################

# R Screening Functions not included in the SuperLearner package from CRAN

# Each function returns a list of variables that meet specific criteria described below

#### Screen function for colinear variables within X ####

## screen.corX.x: Do not allow any pairs of quantitative variables (PRNT and/or MNv2) with R^2 > 0.x

screen.corX.6 <-function(Y, X, family, obsWeights, id, method = "spearman", minPvalue = 0.1, maxCorr =0.6,

minscreen = 2, ...)

{

Colinear <- corX <- cor(X)

Colinear <- (corX)^2>=maxCorr # dealing with r^2

ListPairs <- matrix(NA,nrow=nrow(Colinear)^2,ncol=2)

index <- 1

for (i in 1:(ncol(Colinear)-1))

{

for(j in (i+1):ncol(Colinear))

{

if(isTRUE(Colinear[i,j])){

ListPairs[index,] <- matrix(c(rownames(Colinear)[i],colnames(Colinear)[j]),nrow=1)

index <- index + 1

}

} #end j

} #end i

ListPairs <- ListPairs[is.na(ListPairs[,1])==FALSE,] ## list of collinear pairs

drop <- colnames(Colinear) %in% ListPairs[,2] ## drop the second variable in each pair

whichVariable <-drop==FALSE

return(whichVariable)

}

screen.corX.7 <- function(... , maxCorr =0.7) {

screen.corX.6(... , maxCorr = maxCorr )

}

#### Screen for Univariate logistic regression relationships.

## Returns a list of the 2 or 3 most significant variables from univariate logistic regression

# 2 most significant variables

screen.univar.logistic.2<-function(Y, X, family, obsWeights, id, rank = 2, minPvalue=0.1, nvar=2, ...)

{

listp <- apply(X, 2, function(x, Y, method) {

ifelse(var(x) <= 0, 1, summary(glm(Y~x,family="binomial", weights=obsWeights))$coefficients[2,4])
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}, Y = Y)

listp.rank <- rank(listp)

whichVariable <- (listp.rank <= nvar)

return(whichVariable)

}

# 3 most significant variables

screen.univar.logistic.3 <- function(... , nvar=3) {

screen.univar.logistic.2(... , nvar=nvar )

}

#### Screening method for disallowing MNv2 serotype variables

screen.PRNT <- function(Y, X, family, obsWeights, id, ...) {

# set all to True except variables with MNv2 in the name

vars <- lapply(strsplit(names(X),".",fixed=T),function(x) ifelse(x[2]=="MNv2",FALSE,TRUE))

vars <- ifelse(is.na(vars),TRUE,vars)

vars <- unlist(vars)

return(vars)

}

#### Screening method for disallowing PRNT serotype variables

screen.MNv2 <- function(Y, X, family, obsWeights, id, ...) {

# set all to True except variables with PRNT in the name

vars <- lapply(strsplit(names(X),".",fixed=T),function(x) ifelse(x[2]=="PRNT",FALSE,TRUE))

vars <- ifelse(is.na(vars),TRUE,vars)

vars <- unlist(vars)

return(vars)

}

## To focus on parsiomious models, this screen is modified to use the lambda.1se

## (largest value of lambda such that error is within 1 standard error of the minimum.)

## instead of lambda.min

screen.glmnet <- function (Y, X, family, alpha = 1, minscreen = 2, nfolds = 10,

nlambda = 100, ...)

{

# .SL.require("glmnet")

if (!is.matrix(X)) {

X <- model.matrix(~-1 + ., X)

}

fitCV <- glmnet::cv.glmnet(x = X, y = Y, lambda = NULL, type.measure = "deviance",

nfolds = nfolds, family = family$family, alpha = alpha,
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nlambda = nlambda)

whichVariable <- (as.numeric(coef(fitCV$glmnet.fit, s = fitCV$lambda.1se))[-1] !=

0)

if (sum(whichVariable) < minscreen) {

warning("fewer than minscreen variables passed the glmnet screen, increased lambda to allow minscreen variables")

sumCoef <- apply(as.matrix(fitCV$glmnet.fit$beta), 2,

function(x) sum((x != 0)))

newCut <- which.max(sumCoef >= minscreen)

whichVariable <- (as.matrix(fitCV$glmnet.fit$beta)[,

newCut] != 0)

}

return(whichVariable)

}

### Re-write SL.step function to include handle case-control weights

## Standard SL.step included in SuperLearner doesn’t incorporate sampling weights

SL.step <- function (Y, X, newX, family, obsWeights, direction = "both", trace = 0,

k = 2, ...)

{

fit.glm <- glm(Y ~ ., data = X, family = family, weights = obsWeights)

fit.step <- step(fit.glm, direction = direction, trace = trace,

k = k)

pred <- predict(fit.step, newdata = newX, type = "response")

fit <- list(object = fit.step)

out <- list(pred = pred, fit = fit)

class(out$fit) <- c("SL.step")

return(out)

}

#######################

### read in the data ###

d14 <- read.table(".../simCYD14_112017.csv", header=TRUE, stringsAsFactors=FALSE,sep=",")

d15 <- read.table(".../simCYD15_112017.csv", header=TRUE, stringsAsFactors=FALSE,sep=",")

library(plyr)

d14<-rename(d14, c("M13.Sero1"="M13_PRNT_Sero1",

"M13.Sero2"="M13_PRNT_Sero2",

"M13.Sero3"="M13_PRNT_Sero3",

"M13.Sero4"="M13_PRNT_Sero4",

"M13.AUC"="M13_PRNT_SeroAverage",
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"vcdstatus_m13"="VCD",

"M13mnv2.Sero1" = "M13_MNv2_Sero1",

"M13mnv2.Sero2" = "M13_MNv2_Sero2",

"M13mnv2.Sero3" = "M13_MNv2_Sero3",

"M13mnv2.Sero4" = "M13_MNv2_Sero4",

"M13mnv2.AUCMB" = "M13_MNv2_SeroAverage",

"bS1" = "BaselinePRNT_Sero1",

"bS2" = "BaselinePRNT_Sero2",

"bS3" = "BaselinePRNT_Sero3",

"bS4" = "BaselinePRNT_Sero4"))

d15<-rename(d15, c("M13.Sero1"="M13_PRNT_Sero1",

"M13.Sero2"="M13_PRNT_Sero2",

"M13.Sero3"="M13_PRNT_Sero3",

"M13.Sero4"="M13_PRNT_Sero4",

"M13.AUC"="M13_PRNT_SeroAverage",

"vcdstatus_m13"="VCD",

"M13mnv2.Sero1" = "M13_MNv2_Sero1",

"M13mnv2.Sero2" = "M13_MNv2_Sero2",

"M13mnv2.Sero3" = "M13_MNv2_Sero3",

"M13mnv2.Sero4" = "M13_MNv2_Sero4",

"M13mnv2.AUCMB" = "M13_MNv2_SeroAverage",

"bS1" = "BaselinePRNT_Sero1",

"bS2" = "BaselinePRNT_Sero2",

"bS3" = "BaselinePRNT_Sero3",

"bS4" = "BaselinePRNT_Sero4"))

# Remove observations with missing outcome data

d14 <- d14[is.na(d14$VCD)==FALSE,]

d15 <- d15[is.na(d15$VCD)==FALSE,]

### Create variable for the minimum of the 4 PRNT serotypes for each subject

d14$M13_PRNT_MinSeroTiter <- apply(cbind(d14$M13_PRNT_Sero1,

d14$M13_PRNT_Sero2,

d14$M13_PRNT_Sero3,

d14$M13_PRNT_Sero4),1,min)

### Create variable for the minimum of the 4 PRNT serotypes for each subject

d14$M13_PRNT_MaxSeroTiter <- apply(cbind(d14$M13_PRNT_Sero1,

d14$M13_PRNT_Sero2,

d14$M13_PRNT_Sero3,

d14$M13_PRNT_Sero4),1,max)

### Create variable for the minimum of the 4 PRNT serotypes for each subject
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d15$M13_PRNT_MinSeroTiter <- apply(cbind(d15$M13_PRNT_Sero1,

d15$M13_PRNT_Sero2,

d15$M13_PRNT_Sero3,

d15$M13_PRNT_Sero4),1,min)

### Create variable for the minimum of the 4 PRNT serotypes for each subject

d15$M13_PRNT_MaxSeroTiter <- apply(cbind(d15$M13_PRNT_Sero1,

d15$M13_PRNT_Sero2,

d15$M13_PRNT_Sero3,

d15$M13_PRNT_Sero4),1,max)

# Average Titer for MNv2

d14$M13_MNv2_SeroAverage <- apply(cbind(d14$M13_MNv2_Sero1,d14$M13_MNv2_Sero2,

d14$M13_MNv2_Sero3,d14$M13_MNv2_Sero4),1,mean)

d15$M13_MNv2_SeroAverage <- apply(cbind(d15$M13_MNv2_Sero1,d15$M13_MNv2_Sero2,

d15$M13_MNv2_Sero3,d15$M13_MNv2_Sero4),1,mean)

### Create variable for the minimum of the 4 serotypes for each subject

d14$M13_MNv2_MinSeroTiter <- apply(cbind(d14$M13_MNv2_Sero1,

d14$M13_MNv2_Sero2,

d14$M13_MNv2_Sero3,

d14$M13_MNv2_Sero4),1,min)

### Create variable for the minimum of the 4 serotypes for each subject

d14$M13_MNv2_MaxSeroTiter <- apply(cbind(d14$M13_MNv2_Sero1,

d14$M13_MNv2_Sero2,

d14$M13_MNv2_Sero3,

d14$M13_MNv2_Sero4),1,max)

### Create variable for the minimum of the 4 serotypes for each subject

d15$M13_MNv2_MinSeroTiter <- apply(cbind(d15$M13_MNv2_Sero1,

d15$M13_MNv2_Sero2,

d15$M13_MNv2_Sero3,

d15$M13_MNv2_Sero4),1,min)

### Create variable for the minimum of the 4 serotypes for each subject

d15$M13_MNv2_MaxSeroTiter <- apply(cbind(d15$M13_MNv2_Sero1,

d15$M13_MNv2_Sero2,

d15$M13_MNv2_Sero3,

d15$M13_MNv2_Sero4),1,max)

## Restrict testing data set to age range of interest (9-14 years)

d15 <- d15[d15$AGEYRS<15,]

## calculate observation weights
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CaseControlWeights <- function(d){

dcase <- d[d$VCD==1,]

dcontrol <- d[d$VCD==0,]

# number of cases

n_case <- nrow(d[d$VCD==1,])

# number of controls

n_control <- nrow(d[d$VCD==0,])

# number of controls w/marker data at m13

n_control_m13 <- nrow(dcontrol[(is.na(dcontrol$M13_MNv2_Sero4)==F |

is.na(dcontrol$M13_MNv2_Sero3)==F|

is.na(dcontrol$M13_MNv2_Sero2)==F|

is.na(dcontrol$M13_MNv2_Sero1)==F) &

(is.na(dcontrol$M13_PRNT_Sero4)==F |

is.na(dcontrol$M13_PRNT_Sero3)==F|

is.na(dcontrol$M13_PRNT_Sero2)==F|

is.na(dcontrol$M13_PRNT_Sero1)==F),])

# number of cases w/marker data at m13

n_case_m13 <- nrow(dcase[(is.na(dcase$M13_MNv2_Sero4)==F |

is.na(dcase$M13_MNv2_Sero3)==F|

is.na(dcase$M13_MNv2_Sero2)==F|

is.na(dcase$M13_MNv2_Sero1)==F) &

(is.na(dcase$M13_PRNT_Sero4)==F |

is.na(dcase$M13_PRNT_Sero3)==F|

is.na(dcase$M13_PRNT_Sero2)==F|

is.na(dcase$M13_PRNT_Sero1)==F),]) #244

p_case <- n_case_m13/n_case

p_nocase <- n_control_m13/n_control

weight_case <- 1/p_case

weight_nocase <- 1/p_nocase

final_weight <- ifelse(d$VCD==1, weight_case,weight_nocase)

return(final_weight)

}

## case control weights for full datasets

d14$weight<-CaseControlWeights(d14)

d15$weight<-CaseControlWeights(d15)

###

############

d14$dset <- "CYD14"

d15$dset <- "CYD15"
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################

## Serotype Frequency by Country

# create variables of the relative proportion of each type of Dengue (1-4) within each country

CountryIncidence <- function(dset){

### serotype distributions by country for placebo; these are the ones used for models ####

t1<-table(dset[dset$VACC ==0,]$COUNTRY,dset[dset$VACC ==0,]$s1vcdstatus_m13)

t2<-table(dset[dset$VACC ==0,]$COUNTRY,dset[dset$VACC ==0,]$s2vcdstatus_m13)

t3<-table(dset[dset$VACC ==0,]$COUNTRY,dset[dset$VACC ==0,]$s3vcdstatus_m13)

t4<-table(dset[dset$VACC ==0,]$COUNTRY,dset[dset$VACC ==0,]$s4vcdstatus_m13)

# calculate the proportion by

country.rates <- cbind(t1[,2]/t1[,1],t2[,2]/t2[,1],t3[,2]/t3[,1],t4[,2]/t4[,1])

colnames(country.rates)<- c("Sero1","Sero2","Sero3","Sero4")

country.incidence <- cbind(t1[,2],t2[,2],t3[,2],t4[,2])

country.incidence.sum<-apply(country.incidence,1,sum)

rates.per.country <- country.incidence/country.incidence.sum

## percentage of all infections in country that were each serotype

colnames(rates.per.country)<- c("Sero1","Sero2","Sero3","Sero4")

### assign rates.per.country variables to records ####

c<-levels(as.factor(dset$COUNTRY))

dset$Sero1.rate <- dset$Sero2.rate <- dset$Sero3.rate <- dset$Sero4.rate <- NA

dset$Sero1.rate <- ifelse(dset$COUNTRY == c[1], rates.per.country[1,1],dset$Sero1.rate)

dset$Sero1.rate <- ifelse(dset$COUNTRY == c[2], rates.per.country[2,1],dset$Sero1.rate)

dset$Sero1.rate <- ifelse(dset$COUNTRY == c[3], rates.per.country[3,1],dset$Sero1.rate)

dset$Sero1.rate <- ifelse(dset$COUNTRY == c[4], rates.per.country[4,1],dset$Sero1.rate)

dset$Sero1.rate <- ifelse(dset$COUNTRY == c[5], rates.per.country[5,1],dset$Sero1.rate)

dset$Sero2.rate <- ifelse(dset$COUNTRY == c[1], rates.per.country[1,2],dset$Sero2.rate)

dset$Sero2.rate <- ifelse(dset$COUNTRY == c[2], rates.per.country[2,2],dset$Sero2.rate)

dset$Sero2.rate <- ifelse(dset$COUNTRY == c[3], rates.per.country[3,2],dset$Sero2.rate)

dset$Sero2.rate <- ifelse(dset$COUNTRY == c[4], rates.per.country[4,2],dset$Sero2.rate)

dset$Sero2.rate <- ifelse(dset$COUNTRY == c[5], rates.per.country[5,2],dset$Sero2.rate)

dset$Sero3.rate <- ifelse(dset$COUNTRY == c[1], rates.per.country[1,3],dset$Sero3.rate)

dset$Sero3.rate <- ifelse(dset$COUNTRY == c[2], rates.per.country[2,3],dset$Sero3.rate)

dset$Sero3.rate <- ifelse(dset$COUNTRY == c[3], rates.per.country[3,3],dset$Sero3.rate)

dset$Sero3.rate <- ifelse(dset$COUNTRY == c[4], rates.per.country[4,3],dset$Sero3.rate)

dset$Sero3.rate <- ifelse(dset$COUNTRY == c[5], rates.per.country[5,3],dset$Sero3.rate)
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dset$Sero4.rate <- ifelse(dset$COUNTRY == c[1], rates.per.country[1,4],dset$Sero4.rate)

dset$Sero4.rate <- ifelse(dset$COUNTRY == c[2], rates.per.country[2,4],dset$Sero4.rate)

dset$Sero4.rate <- ifelse(dset$COUNTRY == c[3], rates.per.country[3,4],dset$Sero4.rate)

dset$Sero4.rate <- ifelse(dset$COUNTRY == c[4], rates.per.country[4,4],dset$Sero4.rate)

dset$Sero4.rate <- ifelse(dset$COUNTRY == c[5], rates.per.country[5,4],dset$Sero4.rate)

return(dset)

}

d14.ci <- CountryIncidence(dset=d14)

d15.ci <- CountryIncidence(dset=d15)

# combine datasets for additional data processing before separating into old and new studies

d <-rbind(d14.ci,d15.ci)

## "Only participants with Month 13 titer data on both neutralization assay types are included in the analysis"

d <- d[is.na(d$M13_PRNT_Sero1)==FALSE &

is.na(d$M13_PRNT_Sero2)==FALSE &

is.na(d$M13_PRNT_Sero3)==FALSE &

is.na(d$M13_PRNT_Sero4)==FALSE &

is.na(d$VCD)==FALSE &

is.na(d$M13_MNv2_Sero1)==FALSE &

is.na(d$M13_MNv2_Sero2)==FALSE &

is.na(d$M13_MNv2_Sero3)==FALSE &

is.na(d$M13_MNv2_Sero4)==FALSE

,]

# create age indicator variables

d$AGE.2.8 <- ifelse(d$AGEYRS<=8,1,0)

d$AGE.9.11 <- ifelse(d$AGEYRS>8 & d$AGEYRS<=11,1,0)

d$AGE.12.14 <- ifelse(d$AGEYRS>11,1,0)

## retain variables with the continuous information for plots

d$M13_MNv2_Sero1c <- d$M13_MNv2_Sero1

d$M13_MNv2_Sero2c <- d$M13_MNv2_Sero2

d$M13_MNv2_Sero3c <- d$M13_MNv2_Sero3

d$M13_MNv2_Sero4c <- d$M13_MNv2_Sero4

d$M13_PRNT_Sero1c <- d$M13_PRNT_Sero1

d$M13_PRNT_Sero2c <- d$M13_PRNT_Sero2

d$M13_PRNT_Sero3c <- d$M13_PRNT_Sero3

d$M13_PRNT_Sero4c <- d$M13_PRNT_Sero4
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# code individual serotypes as binary pos/neg

CodeBinarySero <- function(x){

b <- ifelse(x <=log10(5)+0.001,0,1) # "+0.001"" is to adjust for possible rounding in the csv file

b <- ifelse(is.na(x),NA,b)

b

}

d$M13_MNv2_Sero1 <-CodeBinarySero(d$M13_MNv2_Sero1)

d$M13_MNv2_Sero2 <-CodeBinarySero(d$M13_MNv2_Sero2)

d$M13_MNv2_Sero3 <-CodeBinarySero(d$M13_MNv2_Sero3)

d$M13_MNv2_Sero4 <-CodeBinarySero(d$M13_MNv2_Sero4)

d$M13_PRNT_Sero1 <-CodeBinarySero(d$M13_PRNT_Sero1)

d$M13_PRNT_Sero2 <-CodeBinarySero(d$M13_PRNT_Sero2)

d$M13_PRNT_Sero3 <-CodeBinarySero(d$M13_PRNT_Sero3)

d$M13_PRNT_Sero4 <-CodeBinarySero(d$M13_PRNT_Sero4)

# separate into old and new studies (CYD14 and CYD15)

d14 <- d[d$dset== "CYD14",]

d15 <- d[d$dset== "CYD15",]

#################

## SuperLearner Dummy Data Matrices

Y14 <- as.numeric(d14$VCD)

X14 <- data.frame(d14$VACC, #1

d14$AGE.9.11, #2

d14$AGE.12.14, #3

d14$MALE, #4

d14$M13_PRNT_Sero1, d14$M13_PRNT_Sero2,

d14$M13_PRNT_Sero3, d14$M13_PRNT_Sero4, # 5-8

d14$M13_PRNT_SeroAverage, # 9

d14$M13_PRNT_MinSeroTiter,d14$M13_PRNT_MaxSeroTiter,# 10,11

d14$M13_MNv2_Sero1, d14$M13_MNv2_Sero2,

d14$M13_MNv2_Sero3, d14$M13_MNv2_Sero4, # 12-15

d14$M13_MNv2_SeroAverage, # 16

d14$M13_MNv2_MinSeroTiter,d14$M13_MNv2_MaxSeroTiter,# 17,18

d14$weight, # 19: weight

d14$Sero1.rate,d14$Sero2.rate,d14$Sero3.rate,d14$Sero4.rate

)

names(X14) <- cbind("VACC","AGE.9.11","AGE.12.14","MALE",

"M13.PRNT.S1","M13.PRNT.S2","M13.PRNT.S3","M13.PRNT.S4",

"M13.PRNT.Ave","M13.PRNT.Min","M13.PRNT.Max",
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"M13.MNv2.S1","M13.MNv2.S2","M13.MNv2.S3","M13.MNv2.S4",

"M13.MNv2.Ave","M13.MNv2.Min","M13.MNv2.Max", # 19: weight

"IPCWeight",

"Sero1.frequency","Sero2.frequency","Sero3.frequency","Sero4.frequency"

)

Y14_vaccine <- Y14[X14$VACC ==1]

Y14_placebo <- Y14[X14$VACC ==0]

X14_vaccine <- X14[X14$VACC ==1,]

X14_placebo <- X14[X14$VACC ==0,]

## Demo + PRNT + MNv2 + SeroRate

X14_vaccine_subset <- X14_vaccine[,c(2:18,21:23)]

X14_placebo_subset <- X14_placebo[,c(2:18,21:23)]

## weight vector IPCW weights calculated above

weight14.v <- X14_vaccine[,19]

weight14.p <- X14_placebo[,19]

#################

## SuperLearner Dummy Data Matrices

Y15 <- as.numeric(d15$VCD)

X15 <- data.frame(d15$VACC, #1

d15$AGE.9.11, #2

d15$AGE.12.14, #3

d15$MALE, #4

d15$M13_PRNT_Sero1, d15$M13_PRNT_Sero2, d15$M13_PRNT_Sero3,

d15$M13_PRNT_Sero4, # 5-8

d15$M13_PRNT_SeroAverage, # 9

d15$M13_PRNT_MinSeroTiter,d15$M13_PRNT_MaxSeroTiter,# 10,11

d15$M13_MNv2_Sero1, d15$M13_MNv2_Sero2, d15$M13_MNv2_Sero3,

d15$M13_MNv2_Sero4, # 12-15

d15$M13_MNv2_SeroAverage, # 16

d15$M13_MNv2_MinSeroTiter,d15$M13_MNv2_MaxSeroTiter,# 17,18

d15$weight, # 19: weight

d15$Sero1.rate,d15$Sero2.rate,d15$Sero3.rate,d15$Sero4.rate

)

names(X15) <- cbind("VACC","AGE.9.11","AGE.12.14","MALE",

"M13.PRNT.S1","M13.PRNT.S2","M13.PRNT.S3","M13.PRNT.S4",
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"M13.PRNT.Ave","M13.PRNT.Min","M13.PRNT.Max",

"M13.MNv2.S1","M13.MNv2.S2","M13.MNv2.S3","M13.MNv2.S4",

"M13.MNv2.Ave","M13.MNv2.Min","M13.MNv2.Max", # 19: weight

"IPCWeight",

"Sero1.frequency","Sero2.frequency","Sero3.frequency","Sero4.frequency"

)

Y15_vaccine <- Y15[X15$VACC ==1]

Y15_placebo <- Y15[X15$VACC ==0]

X15_vaccine <- X15[X15$VACC ==1,]

X15_placebo <- X15[X15$VACC ==0,]

## Demo + PRNT + MNv2 + SeroRate

X15_vaccine_subset <- X15_vaccine[,c(2:18,21:23)]

X15_placebo_subset <- X15_placebo[,c(2:18,21:23)]

## weight vector IPCW weights calculated above

weight15.v <- X15_vaccine[,19]

weight15.p <- X15_placebo[,19]

#######################

## SuperLearner on Dummy CYD14 data

# Stratify V-fold cross-validation so that all validation samples have roughly the same number of events

.cvFolds <- function(Y, V){ #Create CV folds (stratify by outcome) -- code from cvAUC documentation

Y0 <- split(sample(which(Y==0)), rep(1:V, length=length(which(Y==0))))

Y1 <- split(sample(which(Y==1)), rep(1:V, length=length(which(Y==1))))

folds <- vector("list", length=V)

for (v in seq(V)) {folds[[v]] <- c(Y0[[v]], Y1[[v]])}

return(folds)

}

### set up screens

# note screen.glmnet is built into SuperLearner package

screens <- c("screen.glmnet", "screen.corX.6", "screen.corX.7",

"screen.univar.logistic.2", "screen.univar.logistic.3",

"screen.MNv2","screen.PRNT"

)

# Define non-data-adaptive methods

regular.methods <- c("SL.mean","SL.step","SL.bayesglm", "SL.glm")
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# Construct SL library of non-data-adaptive methods

SL.library.regular <- lapply(regular.methods, function(method) c(method, screens))

# Define data-adaptive methods

adaptive.methods <- c("SL.polymars")

SL.library.adaptive <- lapply(adaptive.methods, function(method) c(method, screens))

SL.library <- c(SL.library.regular, SL.library.adaptive)

#######################

## Cross-Validated SuperLearner on Dummy CYD14

#######################

CV.fitSL14.v <- list()

set.seed(0987)

CV.fitSL14.v <- CV.SuperLearner(Y=Y14_vaccine, X=X14_vaccine_subset,

V = 7,

family = binomial(), SL.library,

method = "method.NNLS",obsWeights = weight14.v

,saveAll = TRUE,control=SuperLearner.control(saveFitLibrary = TRUE)

,verbose=FALSE)

set.seed(0987)

## Fit Estimated Optimal Surrogate on CYD14 Placebo Treatment Group

CV.fitSL14.p <- list()

CV.fitSL14.p <- CV.SuperLearner(Y=Y14_placebo, X=X14_placebo_subset,

V = 7,

family = binomial(), SL.library,

method = "method.NNLS",obsWeights = weight14.p

,saveAll = TRUE,control=SuperLearner.control(saveFitLibrary = TRUE)

,verbose=FALSE)

#######################

# Single run of superlearner to get model and optimal surrogate values for SuperLearner

#######################

# using the same SL.library as specified for CV.SuperLearner

# vaccine group

fitSL14.v <- list()

set.seed(1106)



30 Biometrics, 000 0000

fitSL14.v <- SuperLearner(Y=Y14_vaccine, X=X14_vaccine_subset,

family = binomial(), SL.library=SL.library,

method = "method.NNLS",

#method = "method.AUC",

obsWeights = weight14.v

,control=SuperLearner.control(saveFitLibrary = TRUE)

,verbose=FALSE)

# placebo group

fitSL14.p <- list()

set.seed(1106)

fitSL14.p <- SuperLearner(Y=Y14_placebo, X=X14_placebo_subset,

family = binomial(),SL.library=SL.library,

method = "method.NNLS",

#method = "method.AUC",

obsWeights = weight14.p

,control=SuperLearner.control(saveFitLibrary = TRUE)

,verbose=FALSE)

########################

## Figure 1 MSE Black and White using Dummy CYD14

########################

ForestPlotMatrix1 <- summary(CV.fitSL14.v)$Table

ForestPlotMatrix1$CVMSE<-ForestPlotMatrix1$Ave

ForestPlotMatrix1$Lower <- ForestPlotMatrix1$Ave - 1.96*ForestPlotMatrix1$se

ForestPlotMatrix1$Upper <- ForestPlotMatrix1$Ave + 1.96*ForestPlotMatrix1$se

ForestPlotDataset <-as.data.frame((ForestPlotMatrix1))

library(stringr)

splits <- matrix(unlist(strsplit(colnames(CV.fitSL14.v$library.predict), "_", fixed=TRUE)), ncol=2, byrow=TRUE)

ForestPlotDataset$Algorithm1 <- c("Super Learner","Discrete SL",str_replace(splits[,1], "SL.", ""))

ForestPlotDataset$Screen <- c("Super Learner","Discrete SL",str_replace(splits[,2], "screen.", ""))

ForestPlotDataset$Algorithm <- c("Super Learner","Discrete SL",colnames(CV.fitSL14.v$library.predict))

ForestPlotDataset$Algorithm1<- factor(ForestPlotDataset$Algorithm1,

levels = c("mean",

"polymars","Super Learner","Discrete SL","glmnet"

,"bayesglm","step","glm")

)
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ForestPlotDataset <- ForestPlotDataset[order(ForestPlotDataset$CVMSE),]

ForestPlotDataset <- rbind(ForestPlotDataset[1:10,],

ForestPlotDataset[ForestPlotDataset$Algorithm==("Discrete SL") |

ForestPlotDataset$Algorithm==("Super Learner"),])

ForestPlotDataset <- ForestPlotDataset[order(ForestPlotDataset$CVMSE),]

ForestPlotDataset$Algorithm2 <- paste(ForestPlotDataset$Algorithm1,", screen:",ForestPlotDataset$Screen,sep="")

ForestPlotDataset$Algorithm2 <- ifelse(ForestPlotDataset$Algorithm1==

"Discrete SL","Discrete SL",ForestPlotDataset$Algorithm2)

ForestPlotDataset$Algorithm2 <- ifelse(ForestPlotDataset$Algorithm1==

"Super Learner","Super Learner",ForestPlotDataset$Algorithm2)

ForestPlotDataset$Algorithm2 <- reorder(ForestPlotDataset$Algorithm2,

-ForestPlotDataset$Ave)

ForestPLotMSE.v <- ggplot(ForestPlotDataset) +

geom_errorbarh(aes(x=CVMSE,xmin=Lower,xmax=Upper,y=Algorithm2)) +

geom_point(aes(x=CVMSE,y=Algorithm2),size=0.7,alpha=0.85) +

theme_bw() +

xlab(’CV-MSE’) +

ylab(’Algorithm’) +

ggtitle("DUMMY CYD14 Vaccine CV-MSE")

######## Placebo

ForestPlotMatrix1 <- summary(CV.fitSL14.p)$Table

ForestPlotMatrix1$CVMSE<-ForestPlotMatrix1$Ave

ForestPlotMatrix1$Lower <- ForestPlotMatrix1$Ave - 1.96*ForestPlotMatrix1$se

ForestPlotMatrix1$Upper <- ForestPlotMatrix1$Ave + 1.96*ForestPlotMatrix1$se

ForestPlotDataset <-as.data.frame((ForestPlotMatrix1))

library(stringr)

splits <- matrix(unlist(strsplit(colnames(CV.fitSL14.p$library.predict), "_", fixed=TRUE)), ncol=2, byrow=TRUE)

ForestPlotDataset$Algorithm1 <- c("Super Learner","Discrete SL",str_replace(splits[,1], "SL.", ""))

ForestPlotDataset$Screen <- c("NA","NA",str_replace(splits[,2], "screen.", ""))

ForestPlotDataset$Algorithm <- c("Super Learner","Discrete SL",colnames(CV.fitSL14.p$library.predict))

ForestPlotDataset$Algorithm1<- factor(ForestPlotDataset$Algorithm1,

levels = c("mean",

"polymars","Super Learner","Discrete SL","glmnet"
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,"bayesglm","step","glm"))

ForestPlotDataset <- ForestPlotDataset[order(ForestPlotDataset$CVMSE),]

ForestPlotDataset <- rbind(ForestPlotDataset[1:8,],

ForestPlotDataset[ForestPlotDataset$Algorithm==("Discrete SL") |

ForestPlotDataset$Algorithm==("Super Learner"),])

ForestPlotDataset <- ForestPlotDataset[order(ForestPlotDataset$CVMSE),]

ForestPlotDataset$Algorithm2 <- paste(ForestPlotDataset$Algorithm1,", screen:",ForestPlotDataset$Screen,sep="")

ForestPlotDataset$Algorithm2 <- ifelse(ForestPlotDataset$Algorithm1==

"Discrete SL","Discrete SL",ForestPlotDataset$Algorithm2)

ForestPlotDataset$Algorithm2 <- ifelse(ForestPlotDataset$Algorithm1==

"Super Learner","Super Learner",ForestPlotDataset$Algorithm2)

ForestPlotDataset$Algorithm2 <- reorder(ForestPlotDataset$Algorithm2,

-ForestPlotDataset$Ave)

ForestPLotMSE.p <- ggplot(ForestPlotDataset) +

geom_errorbarh(aes(x=CVMSE,xmin=Lower,xmax=Upper,y=Algorithm2)) +

geom_point(aes(x=CVMSE,y=Algorithm2),size=0.7,alpha=0.85) +

theme_bw() +

xlab(’CV-MSE’) +

ylab(’Algorithm’) +

ggtitle("DUMMY CYD14 Placebo CV-MSE")

# Output Figure 1 pdf

library(gridExtra)

pdf("BiometricsPriceGilbertVanDerLaan_CVMSE_Figure1_blackwhite_DummyDataCYD14.pdf",width=8, height=4)

grid.arrange(ForestPLotMSE.v, ForestPLotMSE.p, ncol=2)

dev.off()

#######################

######### TMLE for CYD14

#######################

## Function to target (perform TMLE) on the estimated optimal surrogate

## Inputs

# w = covariates

# a = treatment group

# y = optimal surrogate
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# g.SL.library = SL library desired for estimating initial g values

# wgts = case-control weights, if any

# max.wgt = if needed

weighted.tmle.EOS <- function(w,a,y,g.SL.library,wgts,max.wgt=Inf){

require(SuperLearner)

n <- nrow(w)

WA <- data.frame(w,A=a)

wgts = n*wgts/sum(wgts)

Qbar.ests <- y

# obtain an estimate of g_n

temp <- SuperLearner(a,w,SL.library=g.SL.library,newX=w,obsWeights=wgts,

family=binomial,cvControl=list(V=10))

g.ests <- temp$SL.predict[,1]

rm(temp)

g.ests[a==0] <- 1-g.ests[a==0]

a.ind <- 2*a-1

offset <- qlogis(pmin(pmax(Qbar.ests[1:n],0.0005),0.9995))

g.and.wgts = pmin(wgts/g.ests,max.wgt)

eps = coef(glm(y ~ -1 + offset(offset) + a.ind,weights=g.and.wgts,family=binomial))

if(a==1){QA <-plogis(qlogis(Qbar.ests[1:n]) + eps)}else{QA<-plogis(qlogis(Qbar.ests[1:n]) + eps)}

return(list(QA = QA))}

###########################

## Function to perform TMLE with observation weighting to handle

## the case-cohort sampling design

## Inputs

# w = covariates baseline covariates (intermediate response endpoints s

# are not used for this TMLE)

# a = treatment group (vaccine or placebo)

# y = outcome (dengue endpoint occurrence or optimal surrogate)

# Q.SL.library = SL library desired for estimating initial Q values

# g.SL.library = SL library desired for estimating initial g values

# wgts = case-cohort weights, if any

# max.wgt = if needed

# Even though for the data sets (W,A,Y) are measured on everyone,

# the TMLE is implemented with inverse probability weighting

# because only the data set with S measured is used for the analysis.

weighted.tmle.ate <- function(w,a,y,Q.SL.library,g.SL.library,wgts,max.wgt=Inf){
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require(SuperLearner)

n <- nrow(w)

WA <- WA0 <- WA1<-data.frame(w,A=a)

WA0$A <- 0 # counterfactual for control

WA1$A <- 1 # counterfactual for case

wgts = n*wgts/sum(wgts)

temp <- SuperLearner(y,data.frame(w,A=a),SL.library=Q.SL.library,newX=rbind(WA,WA0,WA1),

obsWeights=wgts,family=binomial,cvControl=list(V=10))

Qbar.ests <- temp$SL.predict[,1]

rm(temp)

temp <- SuperLearner(a,w,SL.library=g.SL.library,newX=w,obsWeights=wgts,

family=binomial,cvControl=list(V=10))

g.ests <- temp$SL.predict[,1]

rm(temp)

g.ests[a==0] <- 1-g.ests[a==0]

a.ind <- 2*a-1 # instead of a = 0,1, a = -1, +1

offset <- qlogis(pmin(pmax(Qbar.ests[1:n],0.0005),0.9995))

g.and.wgts = pmin(wgts/g.ests,max.wgt)

eps = coef(glm(y ~ -1 + offset(offset) + a.ind,weights=g.and.wgts,family=binomial))

Q0 <- plogis(qlogis(Qbar.ests[(n+1):(2*n)]) - eps) # Qbar.ests[(n+1):(2*n)]=WA0 predicted values

Q1 <- plogis(qlogis(Qbar.ests[(2*n+1):(3*n)]) + eps) # Qbar.ests[(2*n+1):(3*n)]=WA1 predicted values

est <- mean((Q1-Q0)*wgts)

EY1 <- mean(Q1*wgts)

EY0 <- mean(Q0*wgts)

ic <- a.ind*g.and.wgts*(y-(a*Q1 + (1-a)*Q0)) + wgts*((Q1-Q0) - est)

ic1 = a*g.and.wgts*(y- Q1) + wgts*(Q1-EY1) # equals only wgts*(Q1-EY1) for placebo subjects

ic0 = (1-a)*g.and.wgts*(y- Q0) + wgts*(Q0-EY0) # equals only wgts*(Q0-EY0) for vaccine subjects

ci <- c(est-qnorm(0.975)*sd(ic)/sqrt(n),est+qnorm(0.975)*sd(ic)/sqrt(n))

ci1 <- c(EY1-qnorm(0.975)*sd(ic1)/sqrt(length(ic1)),EY1+qnorm(0.975)*sd(ic1)/sqrt(length(ic1)))

ci0 <- c(EY0-qnorm(0.975)*sd(ic0)/sqrt(length(ic0)),EY0+qnorm(0.975)*sd(ic0)/sqrt(length(ic0)))

return(list(est=est,ci=ci,ic=ic,EY1=EY1,EY0=EY0,Q0 = Q0, Q1=Q1,

ic1=ic1, ic0=ic0, ci1=ci1, ci0=ci0))}

####################

## For appropriate TMLE, the correct dataset size is needed;

## since observations without M13 data would have a weight of 0,

## we can use dummy data appended to the m13 data for when the function is called.

## The only variables that reflect the true data are the a (vaccine/placebo) and y (all non cases)

## CYD14 VACC 6859 and Placebo 3391

## so 6859-774=6085 dummy vaccinated and 3391-426=2965 dummy placebo
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remaining14_w <- matrix(0,nrow=9050,ncol=3)

colnames(remaining14_w)<-c("AGE.9.11","AGE.12.14","MALE")

remaining14_y <- rep(0,9050)

remaining14_weight <- rep(0,9050)

remaining14_VACC <- c(rep(1,6085),rep(0,2965))

## TMLE on CYD14 with clinical outcomes

tmle.outB<- weighted.tmle.ate(w=rbind(X14_vaccine[,c("AGE.9.11","AGE.12.14","MALE")],

X14_placebo[,c("AGE.9.11","AGE.12.14","MALE")],

remaining14_w)

,a=c(X14_vaccine$VACC,X14_placebo$VACC,remaining14_VACC)

,y=c(Y14_vaccine,Y14_placebo,remaining14_y) # clinical outcomes

,Q.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")

,g.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")

,wgts=c(weight14.v,weight14.p,remaining14_weight)

,max.wgt=Inf

)

## TMLE on CYD14 for Relative Risk with clinical outcomes

psi14_rr <-tmle.outB$EY1/tmle.outB$EY0

logpsi14_rr <- log(psi14_rr)

var.logrr <- ((1/tmle.outB$EY1)^2)*var(tmle.outB$ic1)/length(c(weight14.v,weight14.p,remaining14_weight)) +

((1/tmle.outB$EY0)^2)*var(tmle.outB$ic0)/length(c(weight14.v,weight14.p,remaining14_weight))

log14_rr.ci.upper <- logpsi14_rr + 1.96*sqrt(var.logrr)

log14_rr.ci.lower <- logpsi14_rr - 1.96*sqrt(var.logrr)

psi14_ve <- 1-exp(logpsi14_rr)

psi14_ve.ci.lower <- 1-exp(log14_rr.ci.upper)

psi14_ve.ci.upper <- 1-exp(log14_rr.ci.lower)

## TMLE on CYD14 with targeted SuperLearner estimated optimal surrogate

pred.v<- fitSL14.v$SL.predict

pred.p<- fitSL14.p$SL.predict

SL.predict.TMLE.14 <- weighted.tmle.EOS(w=rbind(X14_vaccine[,c("AGE.9.11","AGE.12.14","MALE")],

X14_placebo[,c("AGE.9.11","AGE.12.14","MALE")],

remaining14_w)

,a=c(X14_vaccine$VACC,X14_placebo$VACC,remaining14_VACC)

,y=c(pred.v,pred.p,remaining14_y) # optimal surrogate

,g.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")

,wgts=c(weight14.v,weight14.p,remaining14_weight)
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,max.wgt=Inf)

tmle.outB.psi <- weighted.tmle.ate(w=rbind(X14_vaccine[,c("AGE.9.11","AGE.12.14","MALE")],

X14_placebo[,c("AGE.9.11","AGE.12.14","MALE")],

remaining14_w)

,a=c(X14_vaccine$VACC,X14_placebo$VACC,remaining14_VACC)

,y=SL.predict.TMLE.14$QA # optimal surrogate

,Q.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")

,g.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")

,wgts=c(weight14.v,weight14.p,remaining14_weight)

,max.wgt=Inf

)

## TMLE for Relative Risk with SuperLearner estimated optimal surrogate

psi14_rr.psi <-tmle.outB.psi$EY1/tmle.outB.psi$EY0

log.psi14_rr.psi <- log(psi14_rr.psi)

var.logrr.psi <- ((1/tmle.outB.psi$EY1)^2)*var(tmle.outB.psi$ic1)/length(c(weight14.v,weight14.p,remaining14_weight)) +

((1/tmle.outB.psi$EY0)^2)*var(tmle.outB.psi$ic0)/length(c(weight14.v,weight14.p,remaining14_weight))

log.psi14_rr.psi.ci.upper <- log.psi14_rr.psi + 1.96*sqrt(var.logrr.psi)

log.psi14_rr.psi.ci.lower <- log.psi14_rr.psi - 1.96*sqrt(var.logrr.psi)

psi14_ve.psi <- 1-psi14_rr.psi

psi14_ve.psi.ci.lower <- 1-exp(log.psi14_rr.psi.ci.upper)

psi14_ve.psi.ci.upper <- 1-exp(log.psi14_rr.psi.ci.lower)

########################

## Table of Dummy CYD14 Results

########################

library(xtable)

suppressPackageStartupMessages(library(xtable))

options(xtable.comment = FALSE)

CYD14_TMLEVE <- matrix(NA, ncol=4, nrow=4)

CYD14_TMLEVE[1,]<-c("",

paste(expression("Surrogate Parameters Based on the TMLE of the Optimal Surrogate "*theta[psi[n]^"#"]^"TML

"",

paste(expression("Clinical Parameters Based on the TMLE "*tilde(theta)^"TMLE")) )

CYD14_TMLEVE[2:4,1] <- c(paste(expression(theta[psi[n]^"#"]^"TMLE,1" ) ),

paste(expression(theta[psi[n]^"#"]^"TMLE,0" ) ),
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paste(expression(VE[psi[n]^"#"]^"TMLE" ) ) )

CYD14_TMLEVE[2:4,2] <- c(paste(round(tmle.outB.psi$EY1,3),

" (95% CI ",round(tmle.outB.psi$ci1[1],3),"-",round(tmle.outB.psi$ci1[2],3),")",sep=""),

paste(round(tmle.outB.psi$EY0,3),

" (95% CI ",round(tmle.outB.psi$ci0[1],3),"-",round(tmle.outB.psi$ci0[2],3),")",sep=""),

paste(100*round(psi14_ve.psi,2),

"% (95% CI ",100*round(psi14_ve.psi.ci.lower,2),"-",100*round(psi14_ve.psi.ci.upper,2),")",s

)

CYD14_TMLEVE[2:4,3] <- c(paste(expression(E[n](Y[1])^"TMLE")),

paste(expression(E[n](Y[0])^"TMLE")),

paste(expression(VE[n]^"TMLE")))

CYD14_TMLEVE[2:4,4] <- c(paste(round(tmle.outB$EY1,3),

" (95% CI ",round(tmle.outB$ci1[1],3),"-",round(tmle.outB$ci1[2],3),")",sep=""),

paste(round(tmle.outB$EY0,3),

" (95% CI ",round(tmle.outB$ci0[1],3),"-",round(tmle.outB$ci0[2],3),")",sep=""),

paste(100*round(psi14_ve,2),

"% (95% CI ",100*round(psi14_ve.ci.lower,2),"-",100*round(psi14_ve.ci.upper,2),")",sep="")

)

CYD14_TMLEVE[1,]<-c("",

paste(

expression("Surrogate Parameters Based on the TMLE of the Optimal Surrogate "*theta[psi[n]^"#"]^"TMLE")

"",

paste(expression("Clinical Parameters Based on the TMLE "*tilde(theta[n])^"TMLE"))

)

print(xtable(CYD14_TMLEVE,

caption="Comparison of inferences on the surrogate parameters and VE, versus inferences on the

clinical dengue parameters in CYD14. The TMLEs for the Optimal Surrogate and for the clinical outcome

are nearly identical in values.",

align="l|l|c|l|c", label="tab:TMLEVE" ),

include.rownames=FALSE,

include.colnames=FALSE, type="latex")

library(gridExtra)

pdf("BiometricsPriceGilbertVanDerLaan_EstimatesForCYD14_Section6.1_DummyDataCYD14.pdf",height=3,width=12)

tt <- ttheme_default(colhead=list(fg_params = list(parse=TRUE)),parse=TRUE)

table <- tableGrob(CYD14_TMLEVE, theme=tt)

library(grid)

library(gtable)

title <- textGrob("TMLE Estimates Reported in Section 6.1 Using Dummy CYD14 Data*",gp=gpar(fontsize=16))
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footnote <- textGrob("*Results based on simulated data and do not necessarily reflect actual results",

x=0, hjust=0, gp=gpar( fontface="italic"))

padding <- unit(0.5,"line")

table <- gtable_add_rows(table,

heights = grobHeight(title) + padding,

pos = 0)

table <- gtable_add_rows(table,

heights = grobHeight(footnote)+ padding)

table <- gtable_add_grob(table, list(title, footnote),

t=c(1, nrow(table)), l=c(1,2),

r=ncol(table))

grid.newpage()

grid.draw(table)

dev.off()

#######################

######### TMLE for Dummy CYD15 using the Dummy CYD15 clinical outcome for VCD

######### Calculation of Clinical Parameters Based on the TMLE: tilde(theta)["n*"]^"TMLE"*(P)

#######################

## For appropriate TMLE, the correct dataset size is needed;

## since observations without M13 data would have a weight of 0,

## we can use dummy data appended to the m13 data for when the function is called.

## The only variables that reflect the true data are the a (vaccine/placebo) and y (all non cases)

## CYD15 VACC 11849 and Placebo 5803

## so 11849-1101=10748 dummy vaccinated and 5803-637=5166 dummy placebo

remaining15_w <- matrix(0,nrow=15914,ncol=3)

colnames(remaining15_w)<-c("AGE.9.11","AGE.12.14","MALE")

remaining15_y <- rep(0,15914)

remaining15_weight <- rep(0,15914)

remaining15_VACC <- c(rep(1,10748),rep(0,5166))

tmle.outB15 <- weighted.tmle.ate(w=rbind(X15_vaccine[,c("AGE.9.11","AGE.12.14","MALE")],

X15_placebo[,c("AGE.9.11","AGE.12.14","MALE")],

remaining15_w)

,a=c(X15_vaccine$VACC,X15_placebo$VACC,remaining15_VACC)

,y=c(Y15_vaccine,Y15_placebo,remaining15_y) # clinical outcome

,Q.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")
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,g.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")

,wgts=c(weight15.v,weight15.p,remaining15_weight)

,max.wgt=Inf

)

## TMLE for Relative Risk with clinical outcomes

psi15_rr <-tmle.outB15$EY1/tmle.outB15$EY0

log.psi15_rr <- log(psi15_rr)

var.logrr <- ((1/tmle.outB15$EY1)^2)*var(tmle.outB15$ic1)/length(tmle.outB15$ic1) +

((1/tmle.outB15$EY0 )^2)*var(tmle.outB15$ic0)/length(tmle.outB15$ic0)

log.psi15_rr.ci.upper <- log.psi15_rr + 1.96*sqrt(var.logrr )

log.psi15_rr.ci.lower <- log.psi15_rr - 1.96*sqrt(var.logrr )

psi15_ve <- 1-psi15_rr

psi15_ve.ci.lower <- 1-exp(log.psi15_rr.ci.upper)

psi15_ve.ci.upper <- 1-exp(log.psi15_rr.ci.lower)

#######################

######### TMLE for E[Y] and VE for Dummy CYD15

######### using the Dummy CYD14-estimated optimal surrogate applied to Dummy CYD15

######### Calculation of Surrogate Parameters Based on the TMLE of the Optimal Surrogate: theta[psi[n]^"#"]^"TMLE"

#######################

##########################

### calculate for Dummy CYD15 the Dummy CYD14-estimated optimal surrogate

NewdataV <- X15_vaccine[,c(2:18,21:23)]

NewdataP <- X15_placebo[,c(2:18,21:23)]

CYD15V <- predict.SuperLearner(object=fitSL14.v, newdata=NewdataV)#, onlySL = TRUE)

pred15.v<- CYD15V$pred

## placebo group with placebo model

CYD15P <- predict.SuperLearner(object=fitSL14.p, newdata=NewdataP)#, onlySL = TRUE)

pred15.p<- CYD15P$pred

## TMLE on Dummy CYD15 with Dummy CYD14-estimated optimal surrogate

SL.predict.TMLE.15 <- weighted.tmle.EOS(w=rbind(X15_vaccine[,c("AGE.9.11","AGE.12.14","MALE")],

X15_placebo[,c("AGE.9.11","AGE.12.14","MALE")],

remaining15_w)

,a=c(X15_vaccine$VACC,X15_placebo$VACC,remaining15_VACC)

,y=c(pred15.v,pred15.p,remaining15_y) # optimal surrogate

,g.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")
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,wgts=c(weight15.v,weight15.p,remaining15_weight)

,max.wgt=Inf)

## TMLE on Dummy CYD15 with Dummy CYD14-estimated optimal surrogate

tmle.outB15.psi <- weighted.tmle.ate(w=rbind(X15_vaccine[,c("AGE.9.11","AGE.12.14","MALE")],

X15_placebo[,c("AGE.9.11","AGE.12.14","MALE")],

remaining15_w)

,a=c(X15_vaccine$VACC,X15_placebo$VACC,remaining15_VACC)

,y=c(SL.predict.TMLE.15$QA)

,Q.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")

,g.SL.library=c("SL.mean","SL.glm","SL.glm.interaction")

,wgts=c(weight15.v,weight15.p,remaining15_weight)

,max.wgt=Inf

)

## Dummy CYD15 TMLE for Relative Risk estimated with optimal surrogate

psi15_rr.psi <-tmle.outB15.psi$EY1/tmle.outB15.psi$EY0

log.psi15_rr.psi <- log(psi15_rr.psi)

var.logrr.psi <- ((1/tmle.outB15.psi$EY1)^2)*var(tmle.outB15.psi$ic1)/length(tmle.outB15.psi$ic1) +

((1/tmle.outB15.psi$EY0)^2)*var(tmle.outB15.psi$ic0)/length(tmle.outB15.psi$ic0)

log.psi15_rr.psi.ci.upper <- log.psi15_rr.psi + 1.96*sqrt(var.logrr.psi )

log.psi15_rr.psi.ci.lower <- log.psi15_rr.psi - 1.96*sqrt(var.logrr.psi )

psi15_ve.psi <- 1-psi15_rr.psi

psi15_ve.psi.ci.lower <- 1-exp(log.psi15_rr.psi.ci.upper)

psi15_ve.psi.ci.upper <- 1-exp(log.psi15_rr.psi.ci.lower)

########################

## Table 3 Results on Dummy Data

########################

library(xtable)

suppressPackageStartupMessages(library(xtable))

options(xtable.comment = FALSE)

CYD15_TMLEVE <- matrix(NA, ncol=4, nrow=4)

CYD15_TMLEVE[1,]<-c("",

paste(

expression("Surrogate Parameters Based on the TMLE of the Optimal Surrogate "*theta[psi[n]^"#"]^"TMLE")

"",
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paste(expression("Clinical Parameters Based on the TMLE "*tilde(theta)["n*"]^"TMLE"*(P)))

)

CYD15_TMLEVE[2:4,1] <- c(paste(expression(theta[psi[n]^"#"]^1*(P)) ),

paste(expression(theta[psi[n]^"#"]^0*(P) ) ),

paste(expression(VE[psi[n]^"#"](P)) ) )

CYD15_TMLEVE[2:4,2] <- c(paste(round(tmle.outB15.psi$EY1,3),

" (95% CI ",round(tmle.outB15.psi$ci1[1],3),"-",round(tmle.outB15.psi$ci1[2],3),")",sep=""),

paste(round(tmle.outB15.psi$EY0,3),

" (95% CI ",round(tmle.outB15.psi$ci0[1],3),"-",round(tmle.outB15.psi$ci0[2],3),")",sep=""),

paste(100*round(psi15_ve.psi,2),"%",

" (95% CI ",100*round(psi15_ve.psi.ci.lower,2),"-",

100*round(psi15_ve.psi.ci.upper,2),")",sep="")

)

CYD15_TMLEVE[2:4,3] <- c(paste(expression(E[P](Y[1]^"*"))),

paste(expression(E[P](Y[0]^"*"))),

paste(expression(VE[P]^"*")))

CYD15_TMLEVE[2:4,4] <- c(paste(round(tmle.outB15$EY1,3),

" (95% CI ",round(tmle.outB15$ci1[1],3),"-",round(tmle.outB15$ci1[2],3),")",sep=""),

paste(round(tmle.outB15$EY0,3),

" (95% CI ",round(tmle.outB15$ci0[1],3),"-",round(tmle.outB15$ci0[2],3),")",sep=""),

paste(100*round(psi15_ve,2),"%",

" (95% CI ",100*round(psi15_ve.ci.lower,2),"-",100*round(psi15_ve.ci.upper,2),")",sep="")

)

print(xtable(CYD15_TMLEVE,

caption="Comparison of inferences on the surrogate parameters and VE,

versus inferences on the clinical dengue parameters in CYD15.",

align="l|l|c|l|c", label="tab:TMLEVECYD15" ),

include.rownames=FALSE,

include.colnames=FALSE, type="latex")

library(gridExtra)

pdf("BiometricsPriceGilbertVanDerLaan_Table3_DummyDataCYD14CYD15.pdf",height=3,width=12)

tt <- ttheme_default(colhead=list(fg_params = list(parse=TRUE)),parse=TRUE)

table <- tableGrob(CYD15_TMLEVE, theme=tt)

library(grid)

library(gtable)

title <- textGrob("Recreation of Table 3 Using Dummy Data* for CYD14 and CYD15",gp=gpar(fontsize=16))

footnote <- textGrob("*Results based on simulated data and do not necessarily reflect actual results",

x=0, hjust=0, gp=gpar( fontface="italic"))
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padding <- unit(0.5,"line")

table <- gtable_add_rows(table,

heights = grobHeight(title) + padding,

pos = 0)

table <- gtable_add_rows(table,

heights = grobHeight(footnote)+ padding)

table <- gtable_add_grob(table, list(title, footnote),

t=c(1, nrow(table)), l=c(1,2),

r=ncol(table))

grid.newpage()

grid.draw(table)

dev.off()

########################

## Figure 2: Reverse CDF Plots

########################

ReverseCDF14 <- function(Vvalues,Pvalues,VYp,PYp,sample,pct=0.05){

rcdf <- function (x) {

cdf <- ecdf(x)

y <- cdf(x)

xrcdf <- 1-y

}

dsetV <- data.frame(cbind(VYp,Vvalues))

dsetP <- data.frame(cbind(PYp,Pvalues))

names(dsetV) <- c("Yp","SL.predict")

names(dsetP) <- c("Yp","SL.predict")

dsetCaseV <- dsetV[VYp==1,]

dsetCaseV$rcdf <- rcdf(dsetCaseV$SL.predict)

dsetControlV <- dsetV[VYp==0,]

dsetControlV$rcdf <- rcdf(dsetControlV$SL.predict)

dsetCaseP <- dsetP[PYp==1,]

dsetCaseP$rcdf <- rcdf(dsetCaseP$SL.predict)

dsetControlP <- dsetP[PYp==0,]

dsetControlP$rcdf <- rcdf(dsetControlP$SL.predict)

xlabs <- expression(paste("Estimated Optimal Surrogate ", psi["n"]^"#", "(W,A,S) = s", sep="") )

ylabs <- expression(paste("Probability ", psi["n"]^"#","(W,A,S)", sep="") >= s )

title <- paste(sample)

pctlabel=pct*100

# calculate the 95th percentile for cases and controls

Vq95C <- quantile(dsetCaseV$SL.predict, probs = 1- pct, na.rm = TRUE)
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Vq95c <- quantile(dsetControlV$SL.predict, probs = 1- pct, na.rm = TRUE)

Pq95C <- quantile(dsetCaseP$SL.predict, probs = 1- pct, na.rm = TRUE)

Pq95c <- quantile(dsetControlP$SL.predict, probs = 1- pct, na.rm = TRUE)

# percentiles for Control 95th for catching # cases

Vq95cC <- ecdf(dsetCaseV$SL.predict)(Vq95c)

Pq95cC <- ecdf(dsetCaseP$SL.predict)(Pq95c)

ggplot(dsetCaseV, aes(x = SL.predict,y=rcdf))+geom_step(colour="black") +

labs(x=xlabs, y=ylabs) +

ylim(0, 1) + xlim(0, 0.2) + theme_bw() + ggtitle(title) +

geom_step(data=dsetControlV, aes(x = SL.predict,y=rcdf),colour="grey") +

geom_step(data=dsetCaseP, aes(x = SL.predict,y=rcdf),colour="black",linetype=2) +

geom_step(data=dsetControlP, aes(x = SL.predict,y=rcdf),colour="grey",colour="black",linetype=2) +

geom_hline(aes(yintercept=pct),linetype = 1,colour="black")+

#legend labels

annotate("text", x = 0.10, y = 0.95, label = paste("Vaccine Case (",pctlabel,"th pctl ",

round(Vq95C,2),")",sep=""),cex=2.5,hjust = 0) +

annotate("text", x = 0.10, y = 0.90, label = paste("Placebo Case (",pctlabel,"th pctl ",

round(Pq95C,2),")",sep=""),cex=2.5,hjust = 0) +

annotate("text", x = 0.10, y = 0.85, label = paste("Vaccine Control (",pctlabel,"th pctl ",

round(Vq95c,2),")",sep=""),cex=2.5,hjust = 0) +

annotate("text", x = 0.10, y = 0.80, label = paste("Placebo Control (",pctlabel,"th pctl ",

round(Pq95c,2),")",sep=""),cex=2.5,hjust = 0) +

# legend line segments

annotate("segment", x = 0.06, xend = 0.08, y = 0.95, yend = 0.95,

colour = "black",linetype=1) +

annotate("segment", x = 0.06, xend = 0.08, y = 0.90, yend = 0.90,

colour = "black",linetype=2) +

annotate("segment", x = 0.06, xend = 0.08, y = 0.85, yend = 0.85,

colour = "grey",linetype=1) +

annotate("segment", x = 0.06, xend = 0.08, y = 0.80, yend = 0.80,

colour = "grey",linetype=2) +

guides(col = guide_legend()) +

theme(axis.text=element_text(size=8),

axis.title=element_text(size=8,face="bold"),

title=element_text(size=8) #,face="bold"))

)

}

ReverseCDF15 <- function(Vvalues,Pvalues,VYp,PYp,sample,pct=0.05){

rcdf <- function (x) {
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cdf <- ecdf(x)

y <- cdf(x)

xrcdf <- 1-y

}

dsetV <- data.frame(cbind(VYp,Vvalues))

dsetP <- data.frame(cbind(PYp,Pvalues))

names(dsetV) <- c("Yp","SL.predict")

names(dsetP) <- c("Yp","SL.predict")

dsetCaseV <- dsetV[VYp==1,]

dsetCaseV$rcdf <- rcdf(dsetCaseV$SL.predict)

dsetControlV <- dsetV[VYp==0,]

dsetControlV$rcdf <- rcdf(dsetControlV$SL.predict)

dsetCaseP <- dsetP[PYp==1,]

dsetCaseP$rcdf <- rcdf(dsetCaseP$SL.predict)

dsetControlP <- dsetP[PYp==0,]

dsetControlP$rcdf <- rcdf(dsetControlP$SL.predict)

xlabs <- expression(paste("Estimated Optimal Surrogate ", psi["n"]^"#", "(W*,A*,S*) = s", sep="") )

ylabs <- expression(paste("Probability ", psi["n"]^"#","(W*,A*,S*)", sep="") >= s )

title <- paste(sample)

pctlabel=pct*100

# calculate the 95th percentile for cases and controls

Vq95C <- quantile(dsetCaseV$SL.predict, probs = 1- pct, na.rm = TRUE)

Vq95c <- quantile(dsetControlV$SL.predict, probs = 1- pct, na.rm = TRUE)

Pq95C <- quantile(dsetCaseP$SL.predict, probs = 1- pct, na.rm = TRUE)

Pq95c <- quantile(dsetControlP$SL.predict, probs = 1- pct, na.rm = TRUE)

# percentiles for Control 95th for catching # cases

Vq95cC <- ecdf(dsetCaseV$SL.predict)(Vq95c)

Pq95cC <- ecdf(dsetCaseP$SL.predict)(Pq95c)

ggplot(dsetCaseV, aes(x = SL.predict,y=rcdf))+geom_step(colour="black") +

labs(x=xlabs, y=ylabs) +

ylim(0, 1) + xlim(0, 0.2) + theme_bw() + ggtitle(title) +

geom_step(data=dsetControlV, aes(x = SL.predict,y=rcdf),colour="grey") +

geom_step(data=dsetCaseP, aes(x = SL.predict,y=rcdf),colour="black",linetype=2) +

geom_step(data=dsetControlP, aes(x = SL.predict,y=rcdf),colour="grey",colour="black",linetype=2) +

geom_hline(aes(yintercept=pct),linetype = 1,colour="black")+

#legend labels

annotate("text", x = 0.10, y = 0.95, label = paste("Vaccine Case (",pctlabel,"th pctl ",

round(Vq95C,2),")",sep=""),cex=2.5,hjust = 0) +

annotate("text", x = 0.10, y = 0.90, label = paste("Placebo Case (",pctlabel,"th pctl ",
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round(Pq95C,2),")",sep=""),cex=2.5,hjust = 0) +

annotate("text", x = 0.10, y = 0.85, label = paste("Vaccine Control (",pctlabel,"th pctl ",

round(Vq95c,2),")",sep=""),cex=2.5,hjust = 0) +

annotate("text", x = 0.10, y = 0.80, label = paste("Placebo Control (",pctlabel,"th pctl ",

round(Pq95c,2),")",sep=""),cex=2.5,hjust = 0) +

# legend line segments

annotate("segment", x = 0.06, xend = 0.08, y = 0.95, yend = 0.95,

colour = "black",linetype=1) +

annotate("segment", x = 0.06, xend = 0.08, y = 0.90, yend = 0.90,

colour = "black",linetype=2) +

annotate("segment", x = 0.06, xend = 0.08, y = 0.85, yend = 0.85,

colour = "grey",linetype=1) +

annotate("segment", x = 0.06, xend = 0.08, y = 0.80, yend = 0.80,

colour = "grey",linetype=2) +

guides(col = guide_legend()) +

theme(axis.text=element_text(size=8),

axis.title=element_text(size=8,face="bold"),

title=element_text(size=8) #,face="bold"))

)

}

Plot2a <- ReverseCDF14(Vvalues=CV.fitSL14.v$SL.predict,

Pvalues=CV.fitSL14.p$SL.predict,

VYp=Y14_vaccine,

PYp=Y14_placebo,

sample="(a) DUMMY CYD14 Reverse CDFs",pct=0.05)

Plot2b <- ReverseCDF15(Vvalues=CYD15V$pred,

Pvalues=CYD15P$pred,

VYp=Y15_vaccine,

PYp=Y15_placebo,

sample="(b) DUMMY CYD15 Reverse CDFs",pct=0.05)

pdf("BiometricsPriceGilbertVanDerLaan_ReverseCDFs_Figure2_DummyDataCYD14.pdf",width=7, height=2.75)

library("gridExtra")

grid.arrange(Plot2a, Plot2b, ncol=2)

dev.off()

########################

## Table 2 Results (Discrete SuperLearner Models)

########################
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Table2vaccine <- matrix(NA,ncol=4,nrow=nrow(summary(fitSL14.v$fitLibrary$SL.glm_screen.MNv2$object)$coefficients))

Table2placebo <- matrix(NA,ncol=4,nrow=nrow(summary(fitSL14.p$fitLibrary$SL.glm_screen.MNv2$object)$coefficients))

colnames(Table2vaccine) <- colnames(Table2placebo) <- c("Variable","Coefficient","Odds Ratio","p-value")

# Output the coefficients for the Best Stepwise model (the discrete superlearner)

# Variable names

Table2vaccine[,1] <- c(names(summary(fitSL14.v$fitLibrary$SL.glm_screen.MNv2$object)$coefficients[,1] ))

# Coefficients

Table2vaccine[,2]<-round(summary(fitSL14.v$fitLibrary$SL.glm_screen.MNv2$object)$coefficients[,1],2)

# Odds Ratio

Table2vaccine[,3]<-round(exp(summary(fitSL14.v$fitLibrary$SL.glm_screen.MNv2$object)$coefficients[,1]),4)

# p-value

Table2vaccine[,4]<-signif(as.numeric(summary(fitSL14.v$fitLibrary$SL.glm_screen.MNv2$object)$coefficients[,4]),2)

# Variable names

Table2placebo[,1] <- c(names(summary(fitSL14.p$fitLibrary$SL.glm_screen.MNv2$object)$coefficients[,1] ))

# Coefficients

Table2placebo[,2]<-round(summary(fitSL14.p$fitLibrary$SL.glm_screen.MNv2$object)$coefficients[,1],2)

# Odds Ratio

Table2placebo[,3]<-round(exp(summary(fitSL14.p$fitLibrary$SL.glm_screen.MNv2$object)$coefficients[,1]),4)

# p-value

Table2placebo[,4]<-signif(as.numeric(summary(fitSL14.p$fitLibrary$SL.glm_screen.MNv2$object)$coefficients[,4]),2)

library(xtable)

print(xtable(Table2vaccine,

caption="Model terms for a logistic regression based on variables

selected from the MNv2 screen (which disallows any PRNT titer variables).",

align="l|c|c|c|l", label="tab:BestVacc" ),

include.rownames=FALSE,

include.colnames=TRUE, type="latex")

print(xtable(Table2placebo,

caption="Model terms for a logistic regression based on variables

selected from the MNv2 screen (which disallows any PRNT titer variables).",

align="l|c|c|c|l", label="tab:BestPlac" ),

include.rownames=FALSE,

include.colnames=TRUE, type="latex")

## end of Table 2 results

########################
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### Supplemental Figures

########################

############################

## Supplemental Figure Function for Dummy CYD14; Supplemental Figures 1 & 2

############################

## Function to output the Violin/Bean plots for CYD14

## Inputs

# dataset = dataset with the variables and covariates

# var1, var2, var3, var4 = Variable to be plotted; in this case, PRNT or MNv2 Month 13 serotype titers

# title_X = X axis label

# title_study = Plot title

Distribution_plot14 <- function(dataset,var1,var2,var3,var4,title_X,title_study,title_Y){

library(ggplot2)

ylim <- c(-1, 5)

B1 <- var1

B2 <- var2

B3 <- var3

B4 <- var4

c <- length(B1)

d2 <- data.frame(

Serotype=factor(

c(rep(’Type 1’,c),rep(’Type 2’,c),rep(’Type 3’,c),rep(’Type 4’,c)),

levels=c(’Type 1’,’Type 2’,’Type 3’,’Type 4’)

),

Value=c(B1,B2,B3,B4)

)

d2$Vaccine <- rep(dataset$VACC,4)

d2$Vaccine <- ifelse(d2$Vaccine==1,"Vaccine","Placebo")

d2$MALE <- c(rep(dataset$MALE,4))

d2$AGE<- c(rep(dataset$AGEYRS,4))

d2$SEX <- ifelse(d2$MALE== 1, "Male","Female")

d2$AGE <- ifelse(d2$AGE<9,"2-8",d2$AGE )

d2$AGE <- ifelse(d2$AGE==9 | d2$AGE==10 | d2$AGE==11,"9-11",d2$AGE )

d2$AGE <- ifelse(d2$AGE==12 | d2$AGE==13| d2$AGE==14,"12-14",d2$AGE )

d2$AGE <- paste("Age: ",d2$AGE,sep="")

d2$AGE_F <- as.factor(d2$AGE)

d2$AGE_F = factor(d2$AGE_F,levels(d2$AGE_F)[c(2,3,1)])

d2$Facets <- paste(d2$Vaccine,", ",d2$SEX,", ",d2$AGE_F,sep="")

d2$Facets <- as.factor(d2$Facets)
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d2$Facets = factor(d2$Facets,levels(d2$Facets)[c(2,3,1,5,6,4,8,9,7,11,12,10)])

plotp <-ggplot(data=d2)+

geom_violin(aes(x=Serotype,y=Value),fill=’grey’,trim=F)+

geom_segment(aes(

x=match(Serotype,levels(Serotype))-0.05,

xend=match(Serotype,levels(Serotype))+0.05,

y=Value,yend=Value),

col=’black’

)+ theme_bw() +

ggplot2::ylab(title_Y) +

ggplot2::xlab(title_X) +

ggtitle(title_study) +

theme(axis.text=element_text(size=10),

axis.title=element_text(size=12,face="bold"),

plot.title = element_text(size = rel(1)),

strip.text=element_text(size=10, lineheight=0.2),

strip.text.x=element_text(size=10, lineheight=0.2),

strip.text.y=element_text(size=10, lineheight=0.2))+

facet_wrap(~Facets, ncol = 3)

return(plotp)

}

Distribution_plot15 <- function(dataset,var1,var2,var3,var4,title_X,title_study,title_Y){

library(ggplot2)

ylim <- c(-1, 5)

B1 <- var1

B2<- var2

B3 <- var3

B4 <- var4

c <- length(B1)

d2 <- data.frame(

Serotype=factor(

c(rep(’Type 1’,c),rep(’Type 2’,c),rep(’Type 3’,c),rep(’Type 4’,c)),

levels=c(’Type 1’,’Type 2’,’Type 3’,’Type 4’)

),

Value=c(B1,B2,B3,B4)

)

d2$Vaccine <- rep(dataset$VACC,4)

d2$Vaccine <- ifelse(d2$Vaccine==1,"Vaccine","Placebo")
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d2$MALE <- c(rep(dataset$MALE,4))

d2$AGE<- c(rep(dataset$AGE,4))

d2$SEX <- ifelse(d2$MALE== 1, "Male","Female")

d2$AGE <- ifelse(d2$AGE=="<=5","2-5",d2$AGE )

d2$AGE <- ifelse(d2$AGE=="<=11","9-11",d2$AGE )

d2$AGE <- ifelse(d2$AGE==">11","12-14",d2$AGE )

d2$AGE <- paste("Age: ",d2$AGE,sep="")

d2$AGE_F <- as.factor(d2$AGE)

d2$AGE_F = factor(d2$AGE_F,levels(d2$AGE_F)[c(2,1)])

d2$Facets <- paste(d2$Vaccine,", ",d2$SEX,", ",d2$AGE_F,sep="")

d2$Facets <- as.factor(d2$Facets)

d2$Facets = factor(d2$Facets,levels(d2$Facets)[c(2,1,4,3,6,5,8,7)])

plotp <-ggplot(data=d2)+

geom_violin(aes(x=Serotype,y=Value),fill=’grey’,trim=F)+

geom_segment(aes(

x=match(Serotype,levels(Serotype))-0.05,

xend=match(Serotype,levels(Serotype))+0.05,

y=Value,yend=Value),

col=’black’

)+ theme_bw() +

ggplot2::ylab(title_Y) +

ggplot2::xlab(title_X) +

ggtitle(title_study) +

theme(axis.text=element_text(size=10),

axis.title=element_text(size=12,face="bold"),

plot.title = element_text(size = rel(1)),

strip.text=element_text(size=10, lineheight=0.2),

strip.text.x=element_text(size=10, lineheight=0.2),

strip.text.y=element_text(size=10, lineheight=0.2))+

facet_wrap(~Facets, ncol = 2)

return(plotp)

}

############################

## Supplemental Figure 1: Dummy CYD14 M13 PRNT

############################

pdf("BiometricsPriceGilbertVanDerLaan_SuppFig1_BeanPlots_PRNT_M13_DummyDataCYD14.pdf",width= 8, height=8)

Distribution_plot14(dataset=d14,
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var1=d14$M13_PRNT_Sero1c,

var2=d14$M13_PRNT_Sero2c,

var3=d14$M13_PRNT_Sero3c,

var4=d14$M13_PRNT_Sero4c,

title_X= "Serotypes",

title_study="DUMMY CYD14",

title_Y=expression(’Month 13 Log’[10]* ’ PRNT’[50]*’ Neutralization Titer’))

dev.off()

############################

## Supplemental Figure 2: Dummy CYD14 Month 13 MNv2

############################

pdf("BiometricsPriceGilbertVanDerLaan_SuppFig2_BeanPlots_MNv2_M13_DummyDataCYD14.pdf",width= 8, height=8)

Distribution_plot14(dataset=d14,

var1=d14$M13_MNv2_Sero1c,

var2=d14$M13_MNv2_Sero2c,

var3=d14$M13_MNv2_Sero3c,

var4=d14$M13_MNv2_Sero4c,

title_X= "Serotypes",

title_study="DUMMY CYD14",

title_Y=expression(’Month 13 Log’[10]* ’ MNv2’*’ Neutralization Titer’))

dev.off()

############################

## Supplemental Figure Function for CYD15; Supplemental Figures 3 & 4

############################

############################

## Supplemental Figure 3: CYD15 Month 13 PRNT

############################

pdf("BiometricsPriceGilbertVanDerLaan_SuppFig3_BeanPlots_PRNT_M13_DummyDataCYD15.pdf",width= 6, height=8)

Distribution_plot15(dataset=d15,

var1=d15$M13_PRNT_Sero1c,

var2=d15$M13_PRNT_Sero2c,

var3=d15$M13_PRNT_Sero3c,

var4=d15$M13_PRNT_Sero4c,

title_X= "Serotypes",
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title_study="DUMMY CYD15",

title_Y=expression(’Month 13 Log’[10]* ’ PRNT’[50]*’ Neutralization Titer’))

dev.off()

############################

## Supplemental Figure 4: Dummy CYD15 Month 13 MNv2

############################

pdf("BiometricsPriceGilbertVanDerLaan_SuppFig4_BeanPlots_MNv2_M13_DummyDataCYD15.pdf",width= 6, height=8)

Distribution_plot15(dataset=d15,

var1=d15$M13_MNv2_Sero1c,

var2=d15$M13_MNv2_Sero2c,

var3=d15$M13_MNv2_Sero3c,

var4=d15$M13_MNv2_Sero4c,

title_X= "Serotypes",

title_study="DUMMY CYD15",

title_Y=expression(’Month 13 Log’[10]* ’ MNv2’*’ Neutralization Titer’))

dev.off()

############################

### Supplemental Figures 5 & 6

############################

## Single run of the SuperLearner on Dummy CYD15 to get predicted values

library(SuperLearner)

set.seed(1106)

## vaccine group

fit_Va15<- SuperLearner(Y=Y15_vaccine, X=cbind(X15_vaccine_subset),

family = binomial(), SL.library=SL.library,

method = "method.NNLS",obsWeights = weight15.v

,control = list(saveFitLibrary = TRUE)

,verbose=FALSE)

set.seed(1106)

## placebo group

fit_Pa15<- SuperLearner(Y=Y15_placebo, X=cbind(X15_placebo_subset),

family = binomial(), SL.library=SL.library,

method = "method.NNLS",obsWeights = weight15.p

,control = list(saveFitLibrary = TRUE)

,verbose=FALSE)
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## CYD15 predicted values Dummy CYD14 SuperLearner

CYD15V <- predict.SuperLearner(object=fitSL14.v, newdata=X15_vaccine_subset)

CYD15P <- predict.SuperLearner(object=fitSL14.p, newdata=X15_placebo_subset)

## Difference between Dummy CYD15 outcome predicted values and Dummy CYD14 outcome predicted values (on Dummy CYD14 data)

TransportV <- fit_Va15$SL.predict-CYD15V$pred

TransportP <- fit_Pa15$SL.predict-CYD15P$pred

############################

## Supplemental Figure 5: Transportability M13 Microneutralization

############################

library(ggplot2)

d2V <- d15[d15$VACC==1,]

d2P <- d15[d15$VACC==0,]

d2 <- as.data.frame(rbind(d2V,d2P))

d2$Value <- c(TransportV,TransportP)

d2$Vaccine <- ifelse(d2$VACC==1,"Vaccine","Placebo")

d2$SEX <- ifelse(d2$MALE== 1, "M","F")

d2$AGE <- ifelse(d2$AGE=="<=11","9-11","12-14")

d2$AGE <- paste("Age: ",d2$AGE,sep="")

d2$AGE_F <- as.factor(d2$AGE)

d2$AGE_F = factor(d2$AGE_F,levels(d2$AGE_F)[c(2,1)])

d2$Facets <- paste(d2$Vaccine,", ",d2$SEX,", ",d2$AGE_F,sep="")

d2$Facets <- as.factor(d2$Facets)

d2$Facets = factor(d2$Facets,levels(d2$Facets)[c(2,1,4,3,6,5,8,7)])

d2$Facets2 <- paste(d2$SEX,", ",d2$AGE_F,sep="")

d2$Facets2 <- as.factor(d2$Facets2)

d2$Facets2 = factor(d2$Facets2,levels(d2$Facets2)[c(2,1,4,3)])

d2rep <- rbind(d2,d2,d2,d2,d2,d2,d2,d2)

d2rep$SeroValue <-NA

n <- nrow(d2)

d2rep$SeroValue <-c(d2rep$M13_MNv2_Sero1c[1:n],

d2rep$M13_MNv2_Sero2c[1:n],

d2rep$M13_MNv2_Sero3c[1:n],

d2rep$M13_MNv2_Sero4c[1:n],

d2rep$M13_PRNT_Sero1c[1:n],
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d2rep$M13_PRNT_Sero2c[1:n],

d2rep$M13_PRNT_Sero3c[1:n],

d2rep$M13_PRNT_Sero4c[1:n])

d2rep$SeroType <- c(rep(’Type 1’,n),rep(’Type 2’,n), # MNv2

rep(’Type 3’,n),rep(’Type 4’,n), # MNv2

rep(’Type 1’,n),rep(’Type 2’,n), # PRNT

rep(’Type 3’,n),rep(’Type 4’,n)) # PRNT

d2rep$Facets3 <- paste(d2rep$Vaccine,", ",d2rep$SEX,", ",d2rep$AGE_F,", ",d2rep$SeroType,sep="")

d2MVn2 <- d2rep[1:(4*n),] #MNv2

d2PRNT <- d2rep[(4*n +1):(8*n),] #PRNT

d2MVn2$Facets3 <- as.factor(d2MVn2$Facets3)

d2MVn2$Facets3 = factor(d2MVn2$Facets3,levels(d2MVn2$Facets3)[

c(5,6,7,8,13,14,15,16,1,2,3,4,9,10,11,12,

21,22,23,24,29,30,31,32,17,18,19,20,25,26,27,28)])

d2PRNT$Facets3 <- as.factor(d2PRNT$Facets3)

d2PRNT$Facets3 = factor(d2PRNT$Facets3,levels(d2PRNT$Facets3)[

c(5,6,7,8,13,14,15,16,1,2,3,4,9,10,11,12,

21,22,23,24,29,30,31,32,17,18,19,20,25,26,27,28)])

pdf("BiometricsPriceGilbertVanDerLaan_SuppFig5_Transport_MNv2_DummyDataCYD14CYD15.pdf",width= 9, height=12)

ggplot(data=d2MVn2)+

geom_point(aes(x = Value,y=SeroValue),size=0.1) +

theme_bw() +

ggplot2::xlab(expression(

’E’ * "[" * ’Y*’ * "|" * ’W*’ * ’=’ * ’w’ * ’,’ * ’A*’ * ’=’ * ’a’ * ’,’ *’S*’ * ’=’ *’s’ * "]" * ’

- ’ * ’E’ * "[" * ’Y’ * "|" * ’W’ * ’=’ * ’w’ * ’,’ * ’A’ * ’=’ * ’a’ * ’,’ *’S’ * ’=’ *’s’ * "]" )) +

ggplot2::ylab(expression(Log[10]~Month~13~MNv2~Titer)) +

ggtitle(’Assessment of Equal Conditional Means for DUMMY Month 13 MNv2 Titers’) +

theme(axis.text=element_text(size=10,angle = 90),

axis.title=element_text(size=12,face="bold"),

plot.title = element_text(size = rel(1),hjust = 0.5),

strip.text=element_text(size=8, lineheight=0.2),

strip.text.x=element_text(size=8, lineheight=0.2),

strip.text.y=element_text(size=8, lineheight=0.2)) +

facet_wrap(~Facets3, ncol = 4)

dev.off()

############################
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## Supplemental Figure 6: Transportability Month 13 PRNT

############################

library(ggplot2)

pdf("BiometricsPriceGilbertVanDerLaan_SuppFig6_Transport_PRNT_DummyDataCYD14CYD15.pdf",width= 9, height=12)

ggplot(data=d2PRNT)+

geom_point(aes(x = Value,y=SeroValue),size=0.1) +

theme_bw() +

ggplot2::xlab(expression(

’E’ * "[" * ’Y*’ * "|" * ’W*’ * ’=’ * ’w’ * ’,’ * ’A*’ * ’=’ * ’a’ * ’,’ *’S*’ * ’=’ *’s’ * "]" * ’

- ’ * ’E’ * "[" * ’Y’ * "|" * ’W’ * ’=’ * ’w’ * ’,’ * ’A’ * ’=’ * ’a’ * ’,’ *’S’ * ’=’ *’s’ * "]" )) +

ggplot2::ylab(expression(Log[10]~Month~13~PRNT[50]~Titer)) +

ggtitle(’Assessment of Equal Conditional Means for DUMMY Month 13 PRNT Titers’) +

theme(axis.text=element_text(size=10,angle = 90),

axis.title=element_text(size=12,face="bold"),

plot.title = element_text(size = rel(1),hjust = 0.5),

strip.text=element_text(size=8, lineheight=0.2),

strip.text.x=element_text(size=8, lineheight=0.2),

strip.text.y=element_text(size=8, lineheight=0.2)) +

facet_wrap(~Facets3, ncol = 4)

dev.off()

## end of supplemental figures

### end of file BiometricsPriceGilbertVanDerLaanDummyDataDengueExampleCode.R ###
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Figure 1. Distributions of log10 Month 13 neutralizing antibody titers measured by the
PRNT50 assay for each of the 4 dengue serotypes by sex and age categories for the CYD14
trial
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Figure 2. Distributions of log10 Month 13 neutralizing antibody titers measured by the
Microneutralization Version 2 assay (MNv2) for each of the 4 dengue serotypes by sex and
age categories for the CYD14 trial
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Figure 3. Distributions of log10 Month 13 neutralizing antibody titers measured by the
PRNT50 assay for each of the 4 dengue serotypes by sex and age categories for the CYD15
trial
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Figure 4. Distributions of log10 Month 13 neutralizing antibody titers measured by the
Microneutralization Version 2 assay (MNv2) for each of the 4 dengue serotypes by sex and
age categories for the CYD15 trial
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Figure 5. Diagnostics of the Equal Conditional Means assumption (Theorem 2): Plot of
the differences (CYD15 - CYD14) in estimated optimal surrogate values for all observed
values of CYD15 participants, by covariate categories and month 13 Microneutralization
Version 2 titer values.
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Figure 6. Diagnostics of the Equal Conditional Means assumption (Theorem 2): Plot of
the differences (CYD15 - CYD14) in estimated optimal surrogate values for all observed
values of CYD15 participants, by covariate categories and month 13 PRNT50 neutralization
titer values.



64 Biometrics, 000 0000

● ● ●

● ● ●

0.8

0.9

1.0

1.1

1.2

0.0 0.5 1.0 1.5 2.0

S
a

4
 = s

E
[Y

a
|S

a4
 =

 s
]

Treatment

A = 1

A = 0

Model

● D1: Y = f (S
1
,S

2
,S

3
)

D2: Y
*
 = f (S

1
,S

2
,S

3
,S

4
)

Violation of the Equal Conditional Means Assumption:

Differences in Ya/Ya
*  by Sa

4

{
}

Figure 7. Consider two data sets: D1 in which Y = f(S1, S2, S3) =∑3

k=1

[
0.1 ∗ k ∗ I(Sk = 1) + I(Sk = 2)

]
+ ǫY , and D2 in which Y ∗ = f(S1, S2, S3, S4) =∑4

k=1

[
0.1 ∗ k ∗ I(S∗k = 1) + I(S∗k = 2)

]
+ ǫY ∗ where ǫY ∼ N(0, 0.12) and ǫY ∗ ∼ N(0, 0.12)

(as described in Web Appendix G). When comparing the conditional means across values
of S4

a, we see that E[Ya|S4
a = s] differs from E[Y ∗

a |S∗4
a = s] for some values of s (most

dramatically for the treatment group a = 1 at s = 1 and for the control group a = 0 at
s = 2), and thus, the equal conditional means assumption is violated in this example.
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Figure 8. (a) For Simulation 1, estimates of θ0 = E0(Y1 − Y0) based on two surrogate
endpoint approaches [superlearner-TMLE (SL-TMLE) and proportion of treatment effect
captured (PCS)] versus estimates based on sample averages of the clinical endpoints Y.
For the PCS method, SPCSopt was selected to be S1 (the best candidate surrogate, with
PCS=0.87) in 191 of 200 (95%) data sets. (b) For Simulation 2, estimates of θ∗P =
EP (Y

∗

1 − Y ∗

0 ) for a second trial D2 based on the two surrogate endpoint approaches with
surrogates built from the first trial D1, versus estimates based on sample averages of the
clinical endpoints Y ∗.
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Figure 9. Point and 95% confidence interval estimates of cross-validated mean squared
error (CV-MSE) for the vaccine and placebo groups of the CYD14 trial dummy data, for
the top 8 performing individual learners, the discrete super-learner, and the super-learner.
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Figure 10. (a) Empirical reverse cumulative distribution functions (cdfs) of the estimated
optimal surrogate ψ#

n (Wi, Ai = a, Si) for the CYD14 trial dummy data by vaccine/placebo
assignment A = a ∈ {0, 1} and dengue outcome case/control status Y = y ∈ {0, 1}.
(b) Empirical reverse cdfs of ψ#

n (W
∗

i , A
∗

i = a, S∗

i ) for CYD15 dummy data participants
by vaccine/placebo assignment A∗ = a ∈ {0, 1} and dengue outcome case/control status
Y ∗ = y ∈ {0, 1}, where ψ#

n (·) was estimated from the CYD14 trial dummy data. The results
show that the surrogate better classifies dengue outcomes of participants in the original trial
than in the new trial, as expected.
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Figure 11. TMLE estimates reported in Section 6.1 of the main paper using CYD14
dummy data.
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Figure 12. Comparison of inferences on the surrogate parameters θa
ψ
#
n

(P ) ≡
EP (EP (ψ

#
n (W

∗, a, S∗) | W ∗, A∗ = a) for each a ∈ {0, 1} and θ
ψ
#
n

(P ) = V E
ψ
#
n

(P ) = 1 −
θ1
ψ
#
n

(P )/θ0
ψ
#
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(P ) based on (W ∗, A∗, ψ#
n (W

∗, A∗, S∗)) versus inferences on the clinical dengue

endpoint parameters EP (Y
∗

a ) and θ
∗

P = V E∗

P = 1− EP (Y
∗

1 )/EP (Y
∗

0 ) from (W ∗, A∗, Y ∗)) for
CYD15 dummy data.
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Figure 13. Distributions of log10 Month 13 neutralizing antibody titers measured by the
PRNT50 assay for each of the 4 dengue serotypes by sex and age categories for the CYD14
trial dummy data set
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Figure 14. Distributions of log10 Month 13 neutralizing antibody titers measured by the
Microneutralization Version 2 assay (MNv2) for each of the 4 dengue serotypes by sex and
age categories for the CYD14 trial dummy data set
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Figure 15. Distributions of log10 Month 13 neutralizing antibody titers measured by the
PRNT50 assay for each of the 4 dengue serotypes by sex and age categories for the CYD15
trial dummy data set
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Figure 16. Distributions of log10 Month 13 neutralizing antibody titers measured by the
Microneutralization Version 2 assay (MNv2) for each of the 4 dengue serotypes by sex and
age categories for the CYD15 trial dummy data set
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Figure 17. Diagnostics of the Equal Conditional Means assumption (Theorem 2): Plot of
the differences (CYD15 - CYD14) dummy data in estimated optimal surrogate values for all
observed values of CYD15 dummy data participants, by covariate categories and month 13
Microneutralization Version 2 titer values.
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Assessment of Equal Conditional Means for DUMMY Month 13 PRNT Titers

Figure 18. Diagnostics of the Equal Conditional Means assumption (Theorem 2): Plot of
the differences (CYD15 - CYD14) dummy data in estimated optimal surrogate values for all
observed values of CYD15 dummy data participants, by covariate categories and month 13
PRNT50 neutralization titer values.


