
SUPPLEMENTARY MATERIAL

Proof of Lemma 2.5. Without loss of generality, assume hi is the origin. Let K ⊂ Rk be
the smallest circular cone with axis

a =
1

αi
Pconv(ext(P )\hi)(hi)

that contains P . Since K is a cone, it also contains TP (hi) = cone(P ). Thus K◦ ⊂ NP (hi)
and ω(K◦) ≤ ωi. Figure 1 gives an illustrates the described geometry in a simple case.

Figure 1: Example of the cone K from the proof of lemma 2.5. The normal cone is outlined
by the dashed black line and the code K and its polar are shaded.

Further, K◦ is a circular cone with axis −a. By Lemma 2.1, the radius of the spherical
cap K◦ ∩ Sk−1 is at most

r(ωi) = 2(2ω)1/(k−1). (0.1)

Thus the angle of K◦ is at most arccos
(
1− 1

2
r(ωi)

2
)

and the angle of K is at least

π

2
− arccos

(
1− 1

2
r(ωi)

2

)
= arcsin

(
1− 1

2
r(ωi)

2

)
.

To obtain a bound on the simplicial constant αi = αP (hi), we study 2-dimensional slices
of K and P :

K ∩ span (a, n̂) and P ∩ span (a, n̂) for any n̂ ⊥ a.

Given a slice of P along the direction n̂, the simplicial constant is given by

αi =
rn̂

tan(θn̂)

for some radius rn̂ and some angle θn̂ ∈
[
0, π

2

)
. Since K is the smallest circular cone (with

axis a) that contains P , the angle for K is equal to θn̂ for some slice. Further, P ⊂ K
so rn̂ is at most the diameter of the “base” of the pyramid that is the convex hull of the
neighbors of hi. Mathematically, the base is the set

BP (hi) = conv ({u ∈ ext(P ) \ hi | u shares a face with hi}) .

Thus

αi ≤
diam (BP (hi))

tan
(
arcsin

(
1− 1

2
r(ωi)2

)) ≤ diam (BP (hi))
r(ωi)

√
1− 1

4
r(ωi)2

1− 1
2
r(ωi)2

.

1



Proof of Lemma 2.7. The proof is similar to the proof of Lemma 2.5. Assume (w.l.o.g.)
hi is at the origin. Let K ⊂ Rk be the largest circular cone that sits in TP (hi), and let
a ∈ Sk−1 be its axis. Figure 2 gives an illustrates the described geometry in a simple case.

Figure 2: Example of the cone K from the proof of lemma 2.7. The normal cone is outlined
by the dashed black line and the code K and its are shaded.

Let
B = TP (hi) ∩ {x ∈ Rk | aT (x− Pconv(ext(P )\hi)(hi)) = 0}.

Consider the 2-dimensional slices of K and P given by

K ∩ span (a, n̂) and P ∩ span (a, n̂) for any n̂ ⊥ a.

Given a slice of P along the direction n̂, a bound on the simplicial constant is

αi ≥
rn̂

tan(θn̂)

for some radius rn̂ and some angle θn̂ ∈
[
0, π

2

)
. Since K is the largest circular cone that

sits in TP (hi), the angle of K is equal to θn̂ for some slice. Further, rn̂ is well defined and
its value depends only on the geometry of B. We let rmin be the smallest possible value of

rn̂. Thus the angle of K is at least arctan
(
rmin

αi

)
. Since K◦ is a circular cone with axis −a,

the angle of K◦ is at most

π

2
− arctan

(
rmin

αi

)
= arccot

(
rmin

αi

)
.

An elementary trigonometric calculation shows the height of the spherical cap Sk−1 ∩K◦
is at least

cos

(
arccot

(
rmin

αi

))
=

rmin√
α2
i + (rmin)2

By Lemma 2.2, the solid angle of K◦ is at most
√
α2
i + (rmin)2

2rmin

k

,

since K ⊂ TP (hi), NP (hi) ⊂ K◦ and ωi ≤ ω(K◦).
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Proof of Lemma 2.10. Given a closed convex cone K ⊂ Rn, a point x ∈ Rn has a unique

orthogonal decomposition into PK(x) + PK◦(x). To show PKn
2

(
PRn−1

+ ×R (x)
)

is the pro-

jection of x onto Kn
2 ∩Rn

+, it suffices to check

1. PKn
2

(
PRn−1

+ ×R (x)
)
∈ Kn

2 ∩Rn
+

2. x− PKn
2

(
PRn−1

+ ×R (x)
)
∈
(
Kn

2 ∩Rn
+

)◦
= conv

(
−Kn

2 ∩ −Rn
+

)
3. PKn

2

(
PRn−1

+ ×R (x)
)
⊥ x− PKn

2

(
PRn−1

+ ×R (x)
)

for any point x ∈ Rn. To begin, we decompose x into its projection onto Rn−1
+ ×R and(

Rn−1
+ ×R

)◦
:

x = PRn−1

+ ×R(x) + P(
Rn−1

+ ×R
)◦(x).

We further decompose PRn−1

+ ×R(x) into its projection onto Kn
2 and K◦ = −Kn

2 :

PRn−1

+ ×R(x) = PKn
2

(
PRn−1

+ ×R(x)
)

+ P−Kn
2

(
PRn−1

+ ×R(x)
)
.

The projection onto Kn
2 preserves the zero pattern of PRn−1

+ ×R(x). Thus a point x ∈ Rn

admits the decomposition

x = PKn
2

(
PRn−1

+ ×R(x)
)

+ P−Kn
2

(
PRn−1

+ ×R(x)
)

+ P(
Rn−1

+ ×R
)◦(x),

where the three parts are mutually orthogonal. Given this decomposition, it is easy to
check 1, 2, and 3.

1 Hyperspectral image example

Based on the origins of PPI, we demonstrate the use of random projections for finding
important pixels in a hyperspectral image. We used a hyperspectral image of the National
Mall in Washington, DC Landgrebe (2003)1. The image is 1280×307 pixels in size, contains
191 bands and is displayed in Figure 3. We utilize algorithm 1 to find the important pixels
in the image. Intuitively, we should find pixels that represent pure versions of each class of
objects, e.g., trees, roofs, roads, etc., in the image. We then use these important pixels to
broadly classify the remaining pixels in the image as each type of object. The assumption
that predicate such a process is that in the image there appear to be a few key, or dominant,
object classes. Figure 4 shows the relative frequency with which each selected extreme
point is chosen. Here, we observe that there are roughly 10-15 key pixels identified by the
algorithm.

1Available on the web at engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Figure 3: Hyperspectral image of the National Mall in Washington, DC. The RGB values
of the image are set by choosing, for each color, a single color band.
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Figure 4: Relative frequency that each extreme point is selected via algorithm 1 using 5,000
random projections.

We now partially decompose the image using the most interpretable of the 11 most
frequently selected extreme points. There are some pixels in the image that may be consid-
ered outliers, and because they are distinct from the remaining pixels they will be selected
a lot. In fact, these points correspond to very pointy extreme points. These points are,
in fact, important as they represent objects unlike the remainder of the image. In this
situation, one example is that there appears to be a bright red light on the roof of the
National Gallery of Art; such an object does not appear elsewhere in the image. However,
for presentation purposes we stick to the important pixels that represent large sections of
the image.

To broadly classify the image, we selected four pixels that appear to represent key
features. We classify the remaining pixels by simply asking which representative pixel, of
the 11 most selected, their spectrum looks most similar to in the `2 sense. Figure 5 shows
the pixels classified into 4 categories. In each image the pixels that are classified as such are
left colored and the remaining pixels are colored black. In fact, the images corresponding
to the other seven pixels represent very little of the image.
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(a) (b) (c) (d)

Figure 5: Classification of pixels into (a) roads and water, (b) concrete, (c) trees and grass,
and (d) roofs. The contrast has been exaggerated for presentation.

2 Hereditary breast cancer dataset

We adopt the approach of Brunet et al. (2004) to discover “metagenes” from gene expression
data with NMF. Given a dataset consisting of the expression levels of d genes in n samples,
we seek to represent the expression pattern of the samples in terms of conical combinations
of a small number of metagenes. The data is usually represented by an expression matrix
X ∈ Rd×n. In most studies, d� n. Thus expression matrices are usually “tall and skinny.”
Mathematically, we seek an approximate factorization of the expression matrix X = UV T

in terms of non-negative factors U ∈ Rd×k and V ∈ Rn×k: X ∼ UV T . The columns of U
are metagenes, and the rows of V are the coefficients of the conical combinations.

The hereditary breast cancer dataset collected by Hedenfalk et al. (2001) consists of the
expression levels of 3226 genes on 22 samples from breast cancer patients. The patients
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Figure 6: Scree plot (left) of how often each extreme point is found and plot of the relative
residual

∥∥X − UV T
∥∥
F
/ ‖X‖F (right) versus how many extreme points are selected. There

is a noticeable “elbow” at 6 on both plots.

consist of three groups: 7 patients with a BRCA1 mutation, 8 samples with a BRCA2 muta-
tion, and 7 additional patients with sporadic (either estrogen-receptor-negative, aggressive
cancers or estrogen-receptor-positive, less aggressive) cancers. The dataset is available
at http://www.expression.washington.edu/publications/kayee/bma/. We exponen-
tiate the data to make the log-expression levels non-negative.

We normalize the expression profiles (columns of X) and look for extreme points with
the proto-algorithm. Figure 6 shows a scree plot of how often each extreme point is found
by the proto-algorithm. Figure 6 also shows a plot of the relative residual versus how many
extreme points are selected. The extreme points were selected by keeping the points found
most often. On both plots, we notice an “elbow” at 6. This suggests the expression matrix
is nearly-separable and has non-negative rank 6. Biologically, this means the expression
pattern is mostly explained by the expression pattern of 6 metagenes.

We also selected metagenes by sparse regression (2.7). To compute the regularization
path of (2.7), we implemented a solver on top of TFOCS by Becker et al. (2011). Figure
7 shows a coefficient plot and a spy plot of the regularization path. Although the sparse
regression approach accounts for correlation among metagenes, the effect is negligible for
the beginning (large regularization parameter) of the regularization path. Figure 8 shows
the first 4 metagenes selected by the group lasso approach and by the greedy approach are
the same and the sixth metagene selected by the greedy approach is the seventh to enter
the regularization path.

References
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Figure 7: A spy plot (top) and a profile (bottom) of the group lasso path (‖vi‖2 , i =
1, . . . , 22 versus the regularization parameter λ). The rows (of pixels) in the spy plot and
the lines in the profile correspond to groups. In the spy plot, lighter pixels correspond to
small coefficients, while darker pixels correspond to large coefficients.
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Figure 8: The first five metagenes selected by both the greedy and the group lasso ap-
proachs. The first two metagenes show high expression levels of an inflammatory chemokine
CCL2 (also called MCP-1). Soria and Ben-Baruch (2008) showed levated CCL2 expression
is associated with advanced disease course and with progression in breast cancers. This is
consistent with the fact that 12 (of 22) samples in the study were (histologically) graded
and all showed moderate to poor-differentiation (grades 6 to 9 on a scale of 1 to 9), an
indication of advanced disease progression. The second metagene also shows high expres-
sion levels of ST6GalNAc2. Recently, Murugaesu et al. (2014) showed the enzyme encoded
by ST6GalNAc2 is a metastasis suppressor in breast cancers. Unfortunately, the study
only included patients with primary cancers, so the data cannot support the association
between high expression of ST6GalNAc2 and lower incidence of metastasis.
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