Supplementary Table 1.

Demographic and clinical characteristics of 19 HCC patients analysed.

Variable				
Age, mean ± SEM	61.2 ± 2.2			
Age, range	46-77			
Males, n (%)	17 (89.5)			
Underlying disease, n (%)				
Cirrhosis	16 (84.2)			
Hepatitis C virus	4 (21.1)			
Alcoholic	11 (57.9)			
Diabetes	2 (10.5)			
Tumor stage, n (%)				
BCLCA	15 (78.9)			
BCLCB	3 (15.8)			
BCLCC	1 (5.3)			

BCLC, Barcelona Clinic Liver Cancer.

Gene	Accesion number	Forward primer (5' – 3')	Reverse primer (5' – 3')
Human			
hOCT1 total	NM_003057	TGCAGACAGGTTTGGCCGT	GCCCGAGCCAACAAATTCTGTGAT
hOCT1 Full length	NM_003057	GATTTTTATCTCACCTGACCTGCACTGGTT	AGGCCCAACACCGCAAACA
hOCT1 Spliced	NM_003057	GGAAGCGCACCTTCATCCTGAT	CAGGTGCCCGAGGGTTCT
hAUF1	NM_001003810	GTAAGAACGAGGAGGATGAAGGGAAAATGT	TTGATCCATGACCTTATCTACACTCTCCGA
hCUGBP	NM_006560	CCTCAGAGCAAAGGGTGCTGTT	TCCTGTCTTCCACTGCATTGTTCTTCT
hHUR	NM_001419	CGGGATAAAGTAGCAGGACACAGCTT	GGGCGAGCATACGACACCTT
hTTP	NM_003407	CTGCCATCTACGAGAGCCTCCT	GCGAAGTGGGTGAGGGTGA
hBRF1	NM_004926	GCGTGTGGGACTCCAGACA	TCTTGTTACCCTTGCATAAAACTTCGCTCA
hBRF2	NM_006887	CCCGTTATTCGTCGTGGCTCAA	CCAGGGATTTCTCTGTCTTGCACA
hFBP2	NM_003685	GTTGGAAGATGGAGATCAACCGGAGA	GTCATTGAAGTCCTTGGGGGAGGAT
hGAPDH	NM_002046	TGAGCCCGCAGCCTCC	TACGACCAAATCCGTTGACTCC
hHPRT1	NM_000194	GCCCTGGCGTCGTGATTAGT	AGCAAGACGTTCAGTCCTGTCCATAA
Mouse			
mOct1	NM_009202	TCGTCACTGAGTTTAACCTGGTGTGT	TTACGGCCAAACCTGTCTGCAA
mGapdh	NM_008084	ACACTGAGCAAGAGAGGCCCTA	GGGTGCAGCGAACTTTATTGATGGTATT
Rat			
rOct1	NM_012697	CATTGCAGACAGGTTTGGCCGTAA	GCAGGCGAAAGAGCAACATGGAT
rActb	NM_031144	TCTGTGTGGATTGGTGGCTCTA	CTGCTTGCTGATCCACATCTG

Supplementary Table 2. Sequence of oligonucleotide primers used for quantitative PCR.

Gene		Oligonucleotide sequence 5' – 3'
hOCT1	F	CCAAGGTTCCTTAATTAAGCCAAGATGCCCACCGTGGAT
	R	GGAACCTTGGTTAATTAAGGTGCCCGAGGGTTCTGA
hOCT3	F	AATTGGCCACGCGTACCATGCCCTCCTTCGACG
	R	AACCTTGGACTAGTAAGGTGAGAGCGGGAAACTGG
sh-OCT1	F	CGCGTAAGAACGGTGGCGATCATGTACCAGATGGTTCAAGAGACCATCTGGTACATGATCGCCACCGTTCTTTTTTGGAAAT
	R	CGATTTCCAAAAAAAGAACGGTGGCGATCATGTACCAGATGGTCTCTTGAACCATCTGGTACATGATCGCCACCGTTCTTA
sh-Luc2	F	CGCGTCTGACGCGGAATACTTCGATTCAAGAGATCGAAGTATTCCGCGTCAGTTTTTGGAAATCG
	R	CGATTTCCAAAAACTGACGCGGAATACTTCGATCTCTTGAATCGAAGTATTCCGCGTCAGACGCG
hsa-mir-330	F1	CGCGTCTTTGGCGATCACTGCCTCTCTGGGCCTGTGTCTTAGGCTCTGCAAGA
	R1	GGTTGATCTTGCAGAGCCTAAGACACAGGCCCAGAGAGGCAGTGATCGCCAAAGA
	F2	TCAACCGAGCAAAGCACACGGCCTGCAGAGAGGCAGCGCTCTGCCCAT
	R2	CGATGGGCAGAGCGCTGCCTCTCTGCAGGCCGTGTGCTTTGCTC
hsa-mir-769	F1	CGCGTGCCTTGGTGCTGATTCCTGGGCTCTGACCTGAGACCTCTGGGTTCTGAGCTGTGATGTT
	R1	GAGCAACATCACAGCTCAGAACCCAGAGGTCTCAGGTCAGAGCCCAGGAATCAGCACCAAGGCA
	F2	GCTCTCGAGCTGGGATCTCCGGGGGCCTTGGTTCAGGGCCGGGGCCTCTGGGTTCCAAGCTTTTTGGAAAT
	R2	CGATTTCCAAAAAGCTTGGAACCCAGAGGCCCCGGCCCTGAACCAAGACCCCGGAGATCCCAGCTCGA
hsa-mir-141	F1	CGCGTCGGCCGGCCCTGGGTCCATCTTCCAGTACAGTGTTGGATGGTCTAAT
	R1	GCTTCACAATTAGACCATCCAACACTGTACTGGAAGATGGACCCAGGGCCGGCC
	F2	TGTGAAGCTCCTAACACTGTCTGGTAAAGATGGCTCCCGGGTGGGT
	R2	CGATTTCCAAAAAGAACCCACCCGGGAGCCATCTTTACCAGACAGTGTTAGGA
hsa-mir-6806	F1	CGCGTTGCTCTGTAGGCATGAGGCAGGGCCCAGGTTCCAT
	R1	ATCACATGGAACCTGGGCCCTGCCTCATGCCTACAGAGCAA
	F2	GTGATGCTGAAGCTCTGACATTCCTGCAGTTTTTGGAAAT
	R2	CGATTTCCAAAAACTGCAGGAATGTCAGAGCTTCAGC
hsa-mir-1287	F1	CGCGTGTTGTGCTGTCCAGGTGCTGGATCAGTGGTTCGAGTCTGAGCCT
	R1	GGCTTTTAAAGGCTCAGACTCGAACCACTGATCCAGCACCTGGACAGCACAACA
	F2	TTAAAAGCCACTCTAGCCACAGATGCAGTGATTGGAGCCATGACAATTTTTGGAAAT
	R2	CGATTTCCAAAAATTGTCATGGCTCCAATCACTGCATCTGTGGCTAGAGT
hsa-mir-1468	F1	CGCGTGGTGGGTGGTTTCTCCGTTTGCCTGTTTCGCTGATGTGCATTC
	R1	AGTTGAATGCACATCAGCGAAACAGGCAAACGGAGAAACCACCACCA
	F2	AACTCATTCTCAGCAAAATAAGCAAATGGAAAATTCGTCCATCTTTTTGGAAAT
	R2	CGATTTCCAAAAAGATGGACGAATTTTCCATTTGCTTATTTTGCTGAGAATG

Supplementary Table 3. Sequence of forward (F) and reverse (R) oligonucleotide primers used for cloning.

Supplementary Table 4. Selected miRNA based on expression-related criteria

|--|

	Predicted miRNA interaction with hOCT1 by at least two of the
1	following on-line tools: miRBase, data integrated portal, DIP
	analysis, EMBL.EBI, miRDB, miRTar, and microrna.

2 Clearly expressed in HCC as described in TCGA with a value of >10 RPMMM (reads per million of miRNA mapped)

Relationship between miRNA levels and the expression of hOCT1 in HCC according to TCGA:

3 i) inverse correlations were preferred ii) positive correlations with r≥0.11 were discarded

Selected microRNA				
microRNA	Correlation with <i>hOCT1</i> mRNA	r		
hsa-miR-330-3p	inverse	-0.4050		
has-miR-1269a	inverse	-0.3500		
hsa-miR-769-3p	inverse	-0.2943		
hsa-miR-541-3p	inverse	-0.2774		
hsa-miR-141-5p	inverse	-0.1718		
hsa-miR-598	inverse	-0.0946		
hsa-miR-1468-3p	inverse	-0.0897		
hsa-miR-1-2	inverse	-0.0801		
hsa-miR-324-5p	inverse	-0.0618		
hsa-let.7d	inverse	-0.0082		
hsa-miR-1287-3p	direct	0.1003		

miRNA selection based on structure-related criteria					
Criteria	а	b	С	d	Score
hsa-miR-1468-3p	3	3	1	3	10
hsa-miR-330-3p	2	3	2	2	9
hsa-miR-6806-5p	2	3	2	2	9
hsa-miR-1287-3p	2	3	1	3	9
hsa-miR-141-5p	2	3	1	2	8
hsa-miR-769-3p	2	3	1	2	8

Supplementary Table 5. Selected miRNA based on structure-related criteria

Micro-RNA from Supplementary Table 3 with the highest score calculated based on structure-related criteria were selected. Based on published evidence on the potential interest of hsa-mir6806-5p, this was also included in the analysis. The weight of each criteria was stablished between 1 and 3. Definition of structure-related criteria was as follows:

- a) Proportional to the number of matching nucleotides
- b) Involvement in the binding of microRNA "seed structure"
- c) Presence of complementary binding nucleotides near the microRNA binding site
- d) Presence of AU nucleotides near the complementary binding site

Supplementary Figure 1. (A) Relative *hOCT1* mRNA levels in HepG2 cells transduced with lentiviral vectors either empty (Mock) or containing the *hOCT1* coding sequence. Results are mean±SEM (n=5). *, P<0.05 on comparing both groups by Student *t*-test. (B) Specificity test of the primary antibody used in immunoblotting against hOCT1. CHO cells were transduced with empty vectors (Mock) or vectors containing hOCT1 or hOCT3 coding sequence. Immunoblot was carried out with cell lysates. Gapdh was used for normalization. (C) Immunoblots (n=5) were then performed in crude preparations of cell membranes obtained from HepG2 cells (Mock and hOCT1). Na⁺/K⁺-ATPase was used as normalizer.

Supplementary Figure 2. Immunofluorescence detected by confocal microscopy in HepG2 cells transduced with Mock vectors (A-C) or hOCT1 (D-F) stained with anti-hOCT1 (red) and anti-Na⁺/K⁺-ATPase (green) antibodies. Merge images (C and F) show the nuclei stained with DAPI.

Supplementary Figure 3. Relative expression (mRNA levels) of hOCT1 in HepG2 cells after incubation without or with 5 mM sodium butyrate for 24 h. Results are mean \pm SEM (n=5). *, P<0.05 on comparing both groups by paired *t*-test.

Supplementary Figure 4. Relative expression (mRNA levels) in biopsies (n=13) of hepatocellular carcinoma (HCC) of genes involved in favouring mRNA degradation or stability (see table in the inset) as determined by RT-qPCR in the tumour (T) and paired adjacent non-tumour (NT) tissue. Results are shown as individual values (circles) and mean±SEM (squares). *, P<0.05 comparing T with NT; N.S., not significant difference.