Supplementary information

(p)ppGpp-mediated stress response induced by defects in outer membrane biogenesis and ATP production promotes survival in *Escherichia coli*

Mohammad Roghanian¹, Szabolcs Semsey¹, Anders Løbner-Olesen¹ & Farshid Jalalvand¹*

¹Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark

*Corresponding author: Farshid Jalalvand, PhD, farshid.jalalvand@bio.ku.dk

Figure S1. Fusion of ssrA degradation-tag to *dcas9*. (A) Schematic plasmid map of pdCas9-ssrA. (B) The amino acid sequence of the ssrA degradation-tag fused to dCas9. (C) Viability of *E. coli* MG1655 containing pdCas9-ssrA and sgRNA against the indicated genes. Overnight cultures were diluted 1000x and 3 μ l spotted on *dcas9-ssrA* non-inducing (CRISPRi off) and inducing (CRISPRi on) solid LB media.

I		IoIA		J
	Phase	RpoS-mCherry	Overlay	Pha
			· · · · ·	t=0
		A de	A.	
			A "	

gmk RpoS-mCherry Overlay ase

t=3

bamA RpoS-mCherry Phase ١ 1 P 1 1 T

L *murC* RpoS-mCherry Phase Overlay t=1 7 7 t=3 8

Μ

plsC RpoS-mCherry

Overlay

1

1

Overlay

1

T

P

0

	rpoB	
Phase	RpoS-mCherry	Overlay
=0	1	1
		S
• • •	-	
=5	ł.	1
1		
		The second se

Figure S2. Time-lapse fluorescence microscopy images during repression of the

surveyed genes. CRISPRi-mediated shut down of expression of the indicated genes in a MG1655-derivate strain harboring the intracellular (p)ppGpp-reporter *rpoS-mCherry*. Phase contrast (left panels), the (p)ppGpp-reporter RpoS-mCherry fluorescence (middle panels) and the merged overlay images (right panels) capturing cells throughout the duration of the experiment. Scale bars = 10 μ m. The repressed genes are indicated in bold text: (A) *valS* (B) *adk* (C) *lptA* (D) *lpxA* (E) *ftsZ* (F) *mreB* (G) *dnaB* (H) *yihA* (I) *lolA* (J) *gmk* (K) *bamA* (L) *murC* (M) *plsC* (N) *secY* (O) *rpoB* (P) *rpoD* (Q) *fusA*, and (R) *infA*.

Figure S3. The nucleoid localizes differently in (p)ppGpp⁰ cells during repression of *valS*, *adk*, *lptA* and *lpxA*. Fluorescence microscopy imaging of DAPI-stained $\Delta relA/spoT$ cells 3h post CRISPRi-mediated transcriptional repression of the indicated genes. Phase contrast (left panels), DAPI fluorescence (middle panels) and their merged overlay (right panels) are shown. Scale bars = 10 µm.

Cellular process	Gene	Function	Locus tag	sgRNA N ₂₀ region	Ref
tRNA-charging (positive control)	valS	Valine-tRNA ligase	b4258	gcggctgttcgatatcttgt	1
Cell division	ftsZ	Septal ring protein	b0095	ctttcagcagtttgtcgttc	2
Cytoskeleton	mreB	Structural cytoskeletal protein	b3251	ttgtccttttacataaatga	3
DNA replication	dnaB	Replicative DNA helicase	b4052	tcagcctgctgtttgttgaa	4
Essential GTPases	yihA	Function not fully established	b3865	gataagctgggtgcgccctg	5
Lipoprotein insertion in outer membrane	lolA	Outer membrane lipoprotein carrier protein	b0891	ccgtagcttgctcaacgaac	6
LPS biosynthesis/transport	lptA	Periplasmic subunit of the Lpt LPS-transport system	b3200	attaattttgatggtgccct	7
LPS biosynthesis/transport	lpxA	UDP-N-acetylglucosamine acyltransferase, lipid A biosynthesis pathway	b0181	accetcaccaatttegacat	8
Nucleotide metabolism	adk	Adenylate kinase	b0474	ctgcctgcggaatggtacgc	9
Nucleotide metabolism	gmk	Guanylate kinase	b3648	ggatttacccgcgccactgg	10
Outer membrane protein assembly	bamA	Essential BAM system component for assembly of proteins in the outer membrane	b0177	gcgcaccggcatactgagga	11
Peptidoglycan synthesis	murC	UDP- <i>N</i> -acetylmuramate— L-alanine ligase, lipid II biosynthesis pathway	b0091	tggcatcacgtacgttttcc	12
Phospholipid biosynthesis	plsC	1-acylglycerol-3-phosphate O-acyltransferase, phospholipid biosynthesis pathway	b3018	ccacatgtttcgggttacgc	13
Secretion system	secY	Sec translocon subunit SecY	b3300	gtacagcggcatcaatacca	14
Transcription	rpoB	RNA polymerase subunit β	b3987	taccgctgtagctctgaatc	15
Transcription	rpoD	Sigma 70, exponential growth sigma factor	b3067	gaagtttcagctgtgactgc	16
Translation	fusA	Translation elongation factor G	b3340	atgttacggtagcgtgcgat	17
Translation	infA	Translation initiation factor IF-1	b0884	attaggcaacgtttcaagaa	18
Lactose metabolism (negative control)	lacI	Transcriptional repressor of the <i>lac</i> -operon	b0345	gctggcctggttcaccacgc	19

Table S1. The selected cellular processes targeted in this study. The involved genes, corresponding functions, locus tags and the gRNA targeting regions are listed.

Strain/plasmid	Genotype	Source			
Strains					
E. coli K-12 MG1655	Wild-type	Laboratory collection			
::rpoS-mCherry	MG1655 rpoS::mcherry-frt-aphA-frt	20			
$\Delta rel A$	$\Delta relA::FRT$	This study			
$\Delta relA/spoT$	$\Delta relA::FRT/spoT::zeoR$	This study			
Plasmids					
pdCas9-ssrA	P _{tet} ::dcas9-ssrA	This study			
pgRNA-lacI	See Table S1 for N_{20} matching sequences	This study			
pgRNA-valS	See Table S1 for N_{20} matching sequence	This study			
pgRNA-adk	See Table S1 for N_{20} matching sequence	This study			
pgRNA-lptA	See Table S1 for N_{20} matching sequence	This study			
pgRNA-lpxA	See Table S1 for N_{20} matching sequence	This study			
pgRNA-ftsZ	See Table S1 for N_{20} matching sequence	This study			
pgRNA-mreB	See Table S1 for N_{20} matching sequence	This study			
pgRNA-dnaB	See Table S1 for N_{20} matching sequence	This study			
pgRNA-yihA	See Table S1 for N_{20} matching sequence	This study			
pgRNA-lolA	See Table S1 for N_{20} matching sequence	This study			
pgRNA-gmk	See Table S1 for N_{20} matching sequence	This study			
pgRNA-bamA	See Table S1 for N_{20} matching sequence	This study			
pgRNA-murC	See Table S1 for N_{20} matching sequence	This study			
pgRNA-plsC	See Table S1 for N_{20} matching sequence	This study			
pgRNA-secY	See Table S1 for N_{20} matching sequence	This study			
pgRNA-rpoB	See Table S1 for N_{20} matching sequence	This study			
pgRNA-rpoD	See Table S1 for N_{20} matching sequence	This study			
pgRNA-fusA	See Table S1 for N_{20} matching sequence	This study			
pgRNA-infA	See Table S1 for N_{20} matching sequence	This study			

Table S2. Strains and plasmids used in this study.

Supplementary References

- 1 Kaplan, S., Atherly, A. G. & Barrett, A. Synthesis of stable RNA in stringent Escherichia coli cells in the absence of charged transfer RNA. *Proceedings of the National Academy of Sciences of the United States of America* **70**, 689-692 (1973).
- 2 Romberg, L. & Levin, P. A. Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. *Annual review of microbiology* 57, 125-154, doi:10.1146/annurev.micro.57.012903.074300 (2003).
- Wachi, M. *et al.* Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. *Journal of bacteriology* **169**, 4935-4940 (1987).

- 4 Kaguni, J. M. *et al.* Initiation of replication of the Escherichia coli chromosomal origin reconstituted with purified enzymes. *Basic Life Sci* **30**, 141-150 (1985).
- 5 Dassain, M., Leroy, A., Colosetti, L., Carole, S. & Bouche, J. P. A new essential gene of the 'minimal genome' affecting cell division. *Biochimie* **81**, 889-895 (1999).
- 6 Tajima, T., Yokota, N., Matsuyama, S. & Tokuda, H. Genetic analyses of the in vivo function of LolA, a periplasmic chaperone involved in the outer membrane localization of Escherichia coli lipoproteins. *FEBS Lett* **439**, 51-54 (1998).
- May, J. M., Sherman, D. J., Simpson, B. W., Ruiz, N. & Kahne, D. Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane. *Philos Trans R Soc Lond B Biol Sci* 370, doi:10.1098/rstb.2015.0027 (2015).
- 8 Galloway, S. M. & Raetz, C. R. A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. *The Journal of biological chemistry* **265**, 6394-6402 (1990).
- Glaser, M., Nulty, W. & Vagelos, P. R. Role of adenylate kinase in the regulation of macromolecular biosynthesis in a putative mutant of Escherichia coli defective in membrane phospholipid biosynthesis. *Journal of bacteriology* 123, 128-136 (1975).
- Hible, G. *et al.* Calorimetric and crystallographic analysis of the oligometric structure of Escherichia coli
 GMP kinase. *Journal of molecular biology* 352, 1044-1059, doi:10.1016/j.jmb.2005.07.042 (2005).
- Wu, S. *et al.* Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae.
 Pathogens and disease, doi:10.1111/2049-632X.12195 (2014).
- 12 El Zoeiby, A., Sanschagrin, F. & Levesque, R. C. Structure and function of the Mur enzymes: development of novel inhibitors. *Molecular microbiology* **47**, 1-12 (2003).
- Parsons, J. B. & Rock, C. O. Bacterial lipids: metabolism and membrane homeostasis. *Prog Lipid Res* 52, 249-276, doi:10.1016/j.plipres.2013.02.002 (2013).
- Park, E. *et al.* Structure of the SecY channel during initiation of protein translocation. *Nature* 506, 102-106, doi:10.1038/nature12720 (2014).
- 15 Wang, Y. *et al.* Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. *Journal of molecular biology* **270**, 648-662, doi:10.1006/jmbi.1997.1139 (1997).
- 16 Jishage, M., Iwata, A., Ueda, S. & Ishihama, A. Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. *Journal of bacteriology* **178**, 5447-5451 (1996).
- 17 Wintermeyer, W., Savelsbergh, A., Semenkov, Y. P., Katunin, V. I. & Rodnina, M. V. Mechanism of elongation factor G function in tRNA translocation on the ribosome. *Cold Spring Harb Symp Quant Biol* 66, 449-458 (2001).
- 18 Cummings, H. S. & Hershey, J. W. Translation initiation factor IF1 is essential for cell viability in Escherichia coli. *Journal of bacteriology* 176, 198-205 (1994).
- 19 Lewis, M. The lac repressor. *C R Biol* **328**, 521-548, doi:10.1016/j.crvi.2005.04.004 (2005).
- 20 Maisonneuve, E., Castro-Camargo, M. & Gerdes, K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. *Cell* **154**, 1140-1150, doi:10.1016/j.cell.2013.07.048 (2013).