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Abstract 21 

Background 22 

Metagenomic studies carried out in the past decade have led to an enhanced understanding of the 23 

gut microbiome in human health, however, the Indian gut microbiome is not well-explored yet. 24 

We comprehensively analysed the gut microbiota of 110 healthy individuals from two distinct 25 

locations (North-Central and Southern India) using multi-omics approaches, including 16S rRNA 26 

marker gene and shotgun metagenomics, and faecal and serum metabolomics.  27 

Results 28 

The gene catalogue established in this study highlighted the uniqueness of the Indian gut 29 

microbiome in comparison to other populations. The North-Central population, which was 30 

primarily consuming a plant-based diet, was found to be associated with Prevotella, and thus 31 

showed an enrichment of BCAA and lipopolysaccharide biosynthesis pathways. In contrast, the 32 

South-Indian population, which was consuming an omnivorous diet, showed associations with 33 

Bacteroides, Ruminococcus and Faecalibacterium, and had an enrichment of SCFA biosynthesis 34 

pathway and BCAA transporters. This corroborated with the metabolomic results, where the 35 

BCAA levels were observed to be higher in the serum metabolome of the North-Central 36 

population, apparently regulated by Prevotella. In contrast, BCAAs were found higher in the faecal 37 

metabolome of South-Indian population, which was correlated with the enrichment of BCAA 38 

transporters. 39 

Conclusions  40 

The study demonstrates the influence of location and diet on the gut microbiome and its functional 41 

consequences on human health, and supplements the current knowledge on the poorly 42 
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characterized Indian gut microbiome. The integrated approach used provides novel insights on the 43 

gut-microbe-metabolic axis, which will be useful for future epidemiological and translational 44 

researches. 45 

Keywords: Indian Gut Microbiome, Metagenomics, Metabolomics, Enterotypes, Integrated Gene 46 

Catalog, Metagenome-Wide Association Study, Core gut microbiota, Short Chain Fatty Acids, 47 

Branched Chain Amino Acids, Lipopolyschharides. 48 
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Background 62 

Determining the constitution of a healthy gut microbiota and understanding its variability across 63 

populations is essential for assessing the impact of microbial dysbiosis on human health. Several 64 

large-scale, world-wide microbiome projects have revealed variability in the gut microbial 65 

composition of healthy individuals due to factors such as mode of delivery, age, geographical 66 

location, diet and lifestyle, and have helped in the better understanding of gut microbiome in 67 

human health and disease [1-5]. Most gut microbiome studies have determined microbial 68 

taxonomy and functional diversity using marker gene-based and/or WGS approaches to understand 69 

the functional role of the gut microbiome. However, novel insights on the complex interplay 70 

between diet, gut microbes and human health in the context of key microbial metabolites, such as 71 

short-chain fatty acids (SCFAs) and Branch Chain Amino Acids (BCAAs), derived from the 72 

microbial fermentation of dietary fibres are beginning to emerge from recent gut metabolomics 73 

studies [6, 7]. Moreover, the direct impact of the microbial metabolome on human health is also 74 

becoming apparent from the recent studies focusing on the ‘gut microbiome- host metabolism axis’ 75 

[8]. Therefore, an integrative approach using both metagenome and metabolome- based 76 

characterizations of the gut microbiome appears pragmatic for gaining deeper functional and 77 

mechanistic insights into the role of gut microbes on human health. 78 

The significant large-scale studies carried out so far represent the gut microbiome of urban 79 

populations majorly from Europe, US and other allegedly named WEIRD countries (i.e., the 80 

Western, Educated, Industrialized, Rich, and Democratic countries) [9]. Only recently, some 81 

initiatives have been taken for the characterization of the human microbiome from diverse ethnic 82 

populations, which have shown significant variations from the major world populations [9-14]. 83 

India is the seventh largest country in the world and harbours the second largest population with 84 
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enormous diversity in populations, lifestyles and dietary habits across multiple geographical 85 

locations. India is also a home to the majority of the world’s vegetarian population, but is equally 86 

dominated by people consuming both vegetarian and animal-based diets. Moreover, the Indian 87 

population has the highest prevalence of diabetes worldwide [15] and according to the World 88 

Health Organization estimates (WHO, 2011), 53% of deaths in India in the year 2008 were 89 

attributed to non-communicable conditions such as diabetes and cardiovascular diseases, which 90 

are predicted to reach ~75% by 2030 [16]. The gut microbiome has been implicated in many such 91 

diseases in India and in other populations [14, 17, 18]. Describing population-specific variations 92 

in the microbial profile of healthy individuals is critical for identifying population-specific as well 93 

as universal microbiome-based biomarkers for specific diseases [19]. A few studies have 94 

investigated the gut microbiome of the Indian population, but all were focused on small cohort 95 

sizes and have relied only on 16S rRNA gene-based sequencing analysis [10, 20, 21]. Therefore, 96 

investigating the impact of diet and location on the gut microbiome of the Indian population is 97 

crucial for improving our understanding on the role of the gut microbiome in health and disease in 98 

a global context. 99 

To cover the enormous gut microbiome diversity inherent in the different sub-populations of India, 100 

extensive sampling and analyses are required. Therefore, as the first large-scale study from India, 101 

we selected two prominent locations in North-Central India, i.e. LOC1: Bhopal city, Madhya 102 

Pradesh, and Southern India, i.e. LOC2: Kerala. The dietary habits between the two locations are 103 

very different, as the South-Indian population (LOC2) diet consists of rice, meat and fish, whereas 104 

the North-Central population (LOC1) consumes a carbohydrate-rich diet including plant-derived 105 

products, wheat and trans-fat food (high-fat dairy, sweets and fried snacks). In addition, the 106 

‘Human Development Index Report, UNDP’ (United Nations Development Programme), India 107 
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and SRS-based life-table (Sample Registration Survey, 2010-14) has revealed that the citizens 108 

from Kerala had the highest life-expectancy rates (>74 years) in India, while those in Madhya 109 

Pradesh (capital city ‘Bhopal’) exhibited the lowest (<65 years) [22]. Further, it is known that there 110 

is a higher predisposition of the North-Indian population towards diabetes, cardiovascular diseases 111 

and hypertension, which in contrast is much lower in Southern India, perhaps due to the lifestyle 112 

differences in the two regions [3]. Thus, to gain deeper functional insights into the microbiome 113 

from these two distinct and representative sub-populations of India, a comprehensive multi-omics 114 

approach was carried out using amplicon-based profiling of taxonomic composition (16S rRNA 115 

sequencing), WGS-based profiling of metagenomic content and GC-MS-based profiling of faecal 116 

and serum metabolomic signatures.  117 

Data Description 118 

The two selected locations, Bhopal (LOC1) and Kerala (LOC2) provided a distinct representation 119 

of the Indian population in the context of diets and lifestyle from North-Central and Southern parts 120 

of India, which are almost 2000 km apart (Additional File 1). The 110 (62 females, 58 males) 121 

individuals recruited in this study were not suffering from any disease as reported by personal 122 

medical history and physical examination, and confirmed no exposure to antibiotics for at least 123 

one month prior to sampling, and thus, were considered as ‘healthy’ (Additional File 1). The 124 

sequencing of V3 hypervariable region of 16S rRNA gene and shotgun metagenome sequencing 125 

from the 110 faecal samples resulted into 54.87 million paired-end reads (503,460 ± 175,547 126 

(mean ± sd) reads/sample) and 499.98 million paired-end reads (4,545,280 ± 1,498,663 (mean ± 127 

sd) reads/sample), respectively (Methods, Additional file 2 and Additional file 3). 128 

Analyses 129 
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Construction of an Indian gut microbial gene catalogue and updated integrated gene 130 

catalogue (IGC) 131 

The first step for functional analysis was the construction of an extensive catalogue of gut 132 

microbial genes from the Indian population, which was not yet available. A De Bruijn graph-based 133 

assembly of reads resulted in 1,337,547 contigs of length ≥300 bp with a total contig length of 134 

1.78 Gbp representing 43% of the total reads. To obtain assemblies of low coverage genomic 135 

regions or genomes present in the Indian gut microbiome, the singletons from all the samples were 136 

combined and assembled into additional 0.33 million contigs with length ≥300 bp and a total 137 

assembled length of 232 Mbp. The ORFs predicted from contigs resulted in 1,479,998 non-138 

redundant genes, which represent the gene catalogue of the Indian gut microbiome. In addition, 139 

the integrated gene catalogue (IGC) represents a cohort of 9,879,896 genes identified from 1,267 140 

gut metagenomes from three populations of the world (HMP, MetaHIT and Chinese dataset), and 141 

was also updated with the Indian gene catalogue to construct an updated IGC [1, 23, 24]. A total 142 

of 718,360 non-redundant genes were added from Indian samples, which increased the size of IGC 143 

to 10,598,256 non-redundant genes (6.7% increase), and was referred to as ‘updated IGC’. A total 144 

of 69.2% (± 4.01%) mapping coverage of reads (~6% increase in the mapping of reads) was 145 

observed on the updated IGC as compared to 63% (± 4.61%) mapping on the previous non-updated 146 

IGC (Additional File 4). However, a similar increment in mapping coverage of reads for other 147 

population datasets was not observed, and the mapping coverage of HMP (67.74%), China 148 

(73.38%) and MetaHIT (75.21%) on the updated IGC were comparable to their mapping coverage 149 

to IGC (Fig. 1A). This analysis indicates that the genes contributed by the Indian gut microbiome 150 

are unique and not represented in other gut microbiome datasets.  151 

Identification of taxonomic signatures of Indian gut microbiome 152 
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To determine the taxonomic and functional composition of the Indian gut microbiome and to 153 

identify Indian specific gut-microbial signatures, a cross-population comparison was carried out 154 

using the 16S rRNA and metagenomic data from other populations. In order to derive 155 

metagenomic markers for comparison with similar large-scale studies from other populations, a 156 

non-reference based metagenome-wide association study (MGWAS) was carried out [25]. The 157 

genes from metagenomic samples of four countries (India, China, USA and Denmark) were 158 

clustered (see Methods) into 866 clusters based on their co-occurrence and higher Pearson 159 

correlations across samples (ρ = 0.9) resulting into 224 MGS (metagenomic species) having ≥700 160 

genes in each cluster, and 642 CAGs (co-abundance gene groups) consisting of ≥50 genes in each 161 

cluster. Out of the 866 metagenomic clusters, 197 could be assigned up to species level using the 162 

taxonomic assignment strategy described in Methods. Jaccard distances were calculated from 163 

MGS/CAG abundance profiles and their PCA analysis was carried out using ‘countries’ as factors 164 

for explaining the variance between samples, which showed that the Indian population formed a 165 

distinct cluster separated from the other populations at PC1 (Fig. 1B). The MGS/CAGs annotated 166 

as Prevotella, Mitsuokella, Dialister, Megasphaera, and Lactobacillus were found to be the drivers 167 

of this separation as observed from their factor loading scores, and were associated with and 168 

enriched in the Indian population. Further, the identification of enriched MGS showed that the 169 

species belonging to the genus Clostridium, and phylum Firmicutes and Bacteroides were depleted 170 

in the Indian population and were enriched in the other populations (China, Denmark and USA; 171 

Log Odds Ratio <-7 and P-value <0.001) (Additional File 5: Figure S1). Furthermore, the 172 

distribution of microbial families from different populations was also calculated across the globe 173 

using 16S rRNA markers. A cross-population comparison revealed Indian gut microbiome to have 174 
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a higher abundance of Prevotellaceae and Veillonellaceae, suggesting them as the marker 175 

microbial families associated with the Indian population (Fig. 1C). 176 

Microbial functions enriched in the Indian population 177 

Functional comparison of Indian microbiome with other populations was carried out by mapping 178 

the genes derived from assembled contigs to the EggNOG database. In total 68,693 EggNOG 179 

functions were identified from the Indian gut microbiome, including 1,726 novel functions 180 

obtained from clustering the unmapped genes (see Methods). The core microbial functions which 181 

are essential for microbial survival and are present in almost 80% individuals were used for the 182 

functional comparison. The core microbiome was derived using a similar strategy as employed in 183 

MetaHIT (see Methods) [26]. A core microbial EggNOG profile was generated using a gene cohort 184 

comprising of 1,890 essential genes from six bacterial species namely, Escherichia coli MG1655I 185 

and MG165II, Bacteroides thetaiotaomicron VPI-5482, Pseudomonas PA01, Salmonella enteric 186 

serovar Typhi and Staphylococcus aureus NCTC 8325. The eggNOGs were ranked based on their 187 

mean abundance in descending order, and the range that included 85% of essential genes were 188 

considered for building the core microbial eggNOG set and were used for the analysis. Most of 189 

the essential genes were included in the top-ranking clusters suggesting that the essential genes are 190 

present in higher abundance than the accessory function genes (Additional File 5: Figure S2). 191 

The core microbiome of Indian samples was compared with the core microbiome of USA, China 192 

and Denmark populations. The proportion of essential genes covered by top-ranking nine eggNOG 193 

clusters showed that 85% of the essential genes could be covered in the least number (15,000) of 194 

eggNOGs in the case of Indian population, while in the case of Denmark it was covered by twice 195 

the number (30,000) of eggNOGs (Additional File 5: Figure S3). These observations suggest that 196 

the core functional microbiome of Indian population is less diverse than other populations. This 197 
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also corroborates with the alpha diversity (Shannon) calculations using gene abundances, which 198 

showed that the Indian microbiome is less diverse than the microbiome of other world populations 199 

(Additional File 5: Figure S4). In total, 5,296 eggNOGs were characterized as core functions 200 

commonly present in the core microbiome of all the four population datasets. The co-inertia 201 

(Procrustes) analysis and the Eigen values, and their scores calculated from PCA, using both core 202 

and accessory functions also showed that the Indian gut microbiome was significantly different 203 

from other datasets (Fig. 2A and 2B). This data also shows the uniqueness of Indian microbial 204 

functions in composition and diversity at both core and accessory levels. The Indian microbiome 205 

was found to be enriched (FDR Adj. P<0.05, Log Odds Ratio >1.5) in functions for carbohydrate 206 

and energy metabolism including degradation of complex polysaccharides, which corroborates 207 

well with the carbohydrate-rich diet of the Indian population (Fig. 2C and Additional File 6). 208 

Detection of enterotypes and variations in Indian gut microbiome between locations 209 

To determine the diversity of gut microbial communities present in the Indian population, 210 

detection of enterotypes (groups of samples having similar profiles and lesser variance) was 211 

performed using an unsupervised clustering approach [2]. The Jensen Shannon distance matrices 212 

were used and principal component analysis identified two prominent enterotypes. ET-1 was 213 

primarily driven by Prevotella (P<0.001), and ET-2 was driven by other microbes belonging to 214 

Bacteroides (P<0.02), Ruminococcus (P<0.001) and Faecalibacterium (P< 0.02) (Additional File 215 

5: Figure S5, Additional File 7). The abundances of Prevotella in LOC1 and Bacteroides in LOC2 216 

in India are perhaps due to the dietary habits of the two locations. The LOC1 population was 217 

mainly consuming a carbohydrate-rich diet comprising of vegetable-based foods and grains, 218 

whereas the LOC2 population was consuming a diet consisting of rice, meat and fish. These 219 

patterns seem to align with the patterns reported in other populations [27, 28].  220 
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The robustness of clusters was demonstrated using Calinski Harabasz index (CHI) and prediction 221 

strength, which uses a cross validation approach (Additional File 8). A similar cluster analysis 222 

performed using the functional information derived from the abundance of KEGG Orthologs (KO) 223 

also showed the clustering of samples into two enterotypes, named as C1 and C2 (Additional File 224 

5: Figure S6). In comparison to enterotypes derived from taxonomic information, only 16 out of 225 

110 samples were placed in different clusters using the functional information revealing significant 226 

concordance (FDR Adj. P<0.0001, Spearman’s correlation Coefficient = 0.69). C1 was found 227 

enriched in genes coding for enzymes such as Phytase (Log Odds Ratio (LOR) = 2.96), β- 228 

glucosidase (LOR = 1.75), and α-fucosidase (LOR = 1.32), which are involved in the breakdown 229 

of plant-polysaccharides, whereas the genes coding for enzymes such as lipase (LOR = -5.34), 230 

carnitine-coA dehydratase (LOR = -2.59) and amino peptidase (LOR = -2.66), which are involved 231 

in the metabolism of animal-based diet, were enriched in C2 (FDR Adj. P<0.05) (Additional File 232 

9).  233 

To identify the components explaining the variations in microbial profiles across samples, 234 

unweighted UniFrac distances were calculated using 16S rRNA sequences rarefied at 100,000 235 

sequences per sample. The principal component analysis (PCA) of Unifrac distances and the scores 236 

for each sample correlated with the covariates using polyserial correlation, and distinct locations 237 

(LOC1 and LOC2) and diets (vegetarian and omnivorous) were identified to be the major variables 238 

explaining the variation between samples at PC2 (Fig. 3A, Additional File 10). A comparison of 239 

taxonomic and functional diversity performed between the two locations using Shannon diversity 240 

index and rarefactions of genes from each sample, also showed that the microbiome profiles of 241 

LOC2 populations were more diverse in their composition compared to LOC1 populations (Fig. 242 

3B and Additional File 5: Figure S7). The inter-individual Bray Curtis distances of gene profiles 243 
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between LOC1 and LOC2 populations also showed significant differences (FDR Adj. P<0.05), 244 

where LOC2 population displayed higher inter-individual heterogeneity in their microbial 245 

community structure as compared to LOC1 population (Fig. 3C).  246 

Major differences in the microbiome profiles (using the 16S rRNA dataset) at the phylum level 247 

were apparent from the higher Bacteroidetes to Firmicutes ratios (P<0.002) in LOC1 (1.93) 248 

compared to LOC2 (0.86), which have been previously reported as a result of differences in dietary 249 

habits, i.e. vegetarian or plant-based (carbohydrate-rich) vs. omnivore or animal-based (protein-250 

rich) diets (Additional File 5: Figure S8) [29, 30]. Notably, these variations were not attributable 251 

to BMI (Spearman’s Rank correlation, FDR Adj. P=0.78). At the genus level also Prevotella, 252 

Megasphaera, Mitsuokella, and Lactobacillus were observed to be higher in LOC1, whereas 253 

Ruminococcus, Clostridium, Faecalibacterium and Roseburia were higher in LOC2 (FDR Adj. 254 

P<0.05, Wilcoxon rank sum test); (Fig. 3D & E). Similarly, out of 107 marker MGS/CAG 255 

obtained from MGWAS, those annotated to Prevotella copri were found enriched in LOC1 (Log 256 

Odds Ratio > 2; FDR Adj. P<0.05; 41 MGS/CAG), whereas MGS/CAGs annotated to SCFA 257 

producing species such as Faecalibacterium prausnitzii and Roseburia inulinivorans, were 258 

enriched in LOC2 (FDR Adj. P<0.05; Log Odds Ratio < -2; 66 MGS/CAG) (Additional File 11). 259 

Interestingly, the two species found higher in LOC2 are known SCFA producers and have also 260 

been regarded as commensals with anti-inflammatory properties [31]. In contrast, Prevotella, 261 

which was abundant in the LOC1, is known to be associated with high fibre-rich diet [32]. 262 

Defining the Indian gut metabolome  263 

The analysis of microbial community structure and functions from the two locations having 264 

different lifestyle and diet revealed significant insights. Previous studies have shown a direct role 265 

of diet in the selection of differential gut microbiomes [33]. Thus, to gain deeper insights into the 266 
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metabolic activity of microbiomes from LOC1 and LOC2 as driven by different diets, faecal 267 

metabolites were analysed using a GC-MS-based metabolomics approach. An unsupervised 268 

between class analysis of metabolomic profiles separated the samples into three separate clusters, 269 

and the robustness was confirmed using prediction strength and Silhouette index (Fig. 4A and 270 

4B). Polyserial correlation of covariates showed location to be the major factor explaining the 271 

variation at PC1 (FDR Adj. P<0.01) separating Metabotype-1 from Metabotype-2 and 3. In 272 

contrast, vegetarian and omnivorous diet groups emerged as other factors explaining the variation 273 

at PC2 (FDR Adj. P<0.01), and separating Metabotype-2 from 3 (Additional File 12). The OPLS-274 

DA model derived from normalized peak intensities also showed differential clustering of samples 275 

from the two locations (Fig. 4C, Table 2). Metabotype-1 was associated with LOC1 and showed 276 

higher abundances of saturated fatty acids including palmitic acid, stearic acid, and valeric acid. 277 

Metabotype-3 was associated with LOC2 and showed higher abundances of BCAAs valine, 278 

leucine and isoleucine, and SCFAs propionate and butyrate. Metabotype-2 was enriched in D-279 

glucose, galactose, mannose, lauric acid and cadaverine (a polyamine that denotes meat 280 

consumption) [34]. 281 

Positive correlation of BCAA transporters with BCAA levels in faecal metabolome 282 

We also identified the marker metabolites, which showed significant (Spearman’s correlation, 283 

FDR Adj. P<0.05) associations with LOC1 or LOC2. In total, 17 metabolite clusters were 284 

identified, of which nine were associated with LOC1, and eight were associated with LOC2 285 

(Additional File 13). These marker metabolites showed a positive association with MGS/CAGs. 286 

For instance, Prevotella annotated clusters correlated significantly with valeric acid and 287 

sedoheptulose metabolite markers, which showed a higher relative abundance in LOC1. In 288 

contrast, MGS/CAGs belonging to Faecalibacterium, Clostridium, Ruminococcus, and Alistipes 289 
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were positively associated with BCAAs, cadaverine, propanoate and lauric acid in LOC2 (Fig. 290 

5A). In addition to the positive association of BCAAs with species enriched in LOC2, a correlation 291 

analysis of significantly different (FDR Adj. P<0.05, Wilcoxon rank sum test; Additional File 14) 292 

functional modules revealed that faecal BCAA abundances were positively correlated with BCAA 293 

transporter abundance in LOC2. In contrast, BCAA abundance in the faecal metabolome showed 294 

a negative correlation (P<0.05) with BCAA biosynthesis pathways (Fig. 5B).  295 

The above observations are significant given that BCAAs are important metabolites involved in 296 

glucose homeostasis, by stimulating insulin secretion [35]. Higher BCAA levels in the faecal 297 

matter could be a result of its inward transport in microbial cells by the BCAA transporters, thus 298 

leading to their accumulation in the colon lumen. This is concordant with higher relative 299 

abundance of Bacteroides vulgatus and Eubacterium sireaeum in LOC2 compared to LOC1, which 300 

are known to harbour higher abundance of BCAA transporters [36]. Further support for this 301 

hypothesis emerged from the correlation of circulating BCAA levels (valine and isoleucine) in 302 

serum with the corresponding levels in feces. Interestingly, serum BCAA levels were significantly 303 

higher in LOC1 individuals as compared to LOC2 individuals, which contrasted with the BCAA 304 

levels in the faecal metabolome (Fig. 6A). Thus, it is likely that the accumulation of BCAA in the 305 

feces of individuals of LOC2 was mediated by their gut microbiome. In contrast, due to the lower 306 

BCAA accumulation in feces and a higher BCAA biosynthesis by microbial species in LOC1, 307 

BCAA levels were observed to be in higher concentration in serum of LOC1 population, and hence 308 

higher BCAA absorption. 309 

Prevotella copri regulates BCAA levels through threonine-independent isoleucine 310 

biosynthesis pathway 311 
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To explore the differences in association of functional pathway modules between the two 312 

locations, KOs within each module were correlated with KOs from other modules using 313 

Spearman’s correlation coefficient. The KOs showing significant differences in correlations 314 

between LOC1 and LOC2 were identified. This differential correlation analysis of BCAA 315 

biosynthetic modules with other pathways in LOC1 and LOC2 revealed that BCAA modules were 316 

independently driven in LOC1 and LOC2 (Spearman’s rank correlation, FDR Adj. P<0.01) (Fig. 317 

6B and 6C). To identify the species and the metabolic pathways that contributed most to the 318 

BCAA abundance in faecal and serum metabolome profiles, a correlation analysis with iterations 319 

leaving each species out was performed for each metabolic module (Additional File 5: Figure 320 

S9). The species whose removal leads to a maximum change in the correlation of metabolic 321 

pathway with metabolite was identified, and was considered as an important contributor of that 322 

metabolite [8]. Notably, a single species Prevotella copri was found driving the ‘threonine-323 

independent isoleucine biosynthesis’ functional module. Among the other BCAA biosynthesis 324 

pathways, valine biosynthesis was also driven by species from Prevotella.  325 

The correlation network analysis with different MGS/CAGs also revealed threonine-independent 326 

isoleucine biosynthesis pathway to be highly correlated with Prevotella copri in LOC1, and was 327 

the major pathway utilized by this species for BCAA biosynthesis (Fig. 6D). The first enzyme, D-328 

citramalate synthase, catalysing the threonine-independent isoleucine biosynthesis pathway was 329 

also observed as highly enriched (LOR = 1.7) in LOC1. Further, BCAA biosynthesis was observed 330 

to be higher in LOC1 as compared to LOC2, and BCAA transporters were found higher in LOC2 331 

as compared to LOC1 (Fig. 6E).  332 

Discussion 333 
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Compositional and functional human gut microbiome studies in different populations have been 334 

instrumental in establishing the role of gut microbiome in human health [28, 37-39]. However, 335 

such population-specific signatures and functional insights for the Indian gut microbiome are yet 336 

unknown. Thus, the present work provides the first comprehensive survey of the Indian gut 337 

microbiome represented through a cohort of 110 individuals from two prominent locations. Several 338 

insights into the taxonomic and functional diversity emerged from the 16S rRNA and metagenomic 339 

analysis and were validated through metabolomic profiling, which is a prominent highlight of this 340 

study. Given the high diversity of diet and lifestyle in India, the selection of two distinct locations 341 

(Bhopal – LOC1, and Kerala – LOC2) as the representative sub-populations was an important 342 

consideration. The inclusion of LOC1 provided a representation of the population from North-343 

Central India mainly consuming a carbohydrate and fat rich diet, whereas LOC2 represented a 344 

population from Southern India consuming an omnivorous diet with rice and animal-based 345 

products as the primary components. 346 

This study established the gene catalogue of the Indian gut microbiome, which also exemplified 347 

its uniqueness. The genes encoding several transposons, peptidase, glucosidase, and plant 348 

polysaccharide degradation enzymes were unique to the Indian population and not represented in 349 

other microbiome datasets. This catalogue is likely to act as a reference dataset for gut microbiome 350 

studies in South-Asian populations, which have similar dietary habits and lifestyle, and for global 351 

comparative studies. Apart from the basic housekeeping functions of the microbiome, which were 352 

also found abundant in other datasets, the Indian gut microbiome was enriched in functions for 353 

carbohydrate and energy metabolism including degradation of complex polysaccharides, which 354 

corroborates well with the typical carbohydrate-rich diet of the Indian population [24]. The distant 355 

clustering of Indian samples from other populations revealed the unique composition of the Indian 356 
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gut microbiota (Fig. 1B). Prevotella emerged as the most discriminatory genus associated with the 357 

Indian population, as revealed by both amplicon and MGWAS. Its abundance was also indicated 358 

in the previous 16S rRNA-based microbiome studies of the Indian population, from small to 359 

medium-sized cohorts [21, 40]. Recently, Prevotella has been commonly observed in different 360 

non-Western communities who consume a plant-rich diet, such as in the Papua New Guineans, 361 

native Africans, rural Malawians, BaAka pygmies, etc. and has also been associated with 362 

vegetarianism in the Western populations [41-43]. However, it has not been observed at such high 363 

abundance in the western countries so far. The MGWAS approach in this study showed the 364 

presence of Megasphaera, Lactobacillus and Mitsuokella as the other major driver genera 365 

associated with the Indian microbiome. 366 

Interestingly, the most abundant genus Prevotella in the Indian gut microbiome is a gram-negative 367 

bacterium from the phylum Bacteroidetes that typically releases lipopolysaccharides (LPS), a 368 

constituent of the bacterial outer membrane, from the dead bacterial cells, which can enter the 369 

circulation to elicit an inflammatory response through endotoxemia [44]. Several recent studies 370 

have shown a relationship between the abundance of specific strains of Prevotella with 371 

inflammatory diseases, since it has a higher intrinsic capacity to stimulate Th17-mediated 372 

inflammation, which is generally not expected in the strict commensal bacteria [41, 45]. However, 373 

the high abundance of Prevotella in the healthy gut microbiome of the Indian population does not 374 

corroborate with its potential inflammatory role reported so far. Further, the species P. copri, 375 

which is observed to be the most abundant in this study has been constantly reported to promote 376 

rheumatoid arthritis in different populations, which yet again is inconsistent with its high 377 

abundance in the healthy Indian population [46]. A probable explanation for this emerges from the 378 

understanding that the elicitation of an inflammatory response is mediated by a complex set of 379 
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interactions between host genetic risk factors and environment in which the presence of Prevotella 380 

may only be one of the factors [47]. Further, strain-level variations are known in the inflammatory 381 

responses and not all species of Prevotella could be potentially inflammatory, as also evident from 382 

the known high genetic diversity within and between the species of Prevotella [45]. Taken 383 

together, this description seemingly explains the high abundance of Prevotella in the healthy 384 

microbiota despite of its potential inflammatory properties, and emphasizes the requirement for 385 

larger cohort studies in different populations to gain deeper insights into the potential inflammatory 386 

roles of gut microbiome. 387 

The abundance of Prevotella has been associated with plant-based diets, and the typical 388 

carbohydrate-rich diet of the Indian population could be one of the reasons for the over-389 

representation of this genus in the Indian gut microbiome [48]. Likewise, the predominance of 390 

other microbial species from genus Lactobacillus, Megasphaera and Mitsuokella could be due to 391 

the higher intake of fermented food and dairy products along with the carbohydrate-rich diet in 392 

LOC1 [33, 48]. Similarly, Bacteroides and Clostridium, which were abundant in LOC2, are 393 

associated with diets rich in animal-based products, consistent with the omnivorous diet of LOC2 394 

[37]. Interestingly, ET-1 and ET-2 enterotypes showed associations with the two locations LOC1 395 

and LOC2, and also with the two KO-based clusters (C1 and C2) (Additional File 5: Figure S5 396 

and S6). It is to be noted that C1 was enriched in enzymes involved in the degradation of 397 

carbohydrate and plant polysaccharides, which correlates well with the carbohydrate-rich diet in 398 

LOC1. In contrast, C2 was enriched in enzymes involved in lipid and protein degradation, which 399 

relate to the constituents of an omnivorous diet in LOC2. These observations further support the 400 

correlation between location, diet, and enterotype. Although, the concept of enterotype 401 

classification is sometimes criticised due to statistical weakness in some studies, however, a 402 
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statistically sound classification has the potential to be clinically relevant in various aspects such 403 

as disease diagnosis, early-detection of disease, biomarker development, personalised treatments 404 

and xenobiotic metabolism [19]. It is a representation of the major microbial species in the gut 405 

microbiome, and thus appears useful for microbiome-based population stratification. A robust 406 

statistical analysis with increased sample sizes, direct clinical associations, and detailed molecular 407 

interventions are essential for further strengthening its potential [38]. 408 

The study also established the previously unknown faecal metabolome of the Indian population, 409 

which showed strong clustering into three metabotypes differentiated by location and diet. The 410 

metabotypes also correlated well with the respective dietary habits of the two locations, where 411 

Metabotype-1 showed an association with LOC1 and was enriched in saturated fatty acids such as 412 

palmitic acid and stearic acid, whereas Metabotype-3 showed an association with LOC2, and was 413 

enriched in BCAAs such as isoleucine, valine and leucine, and SCFAs such as propionic acid, and 414 

butyric acid. A medium chain fatty acid (MCFA) ‘lauric acid’ was also found abundant in LOC2 415 

perhaps due to the high dietary consumption of coconut oil in this location [49, 50]. Lauric acid 416 

has known health benefits such as preventing fat deposition in blood vessels and acting as an anti-417 

inflammatory and anti-oxidative agent [51].  418 

The major BCAA ‘isoluecine’ being produced through a less common threonine-independent 419 

pathway for isoleucine biosynthesis, and the higher enrichment of the key enzyme, D-citramalate 420 

synthase of the above pathway confirmed its higher abundance in LOC1 as compared to LOC2. 421 

Further, this pathway was found to be associated with a single species, Prevotella copri as reported 422 

earlier [36]. Taken together, it appears that at LOC1, the higher abundance of BCAA biosynthesis 423 

genes and a lower abundance of BCAA inward transporters in gut microbiome resulted in the 424 

lower BCAA accumulation in the gut microbiome, leading to a higher absorption and a higher 425 
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BCAA levels in serum, which was also supported by lower abundance of BCAA in faeces (Fig. 426 

7). However, a contrasting pattern was observed in the case of LOC2, where the lower abundance 427 

of BCAA biosynthesis genes and the higher abundance of BCAA inward transporters correlated 428 

well with the higher and lower BCAA abundances in feces and serum, respectively. 429 

The higher levels of SCFAs in LOC2 could be a consequence of the consumption of omnivorous 430 

diet, which is associated with a Firmicute-rich gut microbiome [31]. SCFAs now have well-431 

established roles in human health as an energy source, an anti-inflammatory agent, and for 432 

improving intestinal homeostasis by increasing IL-18 production [52]. In contrast, higher serum 433 

BCAA levels have well-known roles in promoting insulin resistance and Type-2 Diabetes (T2D), 434 

and were found higher in the serum in LOC1. Several reports on the role of a high-fat diet in the 435 

modulation of microbiota and alteration in intestinal barrier are emerging, which results in the 436 

increased absorption and circulating levels of LPS and branched-chain amino acid (BCAA) and in 437 

the reduction of SCFAs such as butyrate, acetate, propionate, and secondary bile acids, as also 438 

noted in the case of LOC1 [44]. A high-fat and carbohydrate-rich diet have also been associated 439 

with an increase in abundance of Bacteroidetes (gram-negative bacteria), which reduces the 440 

abundance of Firmicutes leading to a skewed Bacteroidetes: Firmicutes ratio towards the former 441 

phylum [33]. Such a ratio was also apparent in this study in LOC1 dominated by Prevotella from 442 

the phylum Bacteroidetes [53].  443 

Further, a several-fold increased risk of developing T2D has been found with the increase in 444 

circulating BCAA, which were also observed to be higher in LOC1 [36]. In contrast, secondary 445 

bile acids, which can activate glucagon-like peptide-1 (GLP1) secretion and help in protection 446 

against insulin resistance, were high in LOC2  [53]. These results correlate well with the known 447 

higher predisposition of the North-Indian population towards diabetes, cardiovascular diseases and 448 
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hypertension, as compared to Southern India. These observations also provide clues for the 449 

differential metabolic risks in the two populations due to the differences in dietary habits, which 450 

drive their characteristic microbiome. Many of the high-risk components such as trans-fat food 451 

(high-fat dairy, sweets and fried snacks) in North-Indian diets appear to be a reason for the higher 452 

prevalence of cardio-metabolic risk factors such as abdominal adiposity and hypertension, which 453 

are linked to the higher incidences of diabetes and cardiovascular diseases, and could be among 454 

one of the reasons for the shorter life-expectancy as compared to the South-Indian population [54, 455 

55]. These metabolic diseases impose a drastic social, economic and health burden making India 456 

the World’s diabetes capital and needs imperative measures for its control. In this scenario, the 457 

data and results from this study provides significant insights on the impact of diet on gut 458 

microbiome, which appears promising in reducing the metabolic risk factors originating through 459 

the interactions between diet and gut microbes to maintain a healthy gut flora, and necessitates the 460 

need for further studies to provide confirmatory evidences for the diet-gut microbiome mediated 461 

metabolic risks between the two populations. 462 

This multi-omics based gut microbiome study of a healthy Indian population provides novel 463 

insights into the ecology and biogeography of the human gut microbiome from the poorly 464 

characterized Indian population, and their functional potential as determined by metagenomics and 465 

metabolomics. The comparison of the Indian gut microbiome with other available large-scale gut 466 

microbiome studies reveals the unique microbial community structures in the Indian population 467 

and demonstrates variations in the gut microbiome of Indians due to variation in location and 468 

dietary habits. The study also provides further evidence on the ‘diet-gut microbiome-host 469 

metabolism axis’ and confirms the notion that the gut microbiome is not just a passive substrate-470 

degrading system but is actively involved in the host-microbiome crosstalk [56]. Further, the study 471 
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shows that an integrated approach using metabolomics and metagenomics is crucial for the 472 

identification of the repertoire of signals between microbiome and host, and in establishing the 473 

confounding factors for the gut-microbe-metabolic axis. The results from this study are also 474 

prospective to serve as a reference point for future epidemiological studies and translational 475 

applications. 476 

Methods 477 

Study design and subject enrolment 478 

The study cohort consisted of 110 healthy individuals belonging to different age groups from 479 

infants (<1 year) to aged (>50 years), with an average subject age of 29.72 ± 17.4 years (mean ± 480 

sd) from two different locations across India i.e., Bhopal (LOC1, n=53) and Kerala (LOC2, n=57), 481 

which are separated by ~1000 miles. LOC1 was located in North-Central India with the majority 482 

of population being vegetarian, whereas LOC2 was located in Southern India where the population 483 

with dietary habits mostly consisting of rice, seafood and red meat (Diet description section in 484 

Supplementary Table 1). According to the ‘Indian Food Composition Table’, the primary Indian 485 

diet is rich in carbohydrates such as rice, wheat and potato, and in fat and proteins from milk and 486 

dairy products [55]. In addition, several accompaniments to the primary diet also exist including a 487 

variety of grains, vegetables, fruits, and usage of oil, spices and animal products.  488 

The faecal samples for metagenomics and blood samples for serum metabolomics were collected 489 

from healthy participants and their metadata is provided in Supplementary Data under the 490 

Metadata information section. The recruitment of volunteers, sample collection, and other study-491 

related procedures were carried out by following the guidelines and protocols approved by the 492 

Institute Ethics Committee of Indian Institute of Science Education and Research (IISER), Bhopal, 493 
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India. Each faecal sample was frozen within 30 mins of the collection. A written informed consent 494 

was obtained from all subjects prior to any study-related procedures, along with information on 495 

gender, age, and diet for a period of one month prior to the collection of faecal samples. The 496 

recruited individuals did not undergo any medication at least one month prior to the sample 497 

collection. All the recruited individuals had an average BMI of 21.16 (±5.23), and were not 498 

diagnosed with T2D at the time of sample collection, and did not have a second-degree relative 499 

history of T2D. The above samples were then used for 16S rRNA V3 hypervariable region 500 

amplicon sequencing, shotgun metagenomic sequencing, and metabolomic analysis.  501 

Faecal metagenomic DNA extraction 502 

Metagenomic DNA was isolated from all the faecal samples using QIAamp Stool Mini Kit 503 

(Qiagen, CA, USA) according to the manufacturer’s instructions. DNA concentration was 504 

estimated by Qubit HS dsDNA assay kit (Invitrogen, CA, USA), and quality was estimated by 505 

agarose gel electrophoresis. All the DNA samples were stored at −80 °C until sequencing. 506 

16S rRNA amplicon and shotgun metagenome sequencing 507 

The extracted DNA (5ng) was PCR amplified with seven different custom modified 5ʹ-end 508 

adaptor-ligated 341F and 534R primers (See the primer details section in Supplementary Data) 509 

targeting the V3 hypervariable region of 16S rRNA gene. After evaluating the amplified products 510 

on 2% w/v agarose gel, the products were purified using Ampure XP kit (Beckman Coulter, Brea, 511 

CA USA). Amplicon libraries were prepared by following the Illumina 16S metagenomic library 512 

preparation guide. Metagenomic libraries were prepared using Illumina Nextera XT sample 513 

preparation kit (Illumina Inc., USA) by following the manufacturer’s protocol.  Library size of all 514 

the libraries was assessed using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, 515 

USA.), and quantified on a Qubit 2.0 fluorometer using Qubit dsDNA HS kit (Life technologies, 516 
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USA) and by qPCR using KAPA SYBR FAST qPCR Master mix and Illumina standards and 517 

primer premix (KAPA Biosystems, Wilmington, MA, USA) following the Illumina suggested 518 

protocol. Both the amplicon and metagenomic libraries were loaded on Illumina NextSeq 500 519 

platform using NextSeq 500/550 v2 sequencing reagent kit (Illumina Inc., USA), and 150 bp 520 

paired-end sequencing was performed at the Next-Generation Sequencing (NGS) Facility, IISER 521 

Bhopal, India.  522 

Amplicon-based taxonomic analysis 523 

A total of 24 Gbps of data were retrieved on de-multiplexing of paired-end reads with an average 524 

of 210 Mbp per sample. The paired-end reads were assembled using FLASH and were quality 525 

filtered at Q20 (80% bases) Phred quality score, and the primer sequences were trimmed from the 526 

High Quality (HQ) reads [57]. The reads were further clustered into OTUs using closed-reference 527 

OTU picking protocol of QIIME at ≥97% identity against Greengenes Database v 13_5 [58, 59]. 528 

The most abundant read was selected as the representative sequence for each OTU and was 529 

assigned with taxonomy using the Greengenes database. OTU table containing the abundance of 530 

each OTU for each sample was generated and used for further analysis. For phylogenetic analysis, 531 

representative 16S rRNA of phylotypes were aligned against a core set of 16S rRNA gene 532 

sequences in Greengenes database using align_seqs.py with the PyNAST algorithm [60]. The 533 

phylogenetic distances between reads were calculated using aligned dataset and were used for the 534 

calculation of unweighted UniFrac distances. 535 

Pre-processing of the Metagenomic reads 536 

A total of 150 Gbp of metagenomic sequence data (mean = 1.36 Gb) was generated from 110 537 

faecal samples. The metagenomic reads were filtered using NGSQC toolkit with a cutoff ≥Q20 538 

[61]. The high-quality reads were further filtered to remove the host-origin reads (human 539 
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contamination) from bacterial metagenomic reads, which resulted in the removal of an average of 540 

1% reads. The reads from each sample were assembled into contigs at a k-mer size of 63 bp using 541 

SOAPdenovo [62]. The singletons resulting from each sample were pooled together and denovo 542 

assembly was repeated on the combined set of singleton reads from all samples. The ORFs from 543 

each contig (length ≥ 300bp) were predicted using MetaGeneMark [63]. Pair-wise alignment of 544 

genes was performed using BLAT, and the genes which had an identity ≥ 95% and alignment 545 

coverage ≥ 90% were clustered into a single set of non-redundant genes, from which the longest 546 

gene was selected as the representative ORF to construct the non-redundant gene catalog.  547 

Integrated Gene Catalog (IGC), which represents 1,297 human gut metagenomic samples 548 

comprising of HMP, MetaHIT and Chinese datasets, was retrieved [23]. The gene catalog 549 

constructed from Indian samples was combined with the IGC to construct a non-redundant gene 550 

catalog (using identity ≥ 95% and alignment coverage ≥ 90%) and is referred to as ‘updated IGC’ 551 

in the subsequent analysis. 552 

Quantification of gene content 553 

The quantification of gene content was carried out using the strategy performed by Qin et al., [7]  554 

where the high-quality reads were aligned against the updated IGC using SOAP2 in SOAP aligner 555 

with an identity cut off ≥ 90% [64].  Two types of alignments were considered for sequence-based 556 

profiling:  557 

(1) The entire paired-end read mapped to the gene. 558 

(2) One end of paired-end read mapped to a gene and other end remained unmapped. 559 

In both cases, the mapped read was counted as one copy. Further, the read count was normalized 560 

based on length of the gene as:bi =
xi

Li
 561 
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The relative abundance of a gene within the sample was calculated as:ai =
bi

∑ jbj
=

xi
Li

∑ j
xj
Lj

 562 

ai: relative abundance of gene in sample S; xi: The times in which gene i was detected in sample S 563 

(the number of mapped reads); Li: length of gene i; bi: copy number of gene i in sequenced data 564 

from sample S. 565 

Phylogenetic assignment of reads 566 

A total of 4,097 reference microbial genomes were obtained from Human Microbiome Project 567 

(HMP) and National Centre for Biotechnology Information (NCBI) on 5th December 2015. The 568 

databases were independently indexed into two Bowtie indexes using Bowtie-2 [65]. The 569 

metagenomic reads were aligned to the reference microbial genomes using Bowtie-2. The mapped 570 

reads from both indexes were merged by selecting the alignment having the higher identity (≥ 90% 571 

identity). The percent identity was calculated using the formula: %identity = 100*(matches/total 572 

aligned length). The normalized abundance of a microbial genome was calculated by summing the 573 

total number of reads aligned to its reference genome, normalized by the genome length and the 574 

total number of reads in the dataset. For reads showing hits to both indexed databases with equal 575 

identity, each genome was assigned 0.5 read count. The relative abundance of each genome was 576 

calculated by adding the normalized abundance of each genome divided by the total abundance. 577 

The Calinski Harabasz index (CHI) was used to calculate the variance between the clusters 578 

compared to the variance within clusters [2]. 579 

Construction of common core microbial functions 580 

To identify the core microbial functions in the gut microbiome of Indian populations and to 581 

understand their abundance compared to the other populations, the core microbiome was 582 

constructed using a similar strategy as mentioned in MetaHIT [2]. However, to construct a 583 
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comprehensive core functional microbiome, the information of essential functions from six 584 

different microbes including two strains of Escherichia coli, Bacteroides thetaiotaomicron, 585 

Pseudomonas aeruginosa, Salmonella enteric and Staphylococcus aureus, was used instead of 586 

considering a single microorganism. The list of essential genes was collected from DEG database 587 

v [66]. 1,890 genes were identified as essential genes in all the six microorganisms. The core gut 588 

microbiome functions were also calculated using the above strategy for the USA, Denmark and 589 

Chinese population gut microbial samples to remove the variations arising due to differences in 590 

data analysis procedures. Apart from identifying the clusters that represented ≥85% genes within 591 

the range of essential gene functions, the low prevalent eggNOG functions, which were present in 592 

≥ 0.0001% abundance in ≥ 80% of samples in that population, were further filtered out. This added 593 

filtration step helped in removing all the low abundant functions. To represent the core, the 594 

variance of these functions was also calculated between the two Indian locations. The eggNOGs 595 

which showed significant deviations in variations (P-value≤ 0.05; Levene’s test) were further 596 

filtered out from the analysis. 597 

Construction of Metagenomic Species for MGWAS 598 

To identify metagenomic markers using a non-reference based approach on metagenomic samples, 599 

a metagenome-wide association study was performed for 340 samples (age and gender matched) 600 

including India (both locations), USA, China and Denmark populations. The genes present in at 601 

least ≥10% of samples were considered and clustered using the canopy-mgs algorithm as described 602 

[7]. The genes having Pearson’s correlation coefficient (≥0.9) were clustered into CAGs. 603 

Furthermore, the genes for which ≥ 90% abundance was obtained from a single sample were 604 

discarded.  605 
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To determine the taxonomic origin of each MGS/CAG (metagenomic cluster), all the genes were 606 

aligned against reference microbial genomes of 4,097 genomes from HMP and NCBI at nucleotide 607 

level using BLASTN. The alignment hits were filtered using an E-value ≤10-6 and alignment 608 

coverage ≥ 80% of the gene length, and 2,687,688 genes showed alignments against the reference 609 

genomes. The remaining genes were aligned against UNIREF database (UniRef 50) at protein 610 

sequences [67]. The multiple best hits with equal identity and scores were further assigned 611 

taxonomy based on LCA (Lowest Common Ancestor) method. The genes were finally assigned to 612 

taxa based on comprehensive parameters of sequence similarity across phylogenetic ranks as 613 

described earlier [68]. The identity threshold of ≥95% was used for assignment up to species level, 614 

≥85% identity threshold for assignment up to genus level, and ≥65% identity was used for phylum 615 

level assignment using BLASTN. The taxonomic assignments of MGS/CAGs were performed 616 

with the criteria that ≥50% genes in each MGS should map to the same lowest phylogenetic group. 617 

So if a particular species is assigned ≥50% genes out of total the assignment will be carried out at 618 

species level rather than at genus or higher orders. The relative abundance of MGS/CAGs in each 619 

sample was estimated by using relative abundance values of all genes from that MGS/CAG. A 620 

Poisson distribution was fitted to the relative abundance values of the data. The mean estimated 621 

from Poisson distribution was assigned as the relative abundance of that MGS. The profile of 622 

MGS/CAGs were generated and used for further analysis. 623 

Faecal and Serum metabolomic sample preparation and derivatization 624 

Lyophilized faecal samples were used to achieve better metabolite coverage, as described 625 

previously [69].  Metabolites were extracted with 1 mL of ice-cold methanol: water (8:2) from 80 626 

mg of lyophilized samples in a bath ultrasonicator (Bioruptor TM UCD-200, Diagenode, USA) at 627 

4°C for 30 min followed by 2 min of vortexing. The supernatant was extracted by centrifugation 628 
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at 18,000 g for 15 min at 4°C and dried at 50°C under a gentle stream of nitrogen gas. To remove 629 

the residual water molecules from the samples, 100uL of toluene was added to the dry residue and 630 

evaporated completely at 50°C under nitrogen gas. Dry extracted metabolites were first derivatized 631 

with 50 uL of methoxyamine hydrochloride (MOX) in pyridine (20 mg/mL) at 60°C for 2 hours, 632 

and the second derivatization was performed with 100 uL of MSTFA in 1% TMCS at 60°C for 45 633 

min to form trimethylsilyl (TMS) derivatives. Finally, 150 uL of the TMS derivatives was 634 

transferred into a GC glass vial inserts and subjected to GC/TOFMS analysis. Serum samples were 635 

prepared (polar metabolites only) and derivatized as described by Psychogium et al., 2011 [70].  636 

Method development and validation 637 

Matrix dilution approach was used for validating the linearity and range of dilution [69]. Pooled 638 

faecal samples were used to create the reference peaks to validate the peaks coming from 639 

individual samples, which were needed due to the presence of a relatively high abundance of faecal 640 

metabolites in the pooled samples. The supernatant of feces after extraction was serially diluted 2, 641 

5, 10, 50, 100, 200 and 500 times with methanol: water (8:2). At dilution 2, the maximum numbers 642 

of peaks were seen and were processed with the same dilution factor for all the samples. A total of 643 

30 chemical standards mixture and the pooled faecal samples were used to validate the method. 644 

Each stock solution of test standard was carefully prepared in deionized water or with pure ethanol 645 

(50,150 350, 500 um) for the determination of linear range, regression coefficient (R2), limit of 646 

detection (LOD), and repeatability. L-norvaline (1, 2.5, 5, 10, 20 mg/ml in ethanol) was used as a 647 

spiked external standard for the optimized derivatization of the method. 648 

GC-MS analysis 649 

GC-MS was performed on an in-house Agilent 7890A gas chromatograph with 5975C MS system. 650 

An HP-5 (25 m × 320 um × 0.25 um i.d.) fused silica capillary column (Agilent J&W Scientific, 651 
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Folsom, CA), was used with the open split interface. The injector, transfer line and ion source 652 

temperatures were maintained at 220, 220 and 250 °C, respectively. Oven temperature was 653 

programmed at 70°C for 0.2 min, and increased at 10°C/min to 270°C where it was sustained for 654 

5 min, and further increased at 40°C/min to 310°C where it was held for 11 minutes. The MS was 655 

operated in the electron impact ionization mode at 70eV. Mass data were acquired in full scan 656 

mode from m/z 40 to 600 with an acquisition rate of 20 spectra per second. To detect retention 657 

time shifts and enable Kovats retention index (RI) calculation, a standard Alkane series mixture 658 

(C10–C40) was injected periodically during the sample analysis. RIs are relative retention times 659 

normalized to n-alkanes eluted adjacently. For serum samples, we used 2uL aliquot with a split 660 

ratio of 4:1 on the same column as described above. The injector port temperature was held at 661 

250°C, and the helium gas flow rate was set to 1mL/min at an initial oven temperature of 50°C. 662 

The oven temperature was increased at 10°C/min to 310°C for 11min and mass data were acquired 663 

in full scan mode from m/z 40 to 600 with an acquisition rate of 20 spectra per second. 664 

Metabolomic analysis and metabolite profile generation 665 

Raw CDF files were used for peak identification and filtering and the XCMS package in R were 666 

used for pre-processing of the peaks. First, the parameters used for pre-processing of the reads 667 

were optimized by calculating the reliability index using the formula given below: 668 

Reliability index = (number of reliable peaks)2 /number of unreliable peaks. 669 

The reliable peaks were identified for each of the settings such as fwhm, S/N and bw, with a 670 

predefined range of values and regression coefficient was calculated for dilutions of QC samples. 671 

The number of peaks with a high coefficient of determination (R2 ≥ 0.9) were considered reliable, 672 

whereas the peaks with very low R2 (≤ 0.05) were considered unreliable peaks[71]. The finally 673 

optimized parameters were: profmethod = bin, method = matched Filter, fwhm =8 and 5 for 674 
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faecal and serum samples, respectively, and S/N = 12 and 3 for faecal and serum samples, 675 

respectively, bw =5 (for first grouping), smooth = linear, family = gaussian, extra = 1, plot type 676 

= mdevden, missing =8, bw = 3 (for second grouping). Further, in order to compare across 677 

multiple samples, the peak intensities were normalized (root transformed) and scaled using z-678 

transformation. These normalized and scaled peak intensities were used for further statistical 679 

analysis. 680 

A multivariate statistical method, Orthogonal Projections to Latent Structures Discriminant 681 

Analysis (OPLS-DA), was used to identify differences between LOC-1 samples (n=53) and 682 

LOC-2 (n=55) samples. Metabolites driving the differences were identified in metabolic 683 

profiles of LOC-1 and LOC-2 samples using correlations coefficients. The clusters of co-684 

abundant metabolite profiles were identified using R package "WGCNA". Signed weighted 685 

metabolite co-abundance correlation after scaling and centering was calculated across all 686 

samples. The soft threshold of β = 15 was chosen for scale-free topology. The dynamic hybrid 687 

tree cutting algorithm was used to identify the clusters with a deepsplit = 4 and minimum cluster 688 

size = 4. The profile of each faecal metabolite cluster was summarized using eigenvector. The 689 

abundance profile of each cluster of metabolites (MES) was calculated using the same 690 

methodology as used for MGS cluster abundance profiles. 691 

Retention index (RI) calculation  692 

GC-MS data obtained from the alkene series run was used to calculate the RI for each peak in 693 

the samples, and the obtained RI values were further used at the time of library search for the 694 

identification of individual metabolite.   695 

𝐼 = 100 𝑋 [𝑛 + (𝑙𝑜𝑔𝑡𝑥 − log 𝑡𝑛)/ (log 𝑡𝑛 + 1 − log 𝑡𝑛) 696 
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Where, tx = retention time of the peak, tn = retention time of preceding alkane, and tn+1 = 697 

retention time of the following alkane. 698 

Enterotype Analysis  699 

Enterotypes in the dataset were identified from the relative abundance profiles of Genus or 700 

Orthologous groups (OG) in the samples. The Jensen-Shannon distances (which estimates the 701 

probability distributions) between the samples were calculated and the abundance profiles were 702 

clustered using PAM (partitioning around medoids) clustering algorithm as mentioned previously 703 

[72]. The optimal number of clusters was assessed using CHI that has shown good performance in 704 

recovering the optimal number of clusters. Similarly, the prediction strength was also employed 705 

as another metric for cluster validation. Both the CHI and prediction strength showed quite 706 

significantly correlated results. For clustering, CHI and prediction strength gave non-identical 707 

values, silhouette index was calculated to estimate the robustness of clusters. 708 

Between class analysis 709 

Between class analysis was performed to identify the drivers and support the clustering of the 710 

genus/species/OG abundance profiles into enterotypes. The instrumental variables were the 711 

enterotype classification and the top species, which contributed the maximum to the principal 712 

components obtained from between class analysis, and were identified as driver species/genus/OG 713 

based on their factor scores. 714 

Diversity Analysis 715 

The within-sample diversity metrics such as a number of observed species, Shannon index, and 716 

Phylogenetic distance were calculated for each rarefied sample (at fixed or varying depths) and 717 

were compared to different types of samples. The beta diversity (between the samples) was 718 
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calculated using unweighted UniFrac distances between the samples for rarefied OTU tables. The 719 

effect of covariates such as age, enterotypes, diet, geography and gender were compared for 720 

correlation with principal components identified from principal component analysis using UniFrac 721 

distances. The polyserial correlations with P-values were calculated for categorical variables and 722 

the significance of the covariates for explaining the variation was estimated at each principal 723 

component. 724 

Network Analysis 725 

Spearman's rank correlations were computed between each of the species/MGS and the between 726 

MGS and functional modules/metabolites. The correlations with significant P-values were selected 727 

and were used for the network analysis. The undirected links were generated between correlated 728 

nodes (species/KOs/modules) and the strength of the links were given weights based on their 729 

correlation coefficients. The network structure was generated using "igraph" package in R. The 730 

modularity of the network for KOs association was generated with each module representing the 731 

functional modules defined in KEGG database. The negative correlation was not considered in 732 

generating the network modules. Moreover, the positive correlations were filtered (ρ ≥ 0.6) for 733 

most of the network analysis. 734 

Supervised learning 735 

Predictive models were built using supervised machine learning algorithm Random Forest (RF). 736 

The models were optimized using 10,000 trees and default settings of mtry (number for variables 737 

used to build the model). The mean three-fold cross-validation error rates were calculated for each 738 

of the binary tree and the ensemble of trees. The mean decrease in accuracy, which is the increase 739 

in error rates on leaving the variable out, was calculated for each prediction and tree and was used 740 

to estimate the importance score. The variables showing a higher mean decrease in accuracy of 741 
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prediction were considered important for the segregation of the datasets into groups based on the 742 

categorical variable.  743 

Statistical Analysis 744 

All the statistical comparisons between groups were performed using non-parametric Wilcoxon 745 

Rank Sum Test with FDR Adjusted P-Values to control for multiple comparisons. The correlations 746 

between two variables and the correlations within were calculated using Spearman’s Correlation 747 

Coefficient with Adjusted P-Values. The correlations between categorical and numeric variables 748 

were performed using Polyserial correlation/biserial correlations. To identify the enrichment of 749 

enzymes/species associated with a host, Odds Ratio was used as a measure of the enrichment of 750 

an enzyme in a host. The Odds Ratio was calculated as OR (k) = [∑s=LOC1 Ask/ ∑s=LOC1(∑i≠k Asi)]/ 751 

[∑s=LOC2 Ask / ∑s=LOC2 (∑i≠k Asi)], where Ask denotes abundance of enzyme k in sample S. Apart 752 

from that, Reporter features algorithm was used for gene-set analysis of significant pathways 753 

associated with different groups of samples. The algorithm takes the adjusted P-values and folds 754 

changes (log odds ratio) as input for each KO. The gene statistic is calculated based on the 755 

significant association of KO and its direction of change through which the pathway is scored by 756 

calculating the global P-value. All the graphs and plots were generated using the ggplot2 package 757 

in R.  758 

Correlation analysis between functional modules and metabolite clusters  759 

To calculate the association of microbial functional modules with faecal metabolite clusters, the 760 

Spearman's correlation coefficients were calculated to rank KOs for association with metabolite 761 

clusters and Metabotypes. To quantify the shift in Spearman correlation between given KEGG 762 

module and the metabolite cluster compared to the background distribution, the background 763 

adjusted median Spearman's correlation was calculated for a given KEGG module m as: 764 
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SCCbg.adj = median (SCCKOs ϵ KEGG Module m) – median (SCCKOs KEGG Module m)  765 

Where SCCKO is the partial Spearman's correlation coefficient between KO and the metabolite 766 

cluster.  767 

Identification of microbial species driving the association between KEGG Module and metabolite 768 

abundance was done by iterating the correlation between KO belonging to the KEGG module and 769 

the metabolite after excluding the genes annotated to that KO from each species. The change in 770 

median Spearman’s correlation coefficient between the KOs and the metabolite, when genes from 771 

that species are excluded from the analysis, was calculated as described previously [36]. The 772 

species showing the maximum change in the overall correlation of module with metabotype was 773 

plotted. 774 
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Table 1. Metagenomic datasets used for comparative analysis (Meta-analysis) of the 994 

microbiome and MGWAS. 995 

Dataset No. of samples Amount of data No. of genes 

INDIA 110 110Gb 4.565,784 

USA 74 441 Gb 5,813,403 

DENMARK 85 103.87 Gb 5,502,045 

CHINA 71 180.78Gb 7,198,512 

 996 

Table 2. OPLS-DA analysis of Metabolomic datasets with fraction of variation explained by 997 

X and Y axis with their P-values. 998 

R2X R2Y Q2 RMSE Pre Ort pR2 pQ2 

0.174 0.597 0.391 0.322 2 0 0.05 0.05 
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Figure title and legends 1007 

Fig. 1. Comparison of Indian gut microbiome with other major populations using 16S rRNA 1008 

and metagenomic datasets. (A) Percentage of total reads that could be mapped to IGC and 1009 

updated IGC containing Indian gene catalogue. Plotted are interquartile ranges (IQR in boxes), 1010 

median (as dark lines in the boxes), lowest and highest values within 1.5 times the IQR (shown as 1011 

whiskers extending from boxes) and outliers as points beyond these whiskers. The blue and red 1012 

boxes showed percentage of reads mapped to IGC and updated IGC (containing the Indian 1013 

microbial genes). (B) Principal Component Analysis using MGS/CAG proportion derived from 1014 

MWAS. The samples are plotted along with the MGS/CAGs having taxonomic annotations. The 1015 

MGS/CAGs are coloured according to their phylum. Variations across populations is shown using 1016 

PC1 and PC2 along with factor loadings of major MGS/CAGs as biplots. (C) Illustration of 1017 

proportions of bacterial families in different populations and their composition as determined from 1018 

16S rRNA datasets (adult population only). The mean family compositions of abundant families 1019 

(≥1%) are represented in separate pie plots from 10 different country-wise datasets, showing their 1020 

overall microbial composition compared to Indian population. 1021 

Fig. 2. Functional variations and differences between Indian populations and other 1022 

populations determined from core & accessory microbial functions. (A) Procrustes analysis 1023 

was performed on Bray Curtis distances calculated from core EggNOG and accessory EggNOG 1024 

abundance tables in all populations. PCA analysis showing the concordance of core and accessory 1025 

functions in India, Denmark, USA and China populations. The red and black lines are associated 1026 

with core and accessory datasets, respectively. (B) Eigen values and their scores calculated from 1027 

PCA of samples using core EggNOGs and accessory EggNOGs are plotted. The boxplots showing 1028 

for core and accessory factor scores for all samples in different populations are shown. Each box 1029 
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plot represents the median shown as white line between the boxes, the upper and lower ends of the 1030 

boxes representing upper quartile (75th percentile) and lower quartile (25th percentile). The 1031 

whiskers extending on both the ends represent 2.5* IQR (Inter Quartile Range). The different 1032 

coloured dots overlaid for each sample are plotted over the box. (C) The enrichment or depletion 1033 

of functions in India compared to other populations are shown as volcano plots. The log-1034 

transformed FDR adj P-values calculated from Wilcoxon rank sum test are plotted on the x-axis. 1035 

The log odds ratio calculated for India vs Other datasets are plotted on the y-axis. The EggNOGs 1036 

with P-value<0.05 are shown in blue while those were having P-values>0.05 are shown in red. 1037 

The EggNOGs extending on right and left side and with P-value>0.05 are labelled as highly 1038 

enriched in India and other datasets, respectively. 1039 

Fig. 3. Variations in gut microbiome at the two locations. (A) PCA analysis of unweighted 1040 

UniFrac distances of OTUs from Indian population and their differentiation due to locations and 1041 

diet. Here, the samples are grouped based on their locations (LOC1 and LOC2). The top six 1042 

principal components tested for correlations with known factors showed location and diet to 1043 

represent the most significant correlations. (B) The within-sample Shannon diversity calculated 1044 

for LOC1 and LOC2 are plotted as box plots showing the difference in within-samples diversity 1045 

between the two locations (*: P<0.05). (C) Inter sample Bray Curtis distances calculated for 1046 

samples in LOC1 and LOC2 are shown as boxplots (*: P<0.05). (D) Heatmap showing the 1047 

abundance of OTUs as z-transformed scores. The x-axis represents the OTUs and the genera 1048 

assigned to the three prominent OTU clusters. (E) Significantly different genera between the two 1049 

locations are shown as boxplots with boxes representing interquartile range (IQR), dark lines 1050 

between the boxes representing median values and whiskers representing the 1.5 x IQR on each 1051 

side. 1052 
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Fig. 4. Between class analysis to identify metabotypes and their associated metabolites. (A) 1053 

Metabolite clusters (MES) abundance profiles of samples were generated and their clustering was 1054 

performed using PAM (partition around medoids) clustering. The between class and PCA of JSD 1055 

distances and PAM clustering identified 3 metabotypes to be optimum for their segregation using 1056 

(B) Silhouette index. The metabolites valeric acids, and saturated fatty acids such as palmitic acid 1057 

and stearic acid, were found higher in Metabotype1. The carbohydrates such as glucose ad 1058 

galactose, were found higher in Metabotype2. The branched chain amino acids, lauric acid and 1059 

butyric acid were found higher in Metabotype3. (C) OPLS-DA analysis using locations as classes 1060 

shows locations as differentiating factors in separating the samples based on their metabolomic 1061 

profiles.  1062 

Fig. 5. Spearman’s Rank correlations of metabolites with species and metabolic modules. (A) 1063 

Spearman's Rank Correlation coefficients were calculated between significantly different 1064 

metagenomic species and significantly different metabolites between LOC1 and LOC2 1065 

populations. The correlations showing significant FDR Adj. P <0.05 are plotted. The bars on the 1066 

right show the Log Odds Ratio of the abundance of MGS with positive values indicating 1067 

enrichment in LOC1, and the negative values indicating enrichment in LOC2. (B) Spearman's 1068 

Rank correlations between significantly different (FDR Adj. P<0.05, Wilcoxon test) pathway 1069 

modules and significantly different metabolite abundances in all samples. The significant (P<0.05) 1070 

correlations are plotted and the colour intensities depict the correlation coefficients. The 1071 

correlation of metabolites with locations is shown with labels in dark red colours showing 1072 

association with LOC2, and the labels in green colours showing correlation with LOC1.  1073 

Fig. 6. BCAA abundance and their differential correlation with LOC1 and LOC2. (A) Bar 1074 

plot showing z-normalized values of serum BCAA levels in LOC1 and LOC2. Differential 1075 
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correlations between KO modules in (B) LOC1 and (C) LOC2 which showed significant 1076 

differences (FDR Adj. P-value <0.05) in Spearman’s correlations are plotted. The KOs within each 1077 

module are associated with KOs from other modules. The KOs belonging to BCAA metabolism 1078 

and their correlations with other KOs showed significant (FDR Adj. P-value <0.05) difference 1079 

between LOC1 and LOC2. The network shows each KO as node and their associations with other 1080 

KOs as edges. Only significant correlations (Correlation P-value < 0.05) are plotted. The KOs 1081 

which had positive correlations with other KOs are connected by edges and the network analysis 1082 

identifies important associations between modules from KO correlations. (D) Network analysis of 1083 

Spearman's correlations between the branched chain amino acids biosynthesis, degradation and 1084 

transport KEGG modules with MGS abundance in both LOC1 and LOC2 populations. The node 1085 

size is proportional to the degree of interactions and the links between module and MGS show 1086 

interactions or significant correlations (FDR Adj. P < 0.05) with negative (in Red) and positive (in 1087 

Blue) correlation coefficients.  (E) Plot showing z-normalized abundance of KOs associated with 1088 

different modules of BCAA biosynthesis and transporters between LOC1 and LOC2. 1089 

Fig. 7. BCAA transporters playing a key role in maintaining the levels of BCAAs in feces and 1090 

serum. The BCAA levels were observed to be significantly high in the serum samples of LOC1 1091 

and in the faecal samples of LOC2. The higher abundance of BCAA biosynthesis genes and the 1092 

lower abundance of BCAA inward transporters in gut bacteria of LOC1 results in a higher 1093 

availability of BCAAs for absorption in the blood stream through the gut lumen, and thus were 1094 

observed in high abundance in the serum samples. In contrast, the high abundance of BCAA 1095 

inward transporters in the gut bacteria of LOC2, results in a lower availability of BCAAs for 1096 

absorption in the gut lumen, and thus were observed in lower abundance in the serum samples. 1097 

 1098 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Additional Files 1099 

Additional File 1: Supplementary data 1100 

Additional File 2: Summary of sequencing statistics showing the number of reads per sample for 1101 

16S rRNA amplicon dataset 1102 

Additional File 3: Summary of sequencing statistics showing the number of reads per sample for 1103 

Whole Genome Shotgun metagenomic dataset 1104 

Additional File 4: Summary of the reads mapped to Integrated Gene Catalogue and Indian 1105 

catalogue combined with IGC. 1106 

Additional File 5: Figures S1 to S9 1107 

Additional File 6: Enriched core microbial functions in Indian gut microbiome compared to other 1108 

populations 1109 

Additional File 7: Genus level differences between Enterotype-1 and Enterotype-2 with FDR 1110 

Adjusted P-values determined by Wilcoxon rank sum test 1111 

Additional File 8: Tables showing Calinski Harabasz index and prediction strength determined 1112 

for each cluster 1113 

Additional File 9: Enriched KOs identified using Wilcoxon rank sum test and Log Odds Ratios 1114 

between ET-1 and ET-2 1115 

Additional File 10: Table showing Polyserial correlation of covariates with the principal 1116 

components with FDR Adj. P-values 1117 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Additional File 11: Table showing enrichment of MGS/CAGs obtained from MWAS with their 1118 

taxonomic annotations in LOC-1 and LOC-2 1119 

Additional File 12: Polyserial correlation of covariates with principal components explaining 1120 

variations across samples using metabolomic dataset. 1121 

Additional File 13: Table showing Spearman’s rank correlation coefficient values of metabolites 1122 

with Metabotypes 1123 

Additional File 14: Table showing differential abundance of KEGG Modules between LOC-1 1124 

and LOC-2 1125 

Additional File 15: List of reference Genomes from NCBI and HMP databases for reference 1126 

mapping  1127 

 1128 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 1 Click here to download Figure FIGURE_1.tif 

http://www.editorialmanager.com/giga/download.aspx?id=42863&guid=097c8816-6aaa-404c-b700-d00210819324&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42863&guid=097c8816-6aaa-404c-b700-d00210819324&scheme=1


Figure 2 Click here to download Figure FIGURE_2.tif 

http://www.editorialmanager.com/giga/download.aspx?id=42864&guid=44627197-d89c-4891-ac1a-3ed9fb24d99d&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42864&guid=44627197-d89c-4891-ac1a-3ed9fb24d99d&scheme=1


Figure 3 Click here to download Figure FIGURE_3.TIF 

http://www.editorialmanager.com/giga/download.aspx?id=42865&guid=7fb22394-60b5-4dfe-9302-67d7369dd337&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42865&guid=7fb22394-60b5-4dfe-9302-67d7369dd337&scheme=1


Figure 4 Click here to download Figure FIGURE_4.TIF 

http://www.editorialmanager.com/giga/download.aspx?id=42866&guid=c29ba800-1460-48ba-b949-97b4e0cdc925&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42866&guid=c29ba800-1460-48ba-b949-97b4e0cdc925&scheme=1


Figure 5 Click here to download Figure FIGURE_5.tif 

http://www.editorialmanager.com/giga/download.aspx?id=42867&guid=8b46ce36-76e6-4bdc-a95b-67959cbd45f3&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42867&guid=8b46ce36-76e6-4bdc-a95b-67959cbd45f3&scheme=1


Figure 6 Click here to download Figure FIGURE_6.tif 

http://www.editorialmanager.com/giga/download.aspx?id=42868&guid=bd0bf63b-47d4-4466-8177-17db4aaf9118&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42868&guid=bd0bf63b-47d4-4466-8177-17db4aaf9118&scheme=1


Figure 7 Click here to download Figure FIGURE_7.TIF 

http://www.editorialmanager.com/giga/download.aspx?id=42869&guid=a267a00a-2ebe-4721-8d70-2f65a9cb7c30&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42869&guid=a267a00a-2ebe-4721-8d70-2f65a9cb7c30&scheme=1


  

Additional File 1

Click here to access/download
Supplementary Material

Additional_file_1.doc

http://www.editorialmanager.com/giga/download.aspx?id=42848&guid=ef14f8fc-da91-481a-8572-9d2278c067ea&scheme=1


  

Additional File 2

Click here to access/download
Supplementary Material

Additional_file_2.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42849&guid=da13a86a-caed-40de-9b68-f53ad6ea7f9c&scheme=1


  

Additional File 3

Click here to access/download
Supplementary Material

Additional_file_3.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42850&guid=965f5c21-04ae-44fa-b770-88a7242c04e2&scheme=1


  

Additional File 4

Click here to access/download
Supplementary Material

Additional_file4.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42851&guid=b46aac90-17c7-4a4d-9143-2871906b0613&scheme=1


  

Additional File 5

Click here to access/download
Supplementary Material

Additional_file5.docx

http://www.editorialmanager.com/giga/download.aspx?id=42852&guid=9d0c311d-cf7c-4d98-b20d-7f0140df94b5&scheme=1


  

Additional File 6

Click here to access/download
Supplementary Material

Additional_file6.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42853&guid=d68e34ba-274b-4323-8c60-aa0c6096d912&scheme=1


  

Additional File 7

Click here to access/download
Supplementary Material

Additional_file7.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42854&guid=95467be0-eb73-4125-8eda-ba91f578ea2a&scheme=1


  

Additional File 8

Click here to access/download
Supplementary Material

Additional_file8.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42855&guid=4c16de8f-01da-42c4-8d14-0a67c8d97215&scheme=1


  

Additional File 9

Click here to access/download
Supplementary Material

Additional_file9.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42856&guid=9acc5ea5-255f-4b66-a905-7541789278f2&scheme=1


  

Additional File 10

Click here to access/download
Supplementary Material

Additional_file10.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42857&guid=18caa4a4-dc9a-4054-a36f-db924b4f3f13&scheme=1


  

Additional File 11

Click here to access/download
Supplementary Material

Additional_file11.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42858&guid=08930c03-53d1-45e9-a3cb-4607ee1369f7&scheme=1


  

Additional File 12

Click here to access/download
Supplementary Material

Additional_file12.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42859&guid=5b17b151-4205-4aea-9e76-3bddd805e9d6&scheme=1


  

Additional File 13

Click here to access/download
Supplementary Material

Additional_file13.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42860&guid=6902f7d9-a9dd-4450-8d83-4fbbf960728b&scheme=1


  

Additional File 14

Click here to access/download
Supplementary Material

Additional_file14.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42861&guid=adac2123-5ca3-4639-a491-6dea41c5f7bd&scheme=1


  

Additional File 15

Click here to access/download
Supplementary Material

Additional_file15.xlsx

http://www.editorialmanager.com/giga/download.aspx?id=42862&guid=aee4aaf8-04e7-4cb3-a8d0-a76ff4ac3ff1&scheme=1

