
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

This is an interesting and important resource paper that provides data describing normal aging in the 

mouse lung. Specifically, the investigators have combined in droplet based single cell RNA-Seq with 

unbiased tissue proteomics to describe aging in the normal lung. The data are of high quality and the 

analyses are carefully planned and executed. A useful web based tool is provided with the data that 

will enhance its utility for the research community. In addition, some biologic insights have been 

made from both the proteomic and the transcriptional data and validated using IHC or flow, 

providing examples of how these data can be used. I have some concerns that can be readily 

addressed.  

 

1. The globally compare the proteomic data with the single cell RNA seq data, the investigators 

"summed" the transcriptomes from individual cell populations to create an "in silico bulk" RNA-Seq 

dataset. The rationale behind this analysis is unclear. Such “in silico bulk” is inherently affected by 

the biases introduced by the tissue composition and single cell isolation procedures and does not 

provide additional information about the age-associated changes within individual cellular 

populations. If this analysis was performed in order to assess the completeness of the “atlasing” 

effort, then it should be compared to an appropriate real bulk RNA-seq performed on whole lung 

tissue obtained from the same experimental animals. Similarly aged animals from the same colony 

should suffice to generate these data, which could be compared with the "in silico bulk" analysis 

(likely to show the limitations of single cell data) and to compare with the bulk proteome.  

 

2. To assess the age-related changes in gene expression within individual cell types, the 

authors compared young and old animals using the FindAllMarkers function in the Seurat package. 

This somewhat undermines the power of single cell analysis as it treats samples similar to bulk RNA-

seq. Specifically, the analysis makes an a priori assumption that all animals aged at the same rate 

and that aging did not introduce heterogeneity within the cellular populations within the same 

animal. It would be interesting if authors could re-analyze of at least some of the well-represented 

cell types (like alveolar type II cells or airway epithelial cells) by subsetting them and subjecting them 

to an additional round of re-clustering. This analysis would provide important information regarding 

the age-associated changes and likely would lend support the data regarding the increased 

transcriptional noise with aging. 

 

3. In Figure S3, the investigators undertook an analysis to suggest a reduced ratio of club cells 

relative to ciliated cells in the aging airways. Quantification of cell populations based on single cell 

RNA-Seq data is difficult given limitations to tissue digestion protocols. This is particularly germane 



to this analysis, as the authors clearly demonstrate age related changes in the extracellular matrix 

that might alter the susceptibility to cellular liberation. The concern is somewhat offset by the 

confirmatory IHC, however, this in itself is problematic as a systematic approach (e.g. stereology) 

was not undertaken for careful quantification. I would recommend either eliminating this analysis or 

adding substantial caveats in the discussion of these data.  

 

4. The investigators make note of a populations of cells enriched for cell cycle genes (Fig 1b, 

cluster 2). These have been frequently reported in single cell data but their origins and importance 

have yet to be validated. It would be interesting to regress out the cell cycle genes and see if these 

cells all end up in a single cluster or multiple clusters (i.e. have marker genes characteristic of a 

single, or multiple cell populations). It would also be interesting to see if these cells change with 

aging.  

 

5. The investigators mention they identified 153 genes they attributed to ambient RNA based 

on their identification on beads unlikely to have been in contact with any cells. They state they 

accounted for these genes in the analysis but this methodology is not completely described or 

referenced. This methodology would be important for the field.  

 

6. As the conclusion that aging increases transcriptional noise is a major finding of the paper, it 

would be important to have a better understanding of the statistical methods that were undertaken. 

Specifically, was transcriptional noise increased only when all cells were considered as a composite, 

or were there increases in transcriptional noise within particular cell populations during aging. In 

considering this, it is important to treat each mouse as an individual "n" (i.e. n=7 and n=8) as the 

chance for false discovery seems high if each cell is used as a separate statistical event. Even if the 

latter was performed, it is not clear if the differences were significant (after correcting for multiple 

comparisons) between any individual cell population or if the data were significant only in aggregate. 

If only the aggregate (ANOVA) is significant, I am not sure one can say the transcriptional noise 

“increased” or just "changed" as the reduction in in transcriptional noise in plasma cells was quite 

large relative to other populations and likely drove many of the changes in the ANOVA.  

 

7. Figure 4 shows upregulation of H2-K1 in epithelial cells of old mice (with a smaller 

upregulation in other cell populations), and Figure 6 shows upregulation of several genes involved in 

cholesterol biosynthesis. These novel biologic insights are nicely validated with flow cytometry. 

Were these changes (or the changes in Scd1) detected in the proteomic data. If not, a discussion of 

possible reasons would be informative. Minor concern, the young and aged data in Figure 4g should 

be reversed (young before old) for readability.  

 



8. Figure 5 is difficult to understand, both from the description in the text and from the figure. 

The analysis seems to be highly speculative in terms of its conclusions about the upstream regulators 

driving changes in gene expression, and seems to distract from the validated biological insights 

presented in Fig 4 and Fig. 6. I wonder if these data might be moved to the supplement. If they are 

to stay in the main paper, a more detailed discussion of the methodology and the 

strengths/limitations of the analysis should be included.  

 

9. The investigators show relatively poor correlation between single cell RNA seq data and 

proteome data for some proteins (particularly those in the extracellular matrix, Fig 2e). It is at least 

worth discussing the observation that many matrix proteins in the lung have extremely long half 

lives (months). Therefore, these data should not be necessarily interpreted as a disconnect between 

transcriptome and proteome but instead emphasize the need for serial measures over the lifespan.  

 

10. Related to many of the comments above, it would be important to include the code used for 

the data analysis as part of the paper or as a linked resource, understanding that methods for 

analyzing these data will likely evolve over time.  

 

11. I was confused by Figure 3J/K. --how were the mesenchymal cells identified were cells from 

the individual mice annotated and clustered or was this a sub-analysis of the combined object? Is 

Figure 3K highlighting marker genes for these clusters or does it have something to do with aging. 

Not sure these two panels add much to the overall figure.  

 

 

 

Reviewer #2 (Remarks to the Author):  

 

Angelidis et al. present a resource in which single-cell transcriptomes and the bulk proteome of the 

lungs of young and old mice are compared. Some aspects are of general interest and go beyond a 

comparative analysis of lung aging. In particular, the authors discuss that their dataset allows them 

dissect sources of bulk proteome and transcriptome changes during aging with cell type resolution.  

 

Unfortunately, the work is mostly descriptive and does not contain in-depth validations and insights 

into underlying molecular mechanisms, except a few stainings that partially confirm expression 

patterns derived from scRNASeq/proteomics. Providing such more detailed validations for selected 

1-2 cases would demonstrate the usefulness of their dataset to the community and could greatly 

increase the interest to a broader readership.  



 

In its present form, the paper remains vague and represents a general discussion of cherry-picked 

examples from diverse aspects of lung physiology and aging. I therefore believe that it would be 

suited for a more specialized journal, unless in-depth validations are provided in a revision. Below, I 

discuss the strengths and weaknesses of the article in more detail using the same chronology as in 

the article.  

 

1) Single-cell transcriptomes of ~15,000 cells are used to compare gene expression in young and old 

mice. The authors conclude that: (a) there is a good overlap between samples; (b) cell type identity 

was not strongly confounded by aging and (c) transcriptional noise increases during aging. These 

statements should be supported by more quantitative measures: In Figure S1B it appears that the 

cell type identity actually changes quite substantially during the aging process, and in Fig S1A the 

overlap is hard to judge. Transcriptional noise may also mainly reflect technical variation, changes in 

the cell type frequencies with age and systematic differential expression in each cell type (the latter 

two phenomena occur as the authors state further below). Can the authors exclude a major 

contribution of such confounding factors?  

 

2) The dataset is further enriched using bulk proteomics obtained from an independent cohort of 

mice. The authors show that the differentially expressed genes during aging are enriched for similar 

biological functions and upstream regulatory pathways when compared at the level of proteomics 

and (in silico reconstructed) bulk RNASeq. While such a conceptual similarity is encouraging and 

interesting, the authors should also provide the concrete overlap between transcriptome and 

proteome changes. The opposing changes of mRNA and protein for Collagen IV should also be 

validated at the RNA level, ideally using a spatially resolved setup such as RNA FISH, to prove that 

the combined proteome-transcriptome analysis indeed provided novel insights into post-

transcriptional regulation.  

 

3) The authors state that their dataset can be used to predict the cellular source of regulated 

proteins in the proteomics from scRNASeq data, while distinguishing real changes in gene expression 

from alterations in cell type frequencies. I find this a very intriguing application, but the description 

remains vague and the authors mainly refer to an online tool, without performing any validation 

using follow-up experiments (see also comment 5 below).  

 

4) The following section indicates that the solubility of proteins does not globally change during 

aging. The authors identify a few potentially interesting solubility changes with aging (not validated 

indepependently). This section a bit disconnected from the rest of the work, needs better motivation 

and could be better shortened.  

 



5) The following sections on cell-type specific effects during aging reveal potentially interesting 

insights into how gene expression is selectively changed in certain cell-types. The results in this 

section show that ~120 genes are differentially expressed in each of the two most abundant cell 

types with age, thus questioning the authors’ previous statement that cell type identity is preserved 

during aging. This needs clarification.  

 

The subsequent validations focus on type 2 pneumocytes. For one MHC class protein, cell-type 

specific differential expression was confirmed at the protein level using flow cytometry (Fig. 4). 

Furthermore, Nile Red staining, a proxy for cellular cholesterol levels, is shown to be increased in old 

mice as predicted based on increased RNA expression in the cholesterol synthesis pathway (Fig. 6). 

The authors should better explain the nature of the markers used in Figs. 4F, 6D and E, and should 

clarify how specific they are for alveolar type 2 pneumocytes. Fig. 6: Why were cells stratified there 

using the forward scatter?  

 

The current validations are restricted to one specific example protein (MHC) or the use of an indirect 

marker (Nile Red). Furthermore, the physiological relevance of these findings is unclear. To show 

that their resource is indeed useful to the community, the authors must provide a global validation 

of their predictions for a larger number of genes. I suggest that they use the existing (or a similar) 

flow cytometry setup (with sorting) followed by global analysis (RNA sequencing and possibly 

proteomics) to confirm that they can reliably predict cell-type-specific gene expression changes (also 

in relation comment 3).  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

The manuscript presented by Angelidis et al combines single cell transcriptomics and 'deep' 

proteomics approaches associated with a panel of bioinformatics and biostatistical tools in an 

attempt to create a predictive reference map of cellular source of regulated proteins associated with 

the aging of the lung in a mouse model. It is an exhaustive investigation supported by an exemplary, 

reproducible and statistically credible experimental design, which results were validated by 

orthogonal technologies. The respective raw data are available online, as well as the whole lung 

aging atlas. It is therefore an important contribution not only to the understanding of the lung 

proteome itself but mainly to the events associated with the aging process in an animal model.  

In summary, I strongly recommend the publication of this Agelidis et al ‘s manuscript in the Nat 

Comm.  

Minors  



Abbreviations should be written completely as much as possible when first mentioned in the text.  

• Introduction session:  

ECM (pag1) . If written in full in the Introduction session then it must be abbreviated in the ‘results 

session’(pag4).  

 

• Results session:  

Dropseq (pag2)  

tSNE map (pag2)  

scRNAseq (pag 6)  

Uniprot (pag 8)  

GO (pag 8)  

KEGG (pag 8)  

• Discussion session  

CITE-seg (pag 10  

 

• Methods session  

PDMS (pag 17)  

UMI (pag 17)  

 

There are some 'typing errors' such as () in the Methods session that need to be fixed, for example: 

pg 18: Seurat’s NomalizedData(); scaleData(), et, etc….  

 

Figure 6C: Please increase the letter size of the cholesterol biosynthesis pathway to make it 

readable.  

 

 

 

 

 



 

Reviewer #4 (Remarks to the Author):  

 

Angelidis and colleagues present an atlas of lung cells from aging mice. Moreover, they provide a link 

of single cell data to bulk proteomics data with excellent correlation between RNA and protein data 

strongly supporting the enormous value of single cell RNA-seq data. Furthermore, as an atlas 

resource the Theis lab provides a web interface for these data and also link the data to other atlas 

efforts such as the mouse cell atlas. As a resource paper, it is expected to stay mainly descriptive, 

albeit some attempts have been made to validate some of the work at least phenotypically. With the 

enormous expertise of the group of authors and laboratories, it is not surprising that the manuscript 

is very well presented. Nevertheless, since all atlas efforts are critically shaping the landscape of how 

cells are described during the next decades, several points are to be addressed first.  

 

1. Albeit ~15,000 cells are a significant number of cells, it is still on the low site for a full organ 

in the mouse. Particularly, since this is the number of cells for both young and old animals. 

Moreover, the two major cell types, alveolar macrophages and type 2 pneumocytes make up a 

substantial portion of the overall number of cells, which leads to very few events for rare cells in the 

dataset. Furthermore, the authors correctly cite a paper from 2008 stating already 40 cell types, yet 

the authors only discover 30 cell types. Three things need to be added to the manuscript. One, a 

comparison of the 30 cell types with the 40 previous cell types and a reason why the other once 

might not have been detected in this new study. In other words, why are we falling behind current 

knowledge about existing cell types. Second, additional cells should be added which specifically 

might add to getting closer to the previously described 40 cell types. Third, a general remark in the 

discussion section, how such atlases are going to be build up further in the future by e.g. adding 

additional cells later to the dataset. The reader needs to understand the dynamics of such atlases, 

the current limitations (cell number, sequencing depth, any technical biases) and how this will be 

solved in the future.  

 

2. Material and Methods Section: The authors describe red blood cell lysis as a step of 

generating single cell suspensions. How did the authors quantify contamination with red blood cells, 

and therefore with blood? How do the authors exclude that the remaining cells do not have any 

blood-derived contaminations? What about the immune cell compartment (e.g. T cells, B cells, 

monocytes). Is there a comparison with blood derived immune cells to see differences between the 

tissue-resident immune cells and blood-derived immune cells? These are important technical issues, 

particularly for the lung and require further explanation. Without any statement about 

quantification of the potential contamination of blood-derived cells, the lung atlas might be a mixed 

lung-blood atlas. The reader and user of the atlas needs this information.  

 



3. The age-related changes of the major cell types is a major asset of the manuscript. In 

alveolar macrophages, Marco as an altered cell surface molecule is highlighted. Similar to the 

alveolar type 2 pneumocytes (flow cytometry for MHC) should be added for Marco on alveolar 

macrophages.  

 

4. Figure 1: It is not entirely clear from the main result text, how the authors named the cells in 

Fig 1d (it is written in the methods section, but could be presented more prominent, in the end this 

is what a cell atlas does). For some cells (e.g. dendritic cells), it would be good to use updated 

nomenclature or at least add this nomenclature. What about subtypes of known cell types? For 

example, some of the immune cells identified are known to exist in subtypes. Explain, why you did 

not add this level of information. Or alternatively, point out that this is available on the website.  

The clusters in Fig. 1 B cannot be linked to the cell nomenclature used in Fig. 1c and d. This is very 

difficult for the reader to follow. What are Fn1+ macrophages in context of the existing literature?  

 

5. Figure 2: The RNA-seq and protein data are strikingly correlated, except for Collagen IV. Is 

there any functional or molecular explanation for the different behavior, while all other 

systems/pathways were correlated? If you do not have any proof, can you hypothesize?  

 

6. Figure 2and S3: Age dependent alterations of relative frequencies: How did the authors 

ensure that there was no technical reason for differences in relative frequencies? Did the authors 

control their relative frequencies with another independent single cell methodology? If not, such 

information should be added.  

 

7. Figure 3: “Indeed, we were able to confirm the mesothelium specific expression of Fras1 

using our scRNAseq data”. How is this statement supported by the visualization in Fig. 3j/k?. Fig. 3l is 

mentioned in the text, but does not exist. The information for Decorin is not included in Fig. 3j/k. In 

general, the authors need to make sure that figures, gene names and genes/proteins mentioned in 

text better match.  

 

8. How many cells came from old, how many cells from young mice? One can infer from the 

text and the supplement, but it is not explicit. Add in main result text.  

 

9. First sentence in discussion not necessary, it is a political statement. Increasing health, 

probably everybody would agree. Increasing lifespan is a very much debated statement. Enabling 

healthy aging might be ok again. Re-phrase.  

 



10. Page 9: sentence of main text: This is a statement that is too negative and should be 

avoided. In This paper should stay away from the old discussion whether RNA could be used instead 

of protein. As long as proteomics cannot provide single cell data to a similar extend as scRNA-seq is 

doing it at the moment, these statements are not helpful.  

 

11. Page 10, first paragraph: citation still in doi-format  

 

12. Bioinformatic processing of scRNA-seq reads: Please provide some more statistics 

concerning the quality of the data. How many barcodes were detected, how many made the chosen 

cutoff, how many UMIs and genes per cell were recovered, mean read length, etc. Provide as a 

supplementary figure.  

 

13. Data availability paragraph requires addition of the respective numbers instead of XXX.  

 



Revision of NCOMMS-18-19103-T 
Title: `An atlas of the aging lung mapped by single cell transcriptomics and deep tissue 
proteomics´ 
 
Point by point reply to the reviewers 
 
 
Reviewer #1 (Remarks to the Author): 
 
This is an interesting and important resource paper that provides data describing normal aging in the 
mouse lung. Specifically, the investigators have combined in droplet based single cell RNA-Seq with 
unbiased tissue proteomics to describe aging in the normal lung. The data are of high quality and the 
analyses are carefully planned and executed. A useful web based tool is provided with the data that 
will enhance its utility for the research community. In addition, some biologic insights have been 
made from both the proteomic and the transcriptional data and validated using IHC or flow, 
providing examples of how these data can be used. I have some concerns that can be readily 
addressed. 
 
We would like to thank the reviewer for taking the time to evaluate our work. We are grateful for 
the very constructive criticism and addressed your concerns as outlined below. 
 
 
1. The globally compare the proteomic data with the single cell RNA seq data, the investigators 
"summed" the transcriptomes from individual cell populations to create an "in silico bulk" RNA-Seq 
dataset. The rationale behind this analysis is unclear. Such “in silico bulk” is inherently affected by the 
biases introduced by the tissue composition and single cell isolation procedures and does not provide 
additional information about the age-associated changes within individual cellular populations. If this 
analysis was performed in order to assess the completeness of the “atlasing” effort, then it should be 
compared to an appropriate real bulk RNA-seq performed on whole lung tissue obtained from the 
same experimental animals. Similarly aged animals from the same colony should suffice to generate 
these data, which could be compared with the "in silico bulk" analysis (likely to show the limitations 
of single cell data) and to compare with the bulk proteome. 
 
We agree with the reviewer that the correct comparison here is a true bulk transcriptome from 
whole tissue. Thus, we now performed bulk RNA-seq from 3 young (3 month) and 3 old (22 months) 
mouse whole lung samples to repeat the analysis. The new data is presented in revised Figure 3 and 
the new Figure S4. With this new data we are now assessing age dependent changes in 3 
independent cohorts of young and old mice with three complementary methods (scRNAseq, 
RNAseq, and mass spectrometry). As suggested by the reviewer we use the whole lung bulk RNAseq 
to assess the quality of the single cell suspension that was used for scRNAseq. Even though a 
potential bias with cell isolation could be expected we were very pleased to observe strong 
agreement between the real and in silico bulk data (see revised Fig. 3b), thus excluding strong biases 
by the single cell isolation procedures. Furthermore, we also observed strong correspondence of the 
age-dependent alterations in all three data sets (in silico bulk, real bulk and protein data - see PCA 



analysis in revised Figure 3c). We have edited the Results and Methods section to describe these 
novel analyses. 
 

 
“Figure 3. Multi-omic data integration uncovers common and distinct features in RNA and protein 
regulation. ... (b) On the left, gene expression profiles from whole lung bulk samples (n = 6) and in 
silico bulk samples (n = 15) were averaged and plotted on X and Y axes, respectively. Red and black 
lines indicate linear model fit and the diagonal. On the right, correlation heatmap shows the Pearson 
correlation between all bulk and in silico bulk samples. (c) Normalized bulk (RNA-seq) and in silico 
bulk (scRNA-seq) data was merged with proteome data (Mass spectrometry) and quantile 
normalized. The first two principal components show clustering by data modality. The third principal 
component separates young from old samples across all three data modalities. Blue and red colors 
indicate young and old samples, respectively.” 
 
2. To assess the age-related changes in gene expression within individual cell types, the authors 
compared young and old animals using the FindAllMarkers function in the Seurat package. This 
somewhat undermines the power of single cell analysis as it treats samples similar to bulk RNA-seq. 
Specifically, the analysis makes an a priori assumption that all animals aged at the same rate and 
that aging did not introduce heterogeneity within the cellular populations within the same animal. It 
would be interesting if authors could re-analyze of at least some of the well-represented cell types 
(like alveolar type II cells or airway epithelial cells) by subsetting them and subjecting them to an 
additional round of re-clustering. This analysis would provide important information regarding the 
age-associated changes and likely would lend support the data regarding the increased 
transcriptional noise with aging. 
 



As the reviewer correctly points out the Wilcoxon rank sum test implemented in the FindAllMarkers 
function does not implicitly model heterogeneity within the cellular populations within the same 
animal. However, with sufficient sample size (number of cells) non-parametric tests perform equally 
well compared to more elaborate modeling approaches and can robustly identify changes in single 
cell RNA-seq gene expression analysis (Pubmed ID: 29481549). To demonstrate this, we followed the 
reviewer’s suggestion and re-analyzed the airway epithelial cells. Expectedly, the three epithelial cell 
types formed three clusters (Fig. 4c). Both young and old cells cover the majority of the data 
manifold (Fig. 4d), indicating that there exists overlap in the gene expression profiles of young and 
old cells. However, we observed significant differences in the density of young and old cells across 
the data manifold.  

 
“Figure  4. Whole lung cell type deconvolution reveals increase of Ciliated cells in airways of old 
mice. ...(c) The Fruchterman-Reingold (FR) embedding of the airway epithelial cells in the dataset 
reveals distinct clusters of airway cell identity. (d) The indicated color code shows  the distribution of 
young and old cells to the three clusters presented in panel (c). ...” 
 
The reviewer makes a good suggestion that, in theory, re-clustering of the cell types could visualize 
our finding regarding the increased transcriptional noise with aging. However, interpretation of 
distances in non-linear dimension reduced space, such as tSNE, is non-trivial as scaling is not 
consistent across the plot. Therefore, to additionally support our finding that transcriptional noise 
increases with aging, we used a second approach to quantify transcriptional noise. In the new 
approach we used Spearman correlation to quantify transcriptional noise. The results confirmed our 
previous finding (Fig. 2c and d). 
 

 



“Figure 2. Most cell types show increased transcriptional noise with aging. (c) Scatterplot depicts 
the log2 ratio of transcriptional noise between old and young samples as calculated using 1 - 
Spearman correlation and the Euclidean distance between cells on the X and Y axes, respectively. For 
both panels, the size of the dots corresponds to the negative log10 adjusted p-value of the cell type 
resolved differential transcriptional noise test and the red lines corresponds to the robust linear 
model regression fit. (d) As an example, the distribution of 1 - Spearman correlation coefficients 
between all pairs of young and old cells is shown for Type 2 pneumocytes. Larger values represent 
increased transcriptional noise. Blue and red colors indicate young and old samples.” 
 
3. In Figure S3, the investigators undertook an analysis to suggest a reduced ratio of club cells 
relative to ciliated cells in the aging airways. Quantification of cell populations based on single cell 
RNA-Seq data is difficult given limitations to tissue digestion protocols. This is particularly germane to 
this analysis, as the authors clearly demonstrate age related changes in the extracellular matrix that 
might alter the susceptibility to cellular liberation. The concern is somewhat offset by the 
confirmatory IHC, however, this in itself is problematic as a systematic approach (e.g. stereology) was 
not undertaken for careful quantification. I would recommend either eliminating this analysis or 
adding substantial caveats in the discussion of these data. 
 
We agree with the concern about limitations of relative frequency observations using single cell 
analysis of cells released from tissues. We therefore added the sentence `Relative frequency 
differences in scRNA-seq data can be biased by tissue isolation artefacts´ to the results section. Bulk 
tissue RNA-seq enabled us to additionally validate the change in ciliated cell proportions in whole 
lung by deconvolving the bulk expression data using our single cell gene expression profiles (see 
revised Figure 4 below). Indeed, we found that the ciliated cell marker genes signature was 
significantly upregulated in whole tissue bulk RNA-seq of old lungs (Fig. 4e/f in revised manuscript). 
For in situ validation we counted more than 2000 cells from a large number of airways and several 
mice (Fig. 4g-i). Thus, we did not want to remove this data and hope that the reviewer agrees that 
evidence from three independent experiments showing similar results would justify to show this 
data. 
 



 
 
“Figure  4. Whole lung cell type deconvolution reveals increase of Ciliated cells in airways of old 
mice. (a) The MDS plot shows the mouse-wise euclidean distances of cell type proportions for the 
two age groups (b) The box plot shows the significant difference in the multidimensional scaling 
component 1 of cell type proportions between young and old. (c) The Fruchterman-Reingold (FR) 
embedding of the airway epithelial cells in the dataset reveals distinct clusters of airway cell identity. 
(d) The indicated color code shows  the distribution of young and old cells to the three clusters 
presented in panel (c). Note the increased density of old cells in the Ciliated cell cluster. (e) The 
volcano plot shows negative log10 enrichment p-values of cell type marker signatures in the 
differential expression results of the bulk RNA-seq data from young and old mice. (f) The empirical 
density plot shows significant enrichment for Ciliated cell type marker genes (red line) compared to 
all other genes (black line) in the distribution of fold changes derived from the bulk differential 
expression analysis. (g) Club and Ciliated cells were stained using a CC10 and Foxj1 antibody 
respectively. (h) The boxplot depicts the quantification of Ciliated cells from counting a total of 2647 
Club and Ciliated cells in 14 individual airways of two mice of each indicated age group. (i) Ratio of 
Ciliated to Club cells in 14 individual airways of two mice for each indicated age group. P-values are 
derived from an unpaired, two-tailed t-test using Welch’s correction.” 
 



4. The investigators make note of a populations of cells enriched for cell cycle genes (Fig 1b, cluster 
2). These have been frequently reported in single cell data but their origins and importance have yet 
to be validated. It would be interesting to regress out the cell cycle genes and see if these cells all end 
up in a single cluster or multiple clusters (i.e. have marker genes characteristic of a single, or multiple 
cell populations). It would also be interesting to see if these cells change with aging. 
 
We thank the reviewer for a constructive suggestion. Indeed, we observed one cluster of mainly 
proliferating cells. Following the reviewer’s suggestion we re-analyzed this cluster in more detail and 
added the analysis into the Results section: 
 
“Additionally, we noticed one cluster of mainly proliferating cells showing high expression levels for 
S and G2M cell cycle marker genes (Fig. S3a and b). Young mice showed a higher fraction of cells in 
this cluster compared to old mice (Fig. S3c; Generalized linear binomial model, P < 0.001). Next, we 
isolated this cluster and corrected the gene expression levels for cell cycle phase (Fig. S3 d and e). 
Subsequent unsupervised clustering analysis revealed that these proliferating cells belong to T cells, 
type 2 pneumocytes and alveolar macrophages (Fig. S3 f - i).” 
 
The results from this analysis are described in an additional supplementary figure (Fig. S3):  
 



 
 
“Supplementary Figure S3. Cell-cycle analysis reveals reduced proliferative capacity of T cells, 
Alveolar macrophages and Type-2 pneumocytes in aged lungs. (a, b) The `Mki67+ proliferating cell´ 
cluster (Fig. 1) showed high expression of (a) G2M-  and (b) S-phase  cell cycle signatures. (c) A higher 
fraction of proliferating cells was observed in young compared to old mice. (d) PCA based on cell 
cycle marker genes revealed clustering by cell cycle phase and (e) the removal of this effect after 
regressing out the cell cycle effect. Cells are colored by cell cycle phase as assigned by Seurat. (f) 
Unsupervised Louvain clustering revealed three distinct cell clusters. (g-i) tSNE visualization colored 
by the expression of cell type marker genes (g) Trbc2, (h) Sftpd and (i) Ear2 corresponding to  T cells, 
Type 2 pneumocytes and alveolar macrophages, respectively.”  
 
 
5. The investigators mention they identified 153 genes they attributed to ambient RNA based on their 
identification on beads unlikely to have been in contact with any cells. They state they accounted for 



these genes in the analysis but this methodology is not completely described or referenced. This 
methodology would be important for the field. 
 
We agree with the reviewer that we need to be more descriptive. Therefore, we point the reader in 
the “ambient RNA identification” section towards the “cell type resolved differential expression 
analysis” section where we describe our methodology in more detail.  
 
“We identified 153 genes (Table S7) with an `ambient mRNA´ effect and accounted for this effect in 
the cell type resolved differential expression analysis (see below for details).” 
 
Here, we extended the cell type resolved differential expression analysis section in the Methods 
section: 
 
“Cell type resolved differential expression analysis. Cell type resolved differential expression analysis 
was performed using the Seurat differential gene expression testing framework. Within each cell 
type cells were grouped by age and differential testing performed using the Seurat FindMarkers() 
function. By inspecting barcodes with a very low number of UMI counts, we identified 153 potential 
ambient mRNAs. However, these mRNAs could represent true housekeeper genes which are 
constitutively expressed in all cells. Therefore, we removed 41 mRNAs which showed no cell type 
specific expression effect (log2 foldchange < 1) in any of the cell types in the cell type marker 
discovery analysis from this list. Next, to avoid differential testing of a gene in a cell type where 
expression levels are driven by the ambient effect, cell type resolved differential expression testing 
of the remaining 112 ambient mRNAs was limited to cell types in which the ambient mRNA showed 
moderate cell type specific expression (adjusted p-value < 0.25).” 
 
6. As the conclusion that aging increases transcriptional noise is a major finding of the paper, it 
would be important to have a better understanding of the statistical methods that were undertaken. 
Specifically, was transcriptional noise increased only when all cells were considered as a composite, 
or were there increases in transcriptional noise within particular cell populations during aging. In 
considering this, it is important to treat each mouse as an individual "n" (i.e. n=7 and n=8) as the 
chance for false discovery seems high if each cell is used as a separate statistical event. Even if the 
latter was performed, it is not clear if the differences were significant (after correcting for multiple 
comparisons) between any individual cell population or if the data were significant only in aggregate. 
If only the aggregate (ANOVA) is significant, I am not sure one can say the transcriptional noise 
“increased” or just "changed" as the reduction in in transcriptional noise in plasma cells was quite 
large relative to other populations and likely drove many of the changes in the ANOVA. 
 
Given the feedback from multiple reviewers we adapted our transcriptional noise analysis. We 
removed the global ANOVA result and instead focus on testing for a change in transcriptional noise 
within each cell type (Fig. 2a). 
To further substantiate our results we quantified transcriptional noise in two manners: 1) Euclidean 
distance of the expression profile between cells and the cell type mean and 2) 1 - Spearman 
correlation coefficient calculated between all pairs of cells within one age group. In the current 
analyses we specifically account for differences in total UMI counts, cell type frequencies by down-
sampling UMI counts and cells. 



With respect to the reviewer’s concerns regarding the sample size in the statistical analysis we 
additionally averaged the transcriptional noise metrics for each mouse and then calculated the ratio 
between old and young. These ratios calculated on the cell level (n= number of cells per cell type) 
and mouse averages (n=15) correlate significantly (Fig. 2b). Furthermore, the results of both the 
Euclidean distance and Spearman correlation based approaches validate each other (Fig. 2c). One 
notable exception are the Plasma cells which show opposite patterns in the Euclidean distance and 
Spearman correlation based approaches. However, the change in transcriptional noise between 
young and old mice for the Plasma cells was not statistically significant (Fig. 2c, as indicated by the 
size of the dot). 
We have adapted the Results section accordingly: 
 
“Therefore, we quantified transcriptional noise following previous work21 and accounted for 
differences in total UMI counts and cell type frequencies (see Methods for details). We observed an 
increase in transcriptional noise with aging in most cell types (Fig. 2a). To further exclude technical 
confounding we additionally averaged the transcriptional noise scores per mouse and obtained 
highly concordant results (Fig. 2b). To further substantiate this finding we quantified transcriptional 
noise in an alternative manner using Spearman correlations between cells. This analysis confirmed 
our finding that transcriptional noise is increased with aging (Fig. 2 c and d) and are in line with 
previous reports in the human pancreas21 or mouse CD4+ T cells20.” 
 



 
 
`Figure 2. Increased transcriptional noise in most cell types of old mice. (a) Boxplot illustrates 
transcriptional noise by age and celltype. Blue and red colors indicates young and old cells, 
respectively. Asterix indicates significant changes (Adjusted p-value <0.05). (b) Scatterplot shows the 
log2 ratio of transcriptional noise between old and young samples as calculated using mouse 
averages (n = 15) and single cells (n = number of cells) on the X and Y axes, respectively. (c) 
Scatterplot depicts the log2 ratio of transcriptional noise between old and young samples as 
calculated using 1 - Spearman correlation and the Euclidean distance between cells on the X and Y 
axes, respectively. For both panels, the size of the dots corresponds to the negative log10 adjusted 
p-value of the cell type resolved differential transcriptional noise test and the red lines corresponds 
to the robust linear model regression fit. (d) As an example, the distribution of 1 - Spearman 
correlation coefficients calculated between all pairs of young and old cells is shown for Type 2 
pneumocytes. Larger values represent increased transcriptional noise. Blue and red colors indicate 
young and old samples.´ 
 
 
 



 
7. Figure 4 shows upregulation of H2-K1 in epithelial cells of old mice (with a smaller upregulation in 
other cell populations), and Figure 6 shows upregulation of several genes involved in cholesterol 
biosynthesis. These novel biologic insights are nicely validated with flow cytometry. Were these 
changes (or the changes in Scd1) detected in the proteomic data. If not, a discussion of possible 
reasons would be informative. Minor concern, the young and aged data in Figure 4g should be 
reversed (young before old) for readability. 
 
Current sensitivity of mass spectrometry does not enable detection of all genes we describe to be 
altered using the transcriptomic analysis. With a depth of >6000 proteins quantified in total lung 
tissue we did not detect Scd1 in the proteome analysis and therefore cannot make a statement on 
protein regulation of this gene. Given the fact that indeed lipid content was found to be changed we 
argue that at least some of the enzymes in cholesterol biosynthesis must have been upregulated also 
on protein level. 
 
We reversed the order of boxplots in Figure 7l accordingly. 
 
8. Figure 5 is difficult to understand, both from the description in the text and from the figure. The 
analysis seems to be highly speculative in terms of its conclusions about the upstream regulators 
driving changes in gene expression, and seems to distract from the validated biological insights 
presented in Fig 4 and Fig. 6. I wonder if these data might be moved to the supplement. If they are to 
stay in the main paper, a more detailed discussion of the methodology and the strengths/limitations 
of the analysis should be included. 
 
We moved this analysis to the supplement (Figure S6 in the revised manuscript). 
 
9. The investigators show relatively poor correlation between single cell RNA seq data and proteome 
data for some proteins (particularly those in the extracellular matrix, Fig 2e). It is at least worth 
discussing the observation that many matrix proteins in the lung have extremely long half lives 
(months). Therefore, these data should not be necessarily interpreted as a disconnect between 
transcriptome and proteome but instead emphasize the need for serial measures over the lifespan. 
 
We agree that poor correlation between mRNA and protein may be relevant in particular for ECM 
proteins, because the half life of ECM proteins can be very long and may therefore be regulated 
more often by postranscriptional mechanisms such as proteolytic degradation. 
We added the following sentence to the discussion: 
`In particular the abundance of ECM proteins, which often have long half lives and are thus likely 
more often regulated on the posttranscriptional level could frequently show decoupling of protein 
and mRNA.´ 
 
10. Related to many of the comments above, it would be important to include the code used for the 
data analysis as part of the paper or as a linked resource, understanding that methods for analyzing 
these data will likely evolve over time. 
 



We have made all analysis code available for reproducibility on github and point this out in the Data 
availability statement: 
 
“Code to reproduce the analysis and figures described in this manuscript can be found at: 
github.com/theislab/2018_Angelidis.” 
 
11. I was confused by Figure 3J/K. --how were the mesenchymal cells identified were cells from the 
individual mice annotated and clustered or was this a sub-analysis of the combined object? Is Figure 
3K highlighting marker genes for these clusters or does it have something to do with aging. Not sure 
these two panels add much to the overall figure. 
 
This was a subanalysis of the combined object. The only point for these panels was to illustrate the 
power of scRNAseq to identify cellular sources of proteins with the example of Col14a1 expressed by 
interstitial fibroblasts. Since the additional sub-clustering of mesenchymal cells did not really 
strengthen this aspect we removed that analysis and instead show now expression specificity of 
Col14a1 and its binding partner Decorin in the main data object (described in Figure 1). The new 
panel can be found in revised Figure 5. 
 

 
 
“Figure 5. scRNA-seq predicts cellular origin of age-dependent protein alterations. ... (c) The dot 
plot shows mRNA expression specificity of Col14a1 and its binding partner Decorin (Dcn) in the 
scRNA-seq data.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
Angelidis et al. present a resource in which single-cell transcriptomes and the bulk proteome of the 
lungs of young and old mice are compared. Some aspects are of general interest and go beyond a 
comparative analysis of lung aging. In particular, the authors discuss that their dataset allows them 
dissect sources of bulk proteome and transcriptome changes during aging with cell type resolution. 
 
Unfortunately, the work is mostly descriptive and does not contain in-depth validations and insights 
into underlying molecular mechanisms, except a few stainings that partially confirm expression 
patterns derived from scRNASeq/proteomics. Providing such more detailed validations for selected 1-
2 cases would demonstrate the usefulness of their dataset to the community and could greatly 
increase the interest to a broader readership. 
 
In its present form, the paper remains vague and represents a general discussion of cherry-picked 
examples from diverse aspects of lung physiology and aging. I therefore believe that it would be 
suited for a more specialized journal, unless in-depth validations are provided in a revision. Below, I 
discuss the strengths and weaknesses of the article in more detail using the same chronology as in 
the article. 
 
We would like to thank the reviewer for taking the time to evaluate our work and are grateful for the 
very constructive criticism. In particular, we agree with the reviewer that additional validations are 
necessary, therefore we specifically generated new RNA-seq data from two additional cohorts of 
mice. In the following we addressed your concerns as outlined below: 
 
1) Single-cell transcriptomes of ~15,000 cells are used to compare gene expression in young and old 
mice. The authors conclude that: (a) there is a good overlap between samples; (b) cell type identity 
was not strongly confounded by aging and (c) transcriptional noise increases during aging. These 
statements should be supported by more quantitative measures: In Figure S1B it appears that the cell 
type identity actually changes quite substantially during the aging process, and in Fig S1A the overlap 
is hard to judge. Transcriptional noise may also mainly reflect technical variation, changes in the cell 
type frequencies with age and systematic differential expression in each cell type (the latter two 
phenomena occur as the authors state further below). Can the authors exclude a major contribution 
of such confounding factors? 
 
To quantitatively assess the overlap between samples, we used the Silhouette coefficient. The 
Silhouette coefficient calculated between the Euclidean distance matrix of the 30 independent 
components and the mouse labels was close to zero (-0.074), indicating that the (cell type) clustering 
was random with respect to the mouse replicates and therefore no batch effect in the clustering was 
observed. To make this more clear we added the Silhouette coefficient into the main text: 
 



“We observed very good overlap across mouse samples (Silhouette coefficient: -0.074) and most 
clusters were derived from >70% of the mice of both age groups (Fig. S1d and e).” 
 
Additionally we added the following text into the Methods section: 
 
“Quantitative assessment of overlap. To quantitatively assess the clustering overlap across mouse 
samples the Silhouette coefficient was calculated. The Silhouette coefficient was calculated between 
the Euclidean distance of the 30 independent components and the mouse sample indicator. The 
Silhouette coefficient ranges from -1 to 1 and values close to zero indicate random clustering with 
regards to the specified indicator.” 
 
With respect to the reviewer’s comment regarding confounding cell type identity with aging, we 
would like to highlight that we took particular care in the definition of highly variable genes used for 
clustering and subsequent cell type identity discovery. We have prepared a detailed response in our 
reply to your point (5) (see below).  
 
With respect to the reviewer’s comment regarding confounding differences in cell type frequencies 
or age-related expression changes with the results from our transcriptional noise analysis, we have 
improved our original transcriptional noise analysis. In particular, we quantified transcriptional noise 
in two manners: 1) Euclidean distance of the expression profile between cells and the cell type mean 
and 2) 1 - Spearman correlation coefficient calculated between all pairs of cells within one age 
group. In the current analyses we specifically account for differences in total UMI counts, cell type 
frequencies by down-sampling UMI counts and cells. We have edited the Results section to clarify 
this: 
 
“Therefore, we quantified transcriptional noise following previous work21 and accounted for 
differences in total UMI counts and cell type frequencies (see Methods for details). We observed an 
increase in transcriptional noise with aging in most cell types (Fig. 2a). To further exclude technical 
confounding we additionally averaged the transcriptional noise scores per mouse and obtained 
highly concordant results (Fig. 2b). To further substantiate this finding we quantified transcriptional 
noise in an alternative manner using Spearman correlations between cells. This analysis confirmed 
our finding that transcriptional noise is increased with aging (Fig. 2 c and d) and are in line with 
previous reports in the human pancreas21 or mouse CD4+ T cells20.” 
 



 
Figure 2. Most cell types show increased transcriptional noise with aging. (a) Boxplot illustrates 
transcriptional noise by age and celltype. Blue and red colors indicates young and old cells, 
respectively. Asterix indicates significant changes (Adjusted p-value <0.05). Cell types are ordered by 
decreasing transcriptional noise ratio between old and young cells. (b) Scatterplot shows the log2 
ratio of transcriptional noise between old and young samples as calculated using mouse averages (n 
= 15) and single cells (n = number of cells) on the X and Y axes, respectively. (c) Scatterplot depicts 
the log2 ratio of transcriptional noise between old and young samples as calculated using 1 - 
Spearman correlation and the Euclidean distance between cells on the X and Y axes, respectively. For 
both panels, the size of the dots corresponds to the negative log10 adjusted p-value of the cell type 
resolved differential transcriptional noise test and the red lines corresponds to the robust linear 
model regression fit. (d) As an example, the distribution of 1 - Spearman correlation coefficients 
between all pairs of young and old cells is shown for Type 2 pneumocytes. Larger values represent 
increased transcriptional noise. Blue and red colors indicate young and old samples. 
 
 
 
 



Additionally, we updated the Methods section to contain the new analysis: 
 
“Quantifying transcriptional noise: Transcriptional noise in the gene expression profiles was 
quantified following previous work21. For each cell type with at least 10 old and young cells, we 
quantified transcriptional noise in the following manner. To account for differences in total UMI 
counts all cells were downsampled so that all cells had equal number of total UMI counts. To 
account for differences in cell type frequency, cell numbers were down-sampled so that equal 
numbers of young and old cells were used. Next, genes were divided into 10 equally sized bins based 
on mean expression and the top and bottom bins excluded. Within each bin the 10% of genes with 
the lowest coefficient of variation were selected. Subsampled raw count data was reduced to this set 
of genes and square-root transformed. Next, the euclidean distance between each cell and the 
corresponding cell type mean within each age group was calculated. This euclidean distance was 
used as one measure of transcriptional noise for each cell. Additionally, we average the euclidean 
distances for each mouse and calculated the transcriptional noise ratio between young and old mice. 
Alternatively, we calculated the Spearman correlation coefficients on the down-sampled expression 
matrices across all genes between all pairwise cell comparisons within each cell type and age group. 
To be consistent with the sign of the metric we used 1 - Spearman correlation coefficient as the 
second measure of transcriptional noise. To statistically assess the association between 
transcriptional noise and age within each cell type Wilcoxon’s rank sum test was used. P-values were 
subsequently corrected for multiple testing using the Bonferroni-Hochberg method as implemented 
in the R function p.adjust().” 
   
 
 
2) The dataset is further enriched using bulk proteomics obtained from an independent cohort of 
mice. The authors show that the differentially expressed genes during aging are enriched for similar 
biological functions and upstream regulatory pathways when compared at the level of proteomics 
and (in silico reconstructed) bulk RNASeq. While such a conceptual similarity is encouraging and 
interesting, the authors should also provide the concrete overlap between transcriptome and 
proteome changes. The opposing changes of mRNA and protein for Collagen IV should also be 
validated at the RNA level, ideally using a spatially resolved setup such as RNA FISH, to prove that the 
combined proteome-transcriptome analysis indeed provided novel insights into post-transcriptional 
regulation. 
 
For the revised manuscript we performed bulk RNA-seq from 3 young (3 month) and 3 old (22 
months) mouse whole lung samples to better establish the quality of the in silico bulk transcriptome 
from the scRNASeq data and additionally validate individual genes such as Collagen IV mRNA from 
whole tissue RNA-seq. The new data is presented in revised Figure 3 and the new Figure S4. With 
this new data we are now assessing age-dependent changes in 3 independent cohorts of young and 
old mice with three complementary methods (scRNAseq, RNAseq, and mass spectrometry) and 
consistently find Collagen IV mRNA reduction in both transcriptome datasets. Even though a 
potential bias with cell isolation could be expected we were very pleased to observe strong 
agreement between the real and in silico bulk data (see revised Fig. 3b), thus excluding strong biases 
by the single cell isolation procedures. Furthermore, we also observed strong correspondence of the 



age-dependent alterations in all three data sets (in silico bulk, real bulk and protein data - see PCA 
analysis in revised Fig. 3c). 
 
“We observed strong agreement between the real and in silico bulk data, thus excluding strong 
biases by the single cell isolation procedures (Fig. 3b). Furthermore, we also observed strong 
correspondence of the age-dependent alterations in all three datasets (Fig. 3c), indicating that we 
were able to pick up robust age dependent changes with three independent experimental settings. 
Significant correlation was observed between the gene-level fold changes derived from RNA-seq, 
scRNA-seq and protein expression data (Fig. S4d-f).” 
 

 
“Figure 3. Multi-omic data integration uncovers common and distinct features in RNA and protein 
regulation. ... (b) On the left, gene expression profiles from whole lung bulk samples (n = 6) and in 
silico bulk samples (n = 15) were averaged and plotted on X and Y axes, respectively. Red and black 
lines indicate linear model fit and the diagonal. On the right, correlation heatmap shows the Pearson 
correlation between all bulk and in silico bulk samples. (c) Normalized bulk (RNA-seq) and in silico 
bulk (scRNA-seq) data was merged with proteome data (Mass spectrometry) and quantile 
normalized. The first two principal components show clustering by data modality. The third principal 
component separates young from old samples across all three data modalities. Blue and red colors 
indicate young and old samples, respectively. ...” 
 
 
We have added the concrete, gene-level overlap between transcriptome and proteome changes into 
the Results section and refer to novel panels in Supplemental Figure S4: 
 
 
 



 
“Supplementary Figure S4. Multi-omics lung aging data displays significant correspondence. 
Volcano plots show the significantly regulated genes from (a) in from scRNA-seq, (b) bulk RNA-seq 
and (c) mass spectrometry. (d-f) Differential expression results from multi-omics experiments show 
significant correspondence. X and Y axes illustrate the log2 fold changes calculated from the (d) RNA-
seq and scRNA-seq (in silico bulk) experiments, (e) the mass spectrometry (protein) and scRNA-seq 
(in silico bulk) experiments, and (f) the mass spectrometry (protein) and RNA-seq experiments. Blue 
line indicates the Deming regression fit. Black dotted horizontal and vertical lines indicate 0 values 
(no differential expression) for the in silico bulk and protein data, respectively.” 
 
As suggested by the reviewer we validated the Collagen IV finding using FISH. Using Proximity 
Ligation In Situ Hybridization (PLISH), we found reduced mRNA for Col4a1 in cryopreserved tissue 
sections of old mice compared to young mice. The new data is shown in revised Figure 2. 
 

 



 
3) The authors state that their dataset can be used to predict the cellular source of regulated proteins 
in the proteomics from scRNASeq data, while distinguishing real changes in gene expression from 
alterations in cell type frequencies. I find this a very intriguing application, but the description 
remains vague and the authors mainly refer to an online tool, without performing any validation 
using follow-up experiments (see also comment 5 below). 
 
To better validate our single cell differential expression analysis on a global scale we generated bulk 
RNA-seq from sorted cell populations. See our reply to point 5 below. 
 
In revised Figure 5 we a showing Col14a1 as an example for prediction of the cellular source of a 
regulated protein (see panel below). 
 

 
“Figure 5. scRNA-seq predicts cellular origin of age-dependent protein alterations. ... (c) The dot 
plot shows mRNA expression specificity of Col14a1 and its binding partner Decorin (Dcn) in the 
scRNA-seq data.” 
 
We added the following sentence to the results section: `From the 5138 proteins quantified in the 
tissue proteome (Fig. 5a), we identified 32 Matrisome proteins with significant change upon aging 
(FDR < 10%, Fig. 5b, Table S2). Collagen XIV, a collagen of the FACIT family  of collagens that is 
associated with the surface of Collagen I fibrils and may function by integrating collagen bundles31, 
was downregulated in old mice (Fig. 5b). Collagen XIV is a major ECM binding site for the 
proteoglycan Decorin32, which is known to regulate TGF-beta activity33, 34. Interestingly, our 
scRNAseq data localized Collagen XIV expression to interstitial fibroblasts, which together with 
mesothelial cells also expressed Decorin and were distinct from the lipofibroblasts that showed very 
little expression of this particular collagen (Fig. 5c).Thus, the combination of tissue proteomics with 
single cell transcriptomics enabled us to predict the cellular source of the regulated proteins, which 
can be explored in the online webtool. In the webtool the cell type specificity of any gene query can 
be exported as dot plot in pdf format.´  
 
Below the exported dot plot from the webtool for Collagen IV as an example: 
 



 
 
4) The following section indicates that the solubility of proteins does not globally change during 
aging. The authors identify a few potentially interesting solubility changes with aging (not validated 
indepependently). This section a bit disconnected from the rest of the work, needs better motivation 
and could be better shortened. 
 
Accurate quantification of extracellular matrix changes with aging is a major strength of this work. 
We have now added an additional Figure on ECM (Fig. 5) to better present changes in total protein 
quantification of ECM (moved from supplement to main Figure) and use this Figure to present the 
cell type specific expression of ECM proteins (see above). Thus, the Figure describing solubility 
changes is now shortened. 
 
5) The following sections on cell-type specific effects during aging reveal potentially interesting 
insights into how gene expression is selectively changed in certain cell-types. The results in this 
section show that ~120 genes are differentially expressed in each of the two most abundant cell 
types with age, thus questioning the authors’ previous statement that cell type identity is preserved 
during aging. This needs clarification. 
 
As the reviewer points out, a careful distinction between cell type identity and differential 
expression must be made. We used canonical marker genes to manually assess boundaries of cell 
type identity in the gene expression space. With our clustering method outlined below we found 
that cell type identity was very little confounded by the aging effects (apart from subtle age 
dependent shifts from the cluster centers).  
We would like to emphasize that we used specific processing to minimize the potential mix-up of cell 
type identity with age dependent expression changes. As currently written in the Methods section 
we did not perform the standard highly variable gene selection for independent component analysis 
and subsequent cell type identification. In the standard approach all expression matrices are first 
merged and then treated as a single matrix. In such a way one would calculate the highly variable 
genes across all samples, likely including many genes that change with age between the young and 
old mice. Instead, we calculated the highly variable genes for each mouse sample independently. 



Thus, the highly variable genes determined in such way should represent cell type markers. Next, we 
used only highly variable genes that appeared in >4 mouse samples for independent component 
analysis. This approach reduces the risk of incorrect cell type assignment in a data set containing two 
biological conditions compared to the standard approach. To make this more clear we have added 
the following sentence into the Results section: 
 
“To ensure that cell type discovery is not confounded by aging effects we only used highly variable 
genes between cell types (see Methods for details)” 
 
The subsequent validations focus on type 2 pneumocytes. For one MHC class protein, cell-type 
specific differential expression was confirmed at the protein level using flow cytometry (Fig. 4). 
Furthermore, Nile Red staining, a proxy for cellular cholesterol levels, is shown to be increased in old 
mice as predicted based on increased RNA expression in the cholesterol synthesis pathway (Fig. 6). 
The authors should better explain the nature of the markers used in Figs. 4F, 6D and E, and should 
clarify how specific they are for alveolar type 2 pneumocytes. Fig. 6: Why were cells stratified there 
using the forward scatter? 
 
The lineage markers used for FACS in revised Fig. 7 (CD31, Epcam, CD45) enabled us to validate 
protein levels on epithelial cells only - we did not use a panel which would allow specific conclusions 
about type-2 pneumocytes. We thus changed the results section text in the following way: 
`...which we validated using an independent flow cytometry experiment on epithelial cells marked 
by Epcam expression (Fig. 7k).´ 
 
We also performed immunofluorescent staining of aged and young mice using LipidTox (#H3447), a 
compound that stains for neutral lipids, along with anti-prosurfactant protein c (Millipore,  AB3786). 
This data shows that increased LipidTox staining in aged lungs was specific to alveolar type 2 cells. 
We included the Figure below in revised Figure 8. 



 

 
 
The current validations are restricted to one specific example protein (MHC) or the use of an indirect 
marker (Nile Red). Furthermore, the physiological relevance of these findings is unclear. To show that 
their resource is indeed useful to the community, the authors must provide a global validation of 
their predictions for a larger number of genes. I suggest that they use the existing (or a similar) flow 
cytometry setup (with sorting) followed by global analysis (RNA sequencing and possibly proteomics) 
to confirm that they can reliably predict cell-type-specific gene expression changes (also in relation 
comment 3). 
 
As suggested by the reviewer we performed global validation of cell type specific differential gene 
expression analysis for a large number of genes by flow sorting epithelial cells and macrophages 
from an additional cohort of young and old mice (see Suppl Fig. S5 for gating strategy) and 
performed bulk RNA-seq on these isolated cell types (see revised Figure 7). PCA analysis was 
performed using the scRNA-seq derived signatures of alveolar macrophages and type-2 
pneumocytes. Gene expression profiles of flow sorted epithelial cells and macrophages were 
projected into this PCA space (see methods for details) showing good overlap of cell type identity, 
thus validating the scRNA-seq based cell type annotation (Fig. 7d, e). Next, age-dependent 
alterations in the flow-sorted bulk RNA-seq data were identified.  Significant agreement with the 
scRNA-seq derived results was observed (Fig. 7f-j; Fisher’s exact test, P < 2.2e-16), thus validating the 
power of scRNA-seq to derive age-dependent changes in gene expression. 
 
 



 
 
Figure 7. scRNA-seq enables cell type resolved differential expression analysis. (d) Scatterplot 
illustrates PCA of in silico bulk samples of Alveolar macrophages and Type-2 pneumocytes and the 
projected flow sorted bulk samples. Color and shape indicate cell type identity and data modality. 
PCA loadings show that well known marker genes define the first principal component 
corresponding to cell type identity (e). Fold changes derived from the flow sorted bulk samples and 
the cell type resolved differential expression analysis are depicted on the X and Y axes respectively 
for Alveolar macrophages (f) and Type-2 pneumocytes (g). The likelihood of corresponding fold 
change direction was highly enriched between the scRNA-seq and flow sorted bulk data for both cell 
types (h). X axis shows the odds ratio including 95% confidence interval. Black vertical line illustrates 
an odd ratio of one representing equal likelihood. 
 
 
 
 
 
 
 
 
 
 



Reviewer #3 (Remarks to the Author): 
 
The manuscript presented by Angelidis et al combines single cell transcriptomics and 'deep' 
proteomics approaches associated with a panel of bioinformatics and biostatistical tools in an 
attempt to create a predictive reference map of cellular source of regulated proteins associated with 
the aging of the lung in a mouse model. It is an exhaustive investigation supported by an exemplary, 
reproducible and statistically credible experimental design, which results were validated by 
orthogonal technologies. The respective raw data are available online, as well as the whole lung 
aging atlas. It is therefore an important contribution not only to the understanding of the lung 
proteome itself but mainly to the events associated with the aging process in an animal model. 
In summary, I strongly recommend the publication of this Agelidis et al ‘s manuscript in the Nat 
Comm. 
 
We would like to thank the reviewer for taking the time to evaluate our work. We are grateful for 
the very positive feedback and have edited according to your suggestions whenever possible. The 
parentheses, which the reviewer refers to as ‘typing errors’, were intended with the aim to more 
clearly distinguish R functions from the written text. We have used this formatting before and 
therefore kept it.  
 
Minors 
Abbreviations should be written completely as much as possible when first mentioned in the text. 
• Introduction session: 
ECM (pag1) . If written in full in the Introduction session then it must be abbreviated in the ‘results 
session’(pag4). 
 
• Results session: 
Dropseq (pag2) 
tSNE map (pag2) 
scRNAseq (pag 6) 
Uniprot (pag 8) 
GO (pag 8) 
KEGG (pag 8) 
• Discussion session 
CITE-seg (pag 10 
 
• Methods session 
PDMS (pag 17) 
UMI (pag 17) 
 
There are some 'typing errors' such as () in the Methods session that need to be fixed, for example: 
pg 18: Seurat’s NomalizedData(); scaleData(), et, etc…. 
 
Figure 6C: Please increase the letter size of the cholesterol biosynthesis pathway to make it readable. 
 
  



 
Reviewer #4 (Remarks to the Author): 
 
Angelidis and colleagues present an atlas of lung cells from aging mice. Moreover, they provide a link 
of single cell data to bulk proteomics data with excellent correlation between RNA and protein data 
strongly supporting the enormous value of single cell RNA-seq data. Furthermore, as an atlas 
resource the Theis lab provides a web interface for these data and also link the data to other atlas 
efforts such as the mouse cell atlas. As a resource paper, it is expected to stay mainly descriptive, 
albeit some attempts have been made to validate some of the work at least phenotypically. With the 
enormous expertise of the group of authors and laboratories, it is not surprising that the manuscript 
is very well presented. Nevertheless, since all atlas efforts are critically shaping the landscape of how 
cells are described during the next decades, several points are to be addressed first. 
 
We would like to thank the reviewer for taking the time to evaluate our work. We are grateful for 
the very constructive criticism and addressed your concerns as outlined below. 
 
1. Albeit ~15,000 cells are a significant number of cells, it is still on the low site for a full organ in the 
mouse. Particularly, since this is the number of cells for both young and old animals. Moreover, the 
two major cell types, alveolar macrophages and type 2 pneumocytes make up a substantial portion 
of the overall number of cells, which leads to very few events for rare cells in the dataset. 
Furthermore, the authors correctly cite a paper from 2008 stating already 40 cell types, yet the 
authors only discover 30 cell types. Three things need to be added to the manuscript. One, a 
comparison of the 30 cell types with the 40 previous cell types and a reason why the other once 
might not have been detected in this new study. In other words, why are we falling behind current 
knowledge about existing cell types. Second, additional cells should be added which specifically might 
add to getting closer to the previously described 40 cell types. Third, a general remark in the 
discussion section, how such atlases are going to be build up further in the future by e.g. adding 
additional cells later to the dataset. The reader needs to understand the dynamics of such atlases, 
the current limitations (cell number, sequencing depth, any technical biases) and how this will be 
solved in the future. 
 
Definitions of cell type identities are often very vague. The cited 40 cell types are derived from 
literature meta-analysis of mouse and human studies and include not well defined definitions of cell 
types. We believe that unbiased single cell analysis will eventually come up with a more correct 
number and rather represents ground truth than literature meta-analysis. Furthermore, the 
intention in this study was not to establish a comprehensive atlas of all possible cellular states in 
mouse lungs, but we intended to perform an analysis of aging effects at a depth of current state of 
the art. Therefore, we cannot conclude that we `fall behind´ existing knowledge with this study. We 
want to emphasize that 1) in the current data we were able to identify even very rare (< 0.1%) cell 
types (ie megakaryocytes) and 2) comparable scRNAseq data sets such as the MCA also ‘only’ 
identified 32 cell types in adult mouse lung. Even though it is possible (if not likely) that we might 
discover additional very rare cell types with higher cell numbers, we conclude that the current depth 
of this study on lung aging provides an overview to cell type identity which is comparable to the 
current state of the art single cell resources `Mouse Cell Atlas´ and `Tabula Muris´. 
 



We changed the discussion of the Atlas aspects in the discussion section to the following sentences: 
`In this work, we present the first single cell survey of mouse lung aging and computationally 
integrate single cell transcriptomics data with bulk proteomics and transcriptomics of whole lung to 
build a first draft of an atlas of the aging lung. Atlasing efforts are generally organized in stages so 
that more detailed maps of cellular phenotypes will be integrated at later stages to initial drafts of 
the atlas. The intention in this study was to perform an analysis of aging effects at a depth of current 
state of the art.´  
 
 
2. Material and Methods Section: The authors describe red blood cell lysis as a step of generating 
single cell suspensions. How did the authors quantify contamination with red blood cells, and 
therefore with blood? How do the authors exclude that the remaining cells do not have any blood-
derived contaminations? What about the immune cell compartment (e.g. T cells, B cells, monocytes). 
Is there a comparison with blood derived immune cells to see differences between the tissue-resident 
immune cells and blood-derived immune cells? These are important technical issues, particularly for 
the lung and require further explanation. Without any statement about quantification of the 
potential contamination of blood-derived cells, the lung atlas might be a mixed lung-blood atlas. The 
reader and user of the atlas needs this information. 
 
The reviewer makes an important point about potential blood-derived contamination. To quantify 
blood-derived contamination we performed thorough comparison with both peripheral blood and 
lung data from the MCA. We observed high matchSC scores when comparing our cell type signatures 
with the MCA lung data. However, when comparing our cell type signatures with the MCA peripheral 
blood data matchSC scores were much lower with the exception of one cluster in our dataset which 
represents red blood cells. Of note, all but one mouse in our dataset had very low frequency of that 
red blood cell cluster (see Suppl Fig. S1d). For the purpose of this analysis the red blood cell cluster 
serves as a control since these cells are only found in blood and exemplify the matchSC score that 
can be expected when true cell type overlap exists even across studies and technologies.  
 
We now describe this analysis in the Results section: 
 
“Moreover, when comparing our cluster identities to the MCA peripheral blood data only weak 
correspondence was observed (Fig. S2b), which was similar in the MCA peripheral blood versus MCA 
lung comparison (Fig. S2c). One notable exception in this comparison is our cluster of red blood cells 
which achieved high correspondence with the MCA peripheral blood cluster annotated  as 
“Erythroblast_Hbb-a2_high”. The red blood cells serve as a control and illustrate matchSC values for 
a correct overlap (Fig. S2d). Taken together these findings indicate that very little blood-derived 
contamination was present.” 
 
Additionally, we have generated a new supplemental figure to illustrate this analysis: 
 



 



 
“Supplementary Figure S2. Comparison with the Mouse Cell Atlas validates lung cell identities. (a-
c) The matchSC score comparison between the clusters in this study, the MCA lung and peripheral 
blood signatures is shown. Red and white colors indicate high and low matchSC scores, respectively. 
The outlier in panel c represents red blood cells (purple rectangle). (d) The box plot shows the 
distribution of maximal matchSC scores for each cluster across the comparisons between these 
three data sets. The outlier in the comparison between cell types in this study and the MCA blood 
data represents red blood cells (underlined in purple).” 
 
3. The age-related changes of the major cell types is a major asset of the manuscript. In alveolar 
macrophages, Marco as an altered cell surface molecule is highlighted. Similar to the alveolar type 2 
pneumocytes (flow cytometry for MHC) should be added for Marco on alveolar macrophages. 
 
We tried to validate Marco by flow cytometry and unfortunately could not get the staining to work 
in our FACS panel so that we could not evaluate Marco protein levels on alveolar macrophages. 
Since the significance of RNA-seq differential gene expression of flow sorted macrophages was not 
good (even though the direction of regulation was the same as in the scRNA-seq data -see figure 
below) we decided to remove the sentence about Marco in the results section. 

 
 
4. Figure 1: It is not entirely clear from the main result text, how the authors named the cells in Fig 1d 
(it is written in the methods section, but could be presented more prominent, in the end this is what a 
cell atlas does). For some cells (e.g. dendritic cells), it would be good to use updated nomenclature or 
at least add this nomenclature. What about subtypes of known cell types? For example, some of the 
immune cells identified are known to exist in subtypes. Explain, why you did not add this level of 
information. Or alternatively, point out that this is available on the website. 
The clusters in Fig. 1 B cannot be linked to the cell nomenclature used in Fig. 1c and d. This is very 
difficult for the reader to follow. What are Fn1+ macrophages in context of the existing literature? 
 
We did not add more information about subtypes as we are limited in numbers and resolution to 
really be sure about these (Aging atlas draft 1.0). As stated in our comment to point (1) the intention 
in this study was not to establish a comprehensive atlas of all possible cellular states in mouse lungs, 
but we intended to perform an analysis of aging effects at a depth of current state of the art for the 
main cell types we were able to annotate. In some instances (e.g. Ccl17+/CD103−/CD11b− dendriƟc 



cells) we annotated cell clusters with marker genes showing highest fold change and/or lack of 
important markers present on related clusters. In panel c of Figure 1 we have ordered these cell 
annotations by similarity (dendrogram from correlation of marker signatures), showing that we 
already pick up quite a few subtypes of DCs, macrophages, etc. Annotations in panel c are labeled 
with both cell type names and the cluster number from panel b so that actually it is possible to link 
the two panels. The Fn1+ macrophages are currently to our knowledge not described as a distinct 
subset in the existing literature. We are following up on these cells and will better characterize the 
developmental origin, location, identity and function of this new cell population in future work. 
 
 
5. Figure 2: The RNA-seq and protein data are strikingly correlated, except for Collagen IV. Is there 
any functional or molecular explanation for the different behavior, while all other systems/pathways 
were correlated? If you do not have any proof, can you hypothesize? 
 
The abundance of mRNA and protein can be decoupled due to posttranscriptional regulation of 
protein synthesis/turnover. Increased accumulation of Collagen around airways and vessels in aged 
mice may be due to decreased proteolytic turnover of type IV collagens. We may speculate that a 
feedback signal exists that reduces transcription of the very same collagens if they accumulate on 
protein level. 
 
6. Figure 2 and S3: Age dependent alterations of relative frequencies: How did the authors ensure 
that there was no technical reason for differences in relative frequencies? Did the authors control 
their relative frequencies with another independent single cell methodology? If not, such information 
should be added. 
 
FACS validation of relative frequency differences would not be effective as the same biases for 
isolation would be present. Bulk tissue RNA-seq however enabled us to additionally validate the 
change in cell proportions in whole lung by deconvolving the bulk expression data using our single 
cell gene expression profiles (see revised Figure 4). Indeed, we found that the ciliated cell marker 
genes signature was significantly upregulated in old lungs (Fig. 4e/f in revised manuscript). For in situ 
validation we counted more than 2000 cells from a large number of airways and several mice. Of 
note, with this deconvolution method we also independently validated the increased frequency of 
several immune cell populations (T cells, monocytes, ..) that was also evident in the scRNA-seq data. 
 



 
 
Figure  4. Whole lung cell type deconvolution reveals increase of Ciliated cells in airways of old 
mice. (a) The MDS plot shows the mouse-wise euclidean distances of cell type proportions for the 
two age groups (b) The box plot shows the significant difference in the multidimensional scaling 
component 1 of cell type proportions between young and old. (c) The Fruchterman-Reingold (FR) 
embedding of the airway epithelial cells in the dataset reveals distinct clusters of airway cell identity. 
(d) The indicated color code shows  the distribution of young and old cells to the three clusters 
presented in panel (c). Note the increased density of old cells in the Ciliated cell cluster. (e) The 
volcano plot shows negative log10 enrichment p-values of cell type marker signatures in the 
differential expression results of the bulk RNA-seq data from young and old mice. (f) The empirical 
density plot shows significant enrichment for Ciliated cell type marker genes (red line) compared to 
all other genes (black line) in the distribution of fold changes derived from the bulk differential 
expression analysis. (g) Club and Ciliated cells were stained using a CC10 and Foxj1 antibody 
respectively. (h) The boxplot depicts the quantification of Ciliated cells from counting a total of 2647 
Club and Ciliated cells in 14 individual airways of two mice of each indicated age group. (i) Ratio of 
Ciliated to Club cells in 14 individual airways of two mice for each indicated age group. P-values are 
derived from an unpaired, two-tailed t-test using Welch’s correction. 
 
7. Figure 3: “Indeed, we were able to confirm the mesothelium specific expression of Fras1 using our 
scRNAseq data”. How is this statement supported by the visualization in Fig. 3j/k?. Fig. 3l is 



mentioned in the text, but does not exist. The information for Decorin is not included in Fig. 3j/k. In 
general, the authors need to make sure that figures, gene names and genes/proteins mentioned in 
text better match. 
 
The only point for these panels was to illustrate the power of scRNAseq to identify cellular sources of 
proteins with the example of Col14a1 expressed by interstitial fibroblasts. Since the additional sub-
clustering of mesenchymal cells did not really strengthen this aspect we removed that analysis and 
instead show now expression specificity of Col14a1 and its binding partner Decorin in the main data 
object (described in Figure 1). The new panel can be found in revised Figure 5. 
 

 
 
“Figure 5. scRNA-seq predicts cellular origin of age-dependent protein alterations. ... (c) The dot 
plot shows mRNA expression specificity of Col14a1 and its binding partner Decorin (Dcn) in the 
scRNA-seq data.” 
 
 
8. How many cells came from old, how many cells from young mice? One can infer from the text and 
the supplement, but it is not explicit. Add in main result text. 
 
We added the number of cells that came from young and old mice into the Results: 
 
“After quality control, a total of 14,813 cells were used for downstream analysis (7672 young, 7141 
old).” 
 
9. First sentence in discussion not necessary, it is a political statement. Increasing health, probably 
everybody would agree. Increasing lifespan is a very much debated statement. Enabling healthy 
aging might be ok again. Re-phrase. 
 
We changed the sentence to: `Enabling healthy aging is one of the prime goals of the modern 
society.´ 
 
10. Page 9: sentence of main text: This is a statement that is too negative and should be avoided. In 
This paper should stay away from the old discussion whether RNA could be used instead of protein. 
As long as proteomics cannot provide single cell data to a similar extend as scRNA-seq is doing it at 
the moment, these statements are not helpful. 
 



We understand the reviewers point. However, the reason to bring that up in the discussion is that 
we can clearly observe decoupling of mRNA and protein (as prominently shown in Figure 2) and thus 
want to emphasize the importance of developing multi-omics single cell methods. We anyway also 
illustrate in our paper that mRNA and protein methods are significantly correlated overall and in 
particular on pathway enrichment level. We therefore only slightly adapted the sentence in the 
discussion to make it less negative. 
 
`The example of basement membrane collagen IV genes that were all downregulated on the mRNA 
level but upregulated on the protein level illustrates that protein posttransciptional regulation is 
important. In particular the abundance of ECM proteins, which often have long half lives and are 
thus likely more often regulated on the posttranscriptional level could frequently show decoupling 
of protein and mRNA.´ 
 
11. Page 10, first paragraph: citation still in doi-format 
 
Thanks for pointing that out. 
 
12. Bioinformatic processing of scRNA-seq reads: Please provide some more statistics concerning the 
quality of the data. How many barcodes were detected, how many made the chosen cutoff, how 
many UMIs and genes per cell were recovered, mean read length, etc. Provide as a supplementary 
figure. 
 
We agree with the reviewer that additional quality statistics would be helpful. Therefore we have 
added a number of panels to Figure S1 illustrating the fraction of cells per mouse and cell type, the 
distribution of total UMI counts and genes per cell for each mouse and the mapping statistics 
including percent mapped, average read length and total reads. 
 



 
“Supplementary Figure S1. High technical reproducibility enables integration of the 15 mouse 
experiments. (a, b) The violin plots show the distribution of the (a) number of genes detected per 
cell and (b) total UMI counts per cell across mice, respectively. (c) scRNA-seq alignment statistics 
show comparable values across mice. (d) Cell type identity and the fraction of cells per mouse are 
shown on the X and Y axes respectively. (e, f) tSNE visualization colored by (e) mouse sample  and (f) 
age group.” 
 
13. Data availability paragraph requires addition of the respective numbers instead of XXX. 
 
All raw data will be uploaded to GEO and PRIDE upon final submission of the manuscript. 



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have done a remarkable and thorough job in addressing all of my comments. I have no 

further concerns.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have fully addressed all my comments. The analysis and validation are clearly improved 

compared to the previous version. I therefore recommend publication.  

 

 

Reviewer #4 (Remarks to the Author):  

 

In this revised manuscript the authors have addressed all major questions raised by this reviewer.  

 

Very minor concerns left:  

1. Adding additional information resulted in an incorrect order of the subpanels in Figure 7  

2. In Line 151 it probably must be Fig.3a instead of Fig.2a)  

3. In Lines 195ff it probably must be Fig. 4 several times instead of Fig. 3 



Reviewer #4 (Remarks to the Author): 
 
In this revised manuscript the authors have addressed all major questions raised by this reviewer.  
 
Very minor concerns left: 
1. Adding additional information resulted in an incorrect order of the subpanels in Figure 7 
2. In Line 151 it probably must be Fig.3a instead of Fig.2a) 
3. In Lines 195ff it probably must be Fig. 4 several times instead of Fig. 3 

All changes have been made according to the reviewers comments. 
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