Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis

Chen et al.

Supplementary Figure. 1. Reported substrates of wild-type HpaBC¹⁻².

Supplementary Figure. 2. Modeling the structure of HpaB from *E. coli*. (A) Sequence alignment of HpaB from different species. Highly conserved residues were highlighted with red color, the catalytic residues R113, Y117 and H155 were marked with red markers. The residues involved substrate bindings were highlighted with green makers. (B) Alignment of *E. coli* HpaB model with HpaB structures from *Streptomyces globisporus* and *Thermus thermophiles*. The resulted RMSD were 0.605 and 1.048, for 4OO2³ and 2YYJ⁴, respectively. (C) The Ramachandran plot for HpaB model. (D) The substrate binding pocket comparison.

Supplementary Figure. 3. Protein expression and purification assessed with SDS-PAGE. (A) Purification of wild-type and mutant HpaBs. Lane 2 and 3 show all purified wild-type HpaB; Lane 4, 5 and 6 show purified HpaB muant A10, D11 and H7, respectively. (B) Purification of HpaC. Lane 2 shows the cell lysate of strain BL21(DE3) harboring plasmid pET28a; Lane 3 shows purified HpaC. Source data are provided in the Excel format Source Data file.

Plasmids	Description	Reference or
		source
Strains		
MC1061	For gene cloning	5
BL21(DE3)	For protein purification	Novagen
BW25113	For hydroxytyrosol biosynthesis	6
JW1380-KC	Strain from Keio collection in which feaB gene	7
	was relaced with FRT-flanked kan gene	
BHYT	Strain BW25113 with feaB gene knocked out	This study
Plasmids		
pBAD18-Kan	Plasmid with pBR322 replication origin	8
pFA	Plasmid with p15A replication origin	This study
pRSF	Plasmid with pRSF3010 replication origin	This study
pFA- <i>hpaBC</i>	HpaBC expressed from plasmid pFA	This study
pFA- <i>tyo-tdc-hpaBC</i> (P1)	Pathway constructed in pFA	This study
pBAD18-tyo-tdc-hpaBC(P2)	Pathway constructed in pBAD18-Kan	This study
pRSF-tyo-tdc-hpaBC(P3)	Pathway constructed in pRSF	This study
pRSF- <i>tdc-tyo-hpaBC</i> (P4)	Pathway constructed in pRSF	This study
pRSF- <i>tyo-hpaBC-tdc</i> (P5)	Pathway constructed in pRSF	This study
pRSF-hpaBC-tyo-tdc(P6)	Pathway constructed in pRSF	This study
pRSF-hpaBC-tdc-tyo(P7)	Pathway constructed in pRSF	This study
pET28a	pET expression vector	Novagen
pET28a- <i>hpaB</i>	HpaB expressed from pET28a vector	This study
pET28a- <i>hpaC</i>	HpaC expressed from pET28a vector	This study

Table 1 Plasmids used in this study.

Primers	Sequence (5'-3')
pFA-for- <i>Xho</i> l	AAACTCGAGGATCTGGTACTAGTGGTGAATT
pFA-rev- <i>Nde</i> l	GGAATTCCATATGGGTTAATTCCTCCTGTTAGC
P1-gibson-1(for vector)	AAATGGAAGCTGCGATTTAAGATCTGGTACTAGTGGTGAA
P1-gibson-2(for vector)	ACCACATGCGGGTTGCTCATGGTTAATTCCTCCTGTTAGC
P1-gibson-3(for tyo)	GCTAACAGGAGGAATTAACCATGAGCAACCCGCATGTGGT
P1-gibson-4(for <i>tyo</i>)	TCATATTGTTTCTCCTTTACGCACGAATATCACGCA
P1-gibson-5(for <i>tdc</i>)	GTAAAGGAGAAACAATATGAAAAACGAAAAATTAGC
P1-gibson-6(for tdc)	TCATATTGTTTCTCCTTTATTTTACGTCGTAAATTT
P1-gibson-7(for <i>hpaBC</i>)	ATAAAGGAGAAACAATATGAAACCAGAAGATTTCCG
P1-gibson-8(for <i>hpaBC</i>)	TTCACCACTAGTACCAGATCTTAAATCGCAGCTTCCATTT
P2-gibson-1(for vector)	AAATGGAAGCTGCGATTTAAGATCTGGTACTAGTGGTGAA
P2-gibson-2(for vector)	ACCACATGCGGGTTGCTCATGGTTAATTCCTCCTGTTAGC
P2-gibson-3(for tyo)	GCTAACAGGAGGAATTAACCATGAGCAACCCGCATGTGGT
P2-gibson-4(for tyo)	TCATATTGTTTCTCCTTTACGCACGAATATCACGCA
P2-gibson-5(for tdc)	GTAAAGGAGAAACAATATGAAAAACGAAAAATTAGC
P2-gibson-6(for tdc)	TCATATTGTTTCTCCTTTATTTTACGTCGTAAATTT
P2-gibson-7(for <i>hpaBC</i>)	ATAAAGGAGAAACAATATGAAACCAGAAGATTTCCG
P2-gibson-8(for <i>hpaBC</i>)	TTCACCACTAGTACCAGATCTTAAATCGCAGCTTCCATTT
P3-gibson-1(for vector)	AAATGGAAGCTGCGATTTAAGATCTGGTACTAGTGGTGAA
P3-gibson-2(for vector)	ACCACATGCGGGTTGCTCATGGTTAATTCCTCCTGTTAGC
P3-gibson-3(for tyo)	GCTAACAGGAGGAATTAACCATGAGCAACCCGCATGTGGT
P3-gibson-4(for tyo)	TCATATTGTTTCTCCTTTACGCACGAATATCACGCA
P3-gibson-5(for tdc)	GTAAAGGAGAAACAATATGAAAAACGAAAAATTAGC
P3-gibson-6(for tdc)	TCATATTGTTTCTCCTTTATTTTACGTCGTAAATTT
P3-gibson-7(for <i>hpaBC</i>)	ATAAAGGAGAAACAATATGAAACCAGAAGATTTCCG
P3-gibson-8(for <i>hpaBC</i>)	TTCACCACTAGTACCAGATCTTAAATCGCAGCTTCCATTT
P4-gibson-1(for vector)	

Table 2 Primers used in this study.

P4-gibson-2(for vector) P4-gibson-3(for *tdc*) P4-gibson-4(for *tdc*) P4-gibson-5(for tyo) P4-gibson-6(for tyo) P4-gibson-7(for *hpaBC*) P4-gibson-8(for *hpaBC*) P5-gibson-1(for vector) P5-gibson-2(for vector) P5-gibson-3(for *tyo*) P5-gibson-4(for *tyo*) P5-gibson-5(for *hpcBC*) P5-gibson-6(for *hpcBC*) P5-gibson-7(for *tdc*) P5-gibson-8(for *tdc*) P6-gibson-1(for vector) P6-gibson-2(for vector) P6-gibson-3(for *hpcBC*) P6-gibson-4(for *hpcBC*) P6-gibson-5(for tyo) P6-gibson-6(for *tyo*) P6-gibson-7(for *tdc*) P6-gibson-8(for *tdc*) P7-gibson-1(for vector) P7-gibson-2(for vector) P7-gibson-3(for *hpcBC*) P7-gibson-4(for *hpcBC*) P7-gibson-5(for *tdc*) P7-gibson-6(for *tdc*)

GCTAATTTTTCGTTTTTCATGGTTAATTCCTCCTGTTAGC GCTAACAGGAGGAATTAACCATGAAAAACGAAAAATTAGC TCATATTGTTTCTCCTTTATTTTACGTCGTAAATTT ATAAAGGAGAAACAATATGAGCAACCCGCATGTGGT TCATATTGTTTCTCCTTTACGCACGAATATCACGCA GTAAAGGAGAAACAATATGAAACCAGAAGATTTCCG TTCACCACTAGTACCAGATCTTAAATCGCAGCTTCCATTT TTCACCACTAGTACCAGATCTTATTTTACGTCGTAAATTT ACCACATGCGGGTTGCTCATGGTTAATTCCTCCTGTTAGC GCTAACAGGAGGAATTAACCATGAGCAACCCGCATGTGGT TCATATTGTTTCTCCTTTACGCACGAATATCACGCA TCATATTGTTTCTCCTTTACGCACGAATATCACGCA TCATATTGTTTCTCCTTTAAATCGCAGCTTCCATTT TTAAAGGAGAAACAATATGAAAAACGAAAAATTAGC AAATTTACGACGTAAAATAAGATCTGGTACTAGTGGTGAA AAATTTACGACGTAAAATAAGATCTGGTACTAGTGGTGAA CGGAAATCTTCTGGTTTCATGGTTAATTCCTCCTGTTAGC GCTAACAGGAGGAATTAACCATGAAACCAGAAGATTTCCG TCATATTGTTTCTCCTTTAAATCGCAGCTTCCATTT TTAAAGGAGAAACAATATGAGCAACCCGCATGTGGT TCATATTGTTTCTCCTTTACGCACGAATATCACGCA GTAAAGGAGAAACAATATGAAAAACGAAAAATTAGC TTCACCACTAGTACCAGATCTTATTTTACGTCGTAAATTT TGCGTGATATTCGTGCGTAAGATCTGGTACTAGTGGTGAA CGGAAATCTTCTGGTTTCATGGTTAATTCCTCCTGTTAGC GCTAACAGGAGGAATTAACCATGAAACCAGAAGATTTCCG TCATATTGTTTCTCCTTTAAATCGCAGCTTCCATTT TTAAAGGAGAAACAATATGAAAAACGAAAAATTAGC TCATATTGTTTCTCCTTTATTTTACGTCGTAAATTT

7

P7-gibson-7(for tyo)	ATAAAGGAGAAACAATATGAGCAACCCGCATGTGGT
P7-gibson-8(for <i>tyo</i>)	TTCACCACTAGTACCAGATCTTACGCACGAATATCACGCA
hpaBC-Saturated-fwd	ATTGGCTTCGGCNNSNNSNNSGTGATGGGCGAA
hpaBC-Saturated-rev	TGACCCACGGCGTTGCTTCTGAACACATCGAGTCACTC
hpaB-for-Ndel	GGAATTCCATATGAAACCAGAAGATTTCCGCG
hpaB-rev-Xhol	AAACTCGAGTTATTTCAGCAGCTTATCCAGC
hpaC-for-Ndel	GGAATTCCATATGCAATTAGATGAACAACGC
hpaC-rev-Xhol	AAACTCGAGTTAAATCGCAGCTTCCATTT

Gene	DNA sequence after codon optimization
name	
Gene <u>name</u> tyo	DNA sequence after codon optimization ATGAGCAACCCGCATGTGGTGGTTGGGGGTGCAGGTTTTGCAGGCC TGGTGGCGCGCGCGTGAACTGCAGATGGCCGGTGTGGATGTGGAAA TTGTGGAAGCGCGTGATCGTGTGGGCGCGCGTGCATGGACCGAAG AACGTATGGGTCGTCCGCTGGAACTGGGTGCAACCTGGGTGCATTG GATGCAGCCGCATGTGTGGAGCGAAATTACCCGTTATGATCAGAGC ATTTATCCGAGCCCGTTTTGCGATGCAGCAGATCTGGATTACCGGCGG CCGTGTGGAACATGGTACCGAAGCAGATCTGGATGCAGCACCGGCG CCGTGTGGAACATGGTACCGAAGCAGATCTGGATGCAGCACCGGCG CCGTATGAACCGCTGCATGTGCTGGATGAAAGCAGCGGCAGCACC CCGGAACTGCGTGAACGTTTTCGTGCGGCGGATCAGGGCAGCACC CCGGAACTGCGTGAAAGGCGCGCGCGTTATATTGGCGATCCGCATCA GGCCAGCCCGCTGATGGCGAAACAGTGGGCCGGCGCTGAGCGATCA GGCCAGCCCGCTGATGGCGAAACAGTGGGCGGCGCTGAGCGATCA TCGTCTGAGCCTGGTGGATGAACAGACCCTGCGTTTTAACTGACC CATGGCATGCGTGGCGAACACGTGGGCGGCGCTGAGCGATCA CGATGGTGCAACCGTGGCCGACCCGGGTGACCGCGCGCTGAGCGATCA CGATGGTGCAACCGTGGCGCGGTGACCGCGGCGCTGAGCGATCA CGATGGTGCAACCGTGGCCGGCGTACCGCGGCGCTGAGCGATCA CGATGGTGCAACCGTGGCCGGCGGTGCACCGCGGTGAAAAATTAGCTGC GATAGCGTGATTGTGACCGTGCCGAGCGGTGCACCGCGTGAACAATTG GCCCGATTCGTCGACCCGGGCGCGTATGCGTACCGCGACCATTG AATTTACCCCGGGTCTGCCGAGCGGTGGCGCGCGCGCGCG
	TGGATTGCACCGGTCATGATTGGGTGGCAGATCGTTGGAGCGGTCA
	GCATGGCAACCCTGCGTAGCGGCCAGATCGTTGCAACGGCTGGCA
	TCATTTTCGTAGCACCGATAGCCGTCTGCGTTTTGCAGGTGCAGATT
	GGGCGCGTGGCTGGCGTGGCGTGGTGGTGGATGGTGCAATTGAAA
	CCGGTCTGAGCACCGCGCGTGATGTGCTGCGTGATATTCGTGCGTA A

Table 3 Sequence of the *tyo* gene after codon optimization.

Supplementary References:

- 1. Lin, Y. & Yan, Y. Biotechnological production of plant-specific hydroxylated phenylpropanoids. *Biotechnol. Bioeng.* **111**, 1895-1899 (2014).
- 2. Prieto, M.A., Perez-Aranda, A. & Garcia, J.L. Characterization of an *Escherichia coli* aromatic hydroxylase with a broad substrate range. *J. Bacteriol.* **175**, 2162-2167 (1993).
- 3. Chang, C.Y., *et al.* Crystal structures of SgcE6 and SgcC, the two-component monooxygenase that catalyzes hydroxylation of a carrier protein-tethered substrate during the biosynthesis of the enediyne antitumor antibiotic C-1027 in *Streptomyces globisporus*. *Biochemistry-US* **55**, 5142-5154 (2016).
- 4. Kim, S.H., *et al.* Crystal structure of the oxygenase component (HpaB) of the
 4-hydroxyphenylacetate 3-monooxygenase from *Thermus thermophilus* HB8. *J. Biol. Chem.*282, 33107-33117 (2007).
- 5. Casadaban, M.J. & Cohen, S.N. Analysis of gene control signals by DNA fusion and cloning in *Escherichia coli. J. Mol. Biol.* **138**, 179-207 (1980).
- 6. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. USA* **97**, 6640-6645 (2000).
- 7. Baba, T. & Mori, H. The construction of systematic in-frame, single-gene knockout mutant collection in *Escherichia coli* K-12. *Methods Mol. Biol.* **416**, 171-181 (2008).
- Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose P_{BAD} promoter. *J. Bacteriol.* 177, 4121-4130 (1995).