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Abstract: Background

Metagenomic studies carried out in the past decade have led to an enhanced
understanding of the gut microbiome in human health, however, the Indian gut
microbiome is still not well explored. We analysed the gut microbiome of 110 healthy
individuals from two distinct locations (North-Central and South) in India using multi-
omics approaches, including 16S rRNA gene amplicon sequencing, whole genome
shotgun metagenomic sequencing, and metabolomic profiling of faecal and serum
samples.

Results

The gene catalogue established in this study emphasizes the uniqueness of the Indian
gut microbiome in comparison to other populations. The gut microbiome of the cohort
from North Central India, which was primarily consuming a plant-based diet, was found
to be associated with Prevotella, and also showed an enrichment of Branched Chain
Amino Acid (BCAA) and lipopolysaccharide (LPS) biosynthesis pathways. In contrast,
the gut microbiome of the cohort from Southern India, which was consuming an
omnivorous diet, showed associations with Bacteroides, Ruminococcus and
Faecalibacterium, and had an enrichment of Short Chain Fatty Acid (SCFA)
biosynthesis pathway and BCAA transporters. This corroborated well with the
metabolomics results, which showed higher concentration of BCAAs in the serum
metabolome of the North-Central cohort and an association with Prevotella. In contrast,
the concentration of BCAAs were found higher in the faecal metabolome of the South
Indian cohort, and showed a positive correlation with higher abundance of BCAA
transporters.

Conclusions

The study revealed the unique composition of Indian gut microbiome, established the
Indian gut microbial gene catalogue, and also compared it with the gut microbiomes
from other populations. The functional associations revealed using metagenomic and
metabolomic approaches provide novel insights on the gut-microbe-metabolic axis,
which will be useful for future epidemiological and translational researches
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Response to Reviewers: Replies to Comments -Reviewer 1

The revised manuscript text has been marked in Pink and Orange colours to indicate
the changes made as per the suggestions of reviewer 1 and 2, respectively.

--Reviewer #1: The study entitled "Multi-omics analysis reveals Indian gut microbiome
variations due to diet and location and its implications on human health" describes an
in-depth sequencing and metabolomic analysis of a unique set of samples from two
distinct locations in India. The authors correlate bacterial species composition and
fecal metabolites in order to draw conclusions about health in the two geographic
locations and the link with diet and disease risk. Specifically, the North Central,
primarily vegetarian population, consumes a high proportion of high-fat and sugary
foods and ranks among the lowest for life-expectancy. This is compared to a Southern
location with an omnivorous population with a much higher life expectancy and lower
risks of T2D and cardiovascular disease.
The correlation and discussion of specific metabolites and risk factors in the North
Indian population versus the Southern population, and the conclusions appears to be
supported by the data. The authors concentrate on a limited number of major
metabolites, BCAAs and SCFAs, and link these to pathways identified in the bacterial
species that are present in the populations. This focused approach is quite effective
and the subsequent detailed discussion of P. Copri is very relevant (previous
association with rheumatoid arthritis). The importance of bacteria-driven metabolism
and its association with vegetarian diets are all interesting points where this study of
the Indian population brings news perspectives.
Indeed the uniqueness of the Indian population, an under-sampled population, is a
major contribution to the available databases. It is for this reason that I consider the
work appropriate for publication with a certain number of minor revisions prior to
publication:

Reply: We thank the reviewer for appreciating our work and providing suggestions
which really helped in improving the manuscript. We have tried our best to satisfactorily
address the comments and have performed all the suggested analysis. Additionally,
we have improved the metagenomic assembly of Indian gut microbiome using IDBA-
UD assembler (Kuang et al.; GigaScience; 2017: Please see Methods section). The
mean N50 values across all samples showed an increase from 946 bp to 2,288 bp,
and the total contig size increased from 1.78 Gbp to 3.086 Gbp (Please see
Supplementary Figure 1) in the revised assembly. The updated non-redundant gene
catalogue for Indian gut microbiome now consists of 1,551,581 genes. The genes from
Indian gene catalogue were added to the Integrated Gene Catalogue (IGC) to
construct the ‘Updated Integrated Gene Catalogue’ (India+IGC), which now consists of
10,823,291 non-redundant genes. We have updated all the corresponding results as
per the revised Updated IGC and the suggestions provided by reviewer.
Reference
Kuang et al.; Connections between the human gut microbiome and gestational
diabetes mellitus; GigaScience; 2017; doi 10.1093/gigascience/gix058
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General comments:
--Subjects were excluded if there was reported use of antibiotics during the previous
month. How was this cutoff determined and was any analysis performed on the cohort
to determine if there was any residual effect of antibiotic use (a known issue in India)?
This could be as simple as a PCoA plot, using time since last antibiotics exposure as a
variable in the 16s diversity analysis.

Reply: We agree with the Reviewer that antibiotic treatment can have residual effects
on the gut microbiome and is an important consideration while collecting the samples.
A few recent studies have specifically examined these effects, such as the study
carried out by Suez et al. demonstrated that a period of 28 days was sufficient for
spontaneous recovery of microbiome composition after antibiotic treatment (Please
refer Figure 2 of the article [1]). A recent study by Ruixin Liu et al. [2] has also used the
same criteria, where the subjects who did not receive any antibiotic treatment for at
least one month prior to sample collection were selected (Please refer to Online
Methods: ‘Faecal sample collection and DNA extraction’ section of the cited
manuscript). Dethlefsen and Relman [3] show that microbiome communities return to
their initial state within one week after the end of antibiotic course. However, we agree
that the return of microbiome composition to initial state do vary depending on the type
of antibiotic used and can be incomplete. We also agree with the Reviewer’s
suggestion that a PCoA using time as variable since last antibiotic exposure and
estimating its effect would help to identify the effect of treatment on microbiome
composition. However, we did not collect this data during the sample collection, and
thus could not perform this analysis. Nevertheless, as per the above mentioned studies
including the recent ones, we were very careful in recruiting only those volunteers who
were not exposed to any antibiotic treatment for over a month.
References
1.Jotham Suez et al; Post-Antibiotic Gut Mucosal Microbiome Reconstitution is
Impaired by Probiotics and Improved by Autologous FMT; Cell; 2018;
doi:10.1016/j.cell.2018.08.047
2.Ruixin Liu et al; Gut microbiome and serum metabolome alterations in obesity and
after weight-loss intervention; Nature Medicine; 2017; doi:10.1038/nm.4358
3.Les Dethlefsen and David Relman; Incomplete recovery and individualised
responses of the human distal gut microbiota to repeated antibiotic perturbation;
PNAS; 2011; doi:10.1073/pnas.1000087107

--Could the authors please explain their use of Greengenes 13_5? This release dates
to 2013. Was SILVA tested?

Reply: We used the Greengenes database because of its wide use in large number of
microbiome studies (Yatsunenko et al; Nature; 2011 & Nakayama et al; Sci Rep; 2016)
and also in some of our early publications (Maji et al; Environ Microbiol; 2018, Pullikan
J et al; Microb Ecol; 2018). We agree with the Reviewer’s suggestion of using ARB
SILVA database for taxonomic classification of 16S rRNA gene sequences since the
Greengenes database has not been updated after May 2013, which justifies the use of
more recently updated SILVA database.
As per Reviewer’s suggestion, we have now repeated the 16S rRNA gene analysis
using ARB SILVA database release 132 (13th December 2017) as reference database
for taxonomic annotation. In order to visualize the differences in the results generated
from analysis using the two databases, we compared the taxonomies and OTUs
generated from the two databases. The Supplementary Table 1 provides details on the
percentage of reads assigned at different hierarchical levels using Greengenes and
ARB Silva database as reference. There was a marked increase in assignment of
OTUs at genus level using ARB SILVA database (95.2%) compared to Greengenes
database (54.56%). The increase in the taxonomic annotation was also observed for
other population datasets used in the comparison (Supplementary Table 1).
After the reanalysis of 16S rRNA gene data using the annotations from ARB SILVA
database, the results have been updated in the revised manuscript in the Results and
Figures (please see Figure 1C, Additional File 5: Figure S3, Figure S5 and Figure
S10). We observed similar trends with significant improvements in the annotations of
OTUs at the genus level.
References
Tanya Yatsunenko et al; Human gut microbiome viewed across age and geography;
Nature; 2012; doi:10.1038/nature11053
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Jiro Nakayama; Diversity in the gut bacterial community of school-age children in Asia;
Nature Scientific Reports; 2015; doi:10.1038/srep08397
Maji A. et al; Gut microbiome contributes to impairment of immunity in pulmonary
tuberculosis patients by alteration of butyrate and propionate producers; Environmental
Microbiology; 2018; doi:10.1111/1462-2920.14015
Pullikan J. et al; Gut microbial dysbiosis in Indian children with Autism Spectrum
Disorders; Microbial Ecology; 2018; doi:10.1007/s00248-018-1176-2

--I am convinced of the utility of the study, despite some of the additional comments
below. Therefore, I would request that the raw shotgun metagenomics data also be
made available, and not just the assembled contigs as is currently the case. This is
extremely important so that future groups can improve on assemblies and annotations
as more data is generated from future studies.

Reply: As per the reviewer’s suggestion, we have now released the raw reads data
which can be found at NCBI SRA (https://www.ncbi.nlm.nih.gov/sra) with Project ID:
PRJNA397112. The assembled contigs, genes and gene catalogue will also be
uploaded on the Giga Science ftp server, which can be accessed by any researcher for
the future studies.

Specific comments:
--Line 209: "Detection of Enterotypes" The authors use the term 'analysis of
enterotypes', referring to Arumugam et al., for the analysis performed in this section
and relate the results to those found in the previous study. However the resulting two
enterotypes are more accurately, and simply, called clusters, as they are based on two
distinct populations in the current study only. This is in contrast to four-country, 22-
metagenome analysis performed in Arumugam et al. I would suggest that the
terminology be revised. This same type of nomenclature is repeated in line 272:
'metabotype.' I thank that referring to these as clusters is more accurate and more
consistent.
It is also present in the discussion (lines 400-401) and methods (699). I would just
stress again that two distinct geographical locations which can be statistically
separated into two groups, within a single study, does not constitute an enterotype as
defined in Arumugam et al. As LOC1 and LOC2 are distinct in this study, factoring this
information into clinically relevant models (lines 403-408) does not require a further
variable. The analysis and conclusions about the two groups, nevertheless, appear
valid.
My suggestion, if the authors wish to use the "enterotype" comparison, would be to
explore how this new dataset of 110 individuals fits when combined with that from
Arumugam et al. Do the samples still classify into three enterotypes, and what is the
distribution across LOC1 and LOC2?

Reply: We agree with the Reviewer’s suggestion that the term ‘enterotype’ should be
used when referring to cross national clusters resulting from similarities in microbiome
profiles of different populations and their clustering into groups.
We thank the reviewer for the valuable suggestion to compare the Indian samples with
that of Arumugam et al., and see if the Indian samples could still be classified into the
three enterotypes. Thus, we performed the meta-analysis of 37 samples from the four
nations used in Arumugam et al. with our Indian cohort consisting of 110 samples
(Please see Figure 3A and Additional File 8). We were able to classify the Indian
samples into three enterotypes using genus-level abundance of 110 Indian + 37
samples from four countries (Arumugam et al.). We also identified the distribution of
samples from LOC1 and LOC2 in these three enterotypes. We could observe clear
differences in representation of samples from India and the other four populations. We
could also identify the differences in representation of samples from LOC1 and LOC2
among these enterotypes. We thank the Reviewer for suggesting this analysis, which
helped in confirming the previous analysis and results. We have revised the results
section ‘Line: 246-255’ to include the above analysis and have highlighted in pink. We
have also revised the terminology from ‘enterotypes’ to ‘clusters’ when referring to the
clusters using only Indian datasets in all the sections.

--Line 235: 16S Data Analysis
The authors use rarefied reads for downstream analysis. This type of normalization,
while useful for calculating UniFrac distances, is no longer accepted as the gold

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



standard for statistical analysis of 16s data. See (McMurdie PJ, Holmes S. Waste not,
want not: why rarefying microbiome data is inadmissible. PLoS computational biology.
2014). The authors should explain why they decided to use sub-sampling
normalization. How the threshold of 100K was determined?

Reply: We thank the reviewer for this important suggestion on normalizing the 16S
rRNA gene counts. Regarding the threshold of 100K, it was a cut-off based on the
lowest sequencing depth among all the samples. We agree with the reviewer that the
rarefactions method is useful for calculating UniFrac distances, however for
comparative analysis it is not the gold standard now, and should be replaced with the
methods used in study by McMurdie et al; PLOS Computational biology, as highlighted
by the Reviewer. We would like to mention that we did not use rarefaction in any of our
statistical analysis or comparisons except for diversity estimations (Alpha and Beta
Diversity). For statistical analysis, we used relative abundance of taxa. As per the
reviewer’s suggestions, we have now revised all the statistical analysis performed
using DESeq2 package in R as mentioned in the study (McMurdie et al.) suggested by
the Reviewer. The Unifrac analysis has been revised based on OTUs picked using
SILVA database (Please see Additional File 5: Figure S11 and Additional File 13).

--The differential analysis performed in relation to clinical data and location (lines 247-
255) should be reanalyzed using current normalization methods (e.g. DeSeq2 or
edgeR packages exist for R).

Reply: We appreciate and agree with the reviewer’s suggestions on normalization.
Earlier, we had calculated relative abundance by normalizing the raw count of each
taxon with total number of reads in each sample. However, as per the reviewer’s
suggestion we have now re-run all the differential analysis on raw counts at taxonomic
level using negative Binomial model based-Wald test in DESeq2. The genera that
showed significant difference between Location 1 and Location 2 were plotted (Please
see Figure 3B). We also reanalysed the differential species between LOC1 and LOC2
using DESeq2 based normalization on raw abundances of species obtained from
mapping of metagenomic reads to the reference genomes (Please see Figure 3C).
Further, differential analysis between clusters was also performed using DeSeq2
based normalization on raw counts (Please see Additional File 10). The results and
figures have now been updated according to the latest analysis carried out using
DESeq2.

--Lines 347-352: The addition of 110 individuals is a major contribution. Yet, I think that
the authors would agree, any future metagenomics analysis of the intestinal
microbiota, even those focusing on South-Asia populations, would best be
accomplished using the IGC + this study's additional database. Analysis would not be
performed using this study's catalog alone. Please consider rewording here to
accurately present the impact of the study.

Reply: We agree with the reviewer’s suggestion that IGC+ Indian gene catalogue
(constructed in this study), referred to as ‘Updated-IGC’, would be more useful as a
reference database than the Indian gene catalog alone even when studying the South-
Asian populations. Thus, we have now also uploaded the ‘Updated IGC’ at the
GigaScience web server. We have also revised the line 421-424 to include these
changes.

--Line 561: The authors appear to perform normalization in relation to gene length,
probably RPKM. Like 16s analysis, it has been demonstrated that this type of
normalization is not the most appropriate for whole genome metagenomics analysis
(https://doi.org/10.1186/s12864-016-2386-y). The authors should rerun the analysis to
validate that the bacterial species cited in the manuscript remain significant after
applying a modern normalization method such as DESeq2 or edgeR. Perhaps other
significant species will also be identified.

Reply: We do agree with the Reviewer that the method of normalization can have an
impact on the results. As per the reviewer's suggestion, we have now recalculated
gene abundance for all the datasets as raw counts instead of normalizing them by
gene length, or as proportions. The raw read counts of genes were used for MGWAS
analysis and the construction of MGS was performed. The MGS abundance was
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recalculated, and reanalysed using DESeq2. The P-values obtained were used for
further analysis. The differential abundance of MGS between India and other datasets
were determined using negative binomial model-based Wald test implemented in
DESeq2 for calculating the P-values (Please see Additional File 5: Figure S2,
Additional File 6). Moreover, the differential abundance (P-value calculation) of MGS
between LOC1 and LOC2 was also determined using DESeq2 based normalization
(Please see Additional File 14). Using the raw abundance, we also re-calculated
abundance of EggNOG, KEGG Orthologues (KO) and KEGG Modules and performed
differential analysis using NB model based Wald test in DESeq2 (Please see Figure
2C, 2D and Additional File 7, Additional File 12, Additional File 17). We have now
revised the manuscript at the above mentioned places to include the revised results.

--Line 603: The reference cited does not describe the canopy-mgs algorithm. The
correct reference is Nature Biotechnology volume 32, pages 822-828 (2014);
'Identification and assembly of genomes and genetic elements in complex
metagenomic samples without using reference genomes.' This reference also
describes MGS (metagenomic species) that the authors refer to (Line 726, and
elsewhere in text).

Reply: We thank the Reviewer for pointing out this error. We have now corrected this
reference in the manuscript (Line: 650).
 

Reply to Comments- Reviewer 2

The revised manuscript text has been marked in Pink and Orange colours to indicate
the changes made as per the suggestions of reviewer 1 and 2, respectively.

Reviewer #2: # SUMMARY
--In this manuscript Dhakan & Maji et al. report on their multi-omic analyses of 110
healthy individuals from two distinct regions in India. The authors obtained 16S rRNA
gene (V3 region) amplicon sequencing data, metagenomic sequencing data, and
metabolomic data from volunteers' faecal samples. In addition, metabolomic data from
serum samples were obtained. Using the metagenomic sequencing data, the existing
Integrated Gene Catalog (IGC) was expanded by adding novel, non-redundant genes
derived from the India cohort. This represents an important addition to the IGC, thereby
further complementing the global, human gut-derived microbial gene catalog. The
authors compared the taxonomic composition (amplicon and metagenomic data) and
the functional potential (metagenomic data) of Indian-derived gut samples to samples
from earlier studies (China, Denmark, USA) and found the Indian microbiome to be
largely distinct. The authors conclude that diet is likely to be a strong factor in this,
especially since the eating habits are often strongly conserved according to region.
Using the metabolomic data, Dhakan & Maji et al. identified differences in the faecal
and serum concentrations according to region.
# GENERAL COMMENTS
--Overall, I think that this study nicely complements existing microbiome studies by
further expanding gut microbiome characterization to include samples derived from an
Indian population and from different diets (plant-based and omnivorous). Moreover, it
highlights the importance of complementary omics, here, metabolomics, in the study of
host-microbe interactions.

Reply: We thank the reviewer for appreciating our work and providing suggestions
which really helped in improving the manuscript. We have tried our best to satisfactorily
address the comments and have performed all the suggested analysis. Additionally,
we have improved the metagenomic assembly of Indian gut microbiome using IDBA-
UD assembler (Kuang et al.; GigaScience; 2017: Please see Methods section). The
mean N50 values across all samples showed an increase from 946 bp to 2,288 bp,
and the total contig size increased from 1.78 Gbp to 3.086 Gbp (Please see
Supplementary Figure 1) in the revised assembly. The updated non-redundant gene
catalogue for Indian gut microbiome now consists of 1,551,581 genes. The genes from
Indian gene catalogue were added to the Integrated Gene Catalogue (IGC), to
construct the ‘Updated Integrated Gene Catalogue’ (India+IGC) and now consists of
10,823,291 non-redundant genes. We have updated all the corresponding results as
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per the revised Updated IGC and the suggestions provided by reviewer.
Reference
Kuang et al.; Connections between the human gut microbiome and gestational
diabetes mellitus; GigaScience; 2017; doi 10.1093/gigascience/gix058

--While many of the authors' conclusions are supported by the reported results, I found
that some conclusions need to be toned down as there is not sufficient supporting
evidence for these conclusions. Please also see my detailed comments.

Reply: We have made our best efforts to address all the comments and have provided
below a point-wise reply to the comments and suggestions. We have also revised the
Discussion section at several places to tone down the conclusions correlating the
impact of microbiome composition on health as suggested by the reviewer.

--The metagenomic sequencing depth in this study is unfortunately not particularly
deep, but neither is it shallow. While sequencing depth is always a limiting factor, it is
an important factor if the objective is the recovery of novel genetic/genomic
information. This needs to be considered when concluding.

Reply: We agree with the reviewer that sequencing depth is a limiting factor in
metagenomic studies. In this study, the sequencing depth was not too high (1.5 ± 0.5
Gbp per sample, mean ± standard deviation), compared to the datasets from other
microbiome studies (METAHIT: 4.5 Gbp, 100bp reads; Human Microbiome Project: 2.9
Gb, 100bp reads; Qin et al; 2012: 2.61Gbp, 100 bp reads) that were used for
comparison with Indian microbiome. However, through a read length of 150bp and a
decent paired-end sequencing depth (1.5Gbp) of 110 individuals in this study, we have
been able to provide the first insights on the Indian gut microbiome and reveal its
unique composition. The increase in sequencing depth certainly would recover more
novel genetic information from low abundant microbes which is an important point to
consider while making the conclusions. We have now mentioned it in the discussion
section and have also considered it while interpreting the results and deriving
conclusions (Line: 408-411, 518-520).
References
Qin et a; A human gut microbial gene catalogue established by metagenomic
sequencing; Nature; 2010; doi 10.1038/nature08821.
The Human Microbiome Project Consortium; Structure, function and diversity of the
healthy human microbiome; Nature; 2012; doi 10.1038/nature11234.
Qin et al; A metagenome-wide association study of gut microbiota in type-2 diabetes;
Nature; 2012; doi 10.1038/nature11450.

--Moreover, I found the variation/spread of the samples from the Indian cohort
exceptionally large (Fig. 1 B). This might be something the authors could elaborate on.

Reply: We agree with the reviewer that the spread of the samples from the Indian
cohort needs to be discussed in the manuscript. The reason for this variation/spread is
the higher inter-sample distances between samples from Indian population compared
to other populations (Additional File 5: Figure S1). We have now analysed the principal
coordinates from PCA in Figure 1B (Please see Additional File 5; Figure S2). The
Wilcoxon rank sum test of coordinates at PC1 revealed significant difference between
LOC1 and LOC2 coordinates. A plausible reason could to be the dietary differences
between LOC2 population (non-vegetarian diet) and LOC1 population (plant-based
diet), resulting into significant (FDR Adj. P-value = 0.0013) differences observed in
their MGS abundance profiles (Additional File 5: Figure S2). We have now included
this analysis and elaborated it in the results (Line: 182-188).

--An experiment which I would have liked to see - I am not saying that it is necessary,
though - is an ordination of the 110 samples alone, i.e., not contrasting against
samples from other studies but rather within the current study. I would be curious to
know if there is substantial separation of samples according to region and/or diet.

Reply: We thank the reviewer for this suggestion and have now performed an
ordination of samples based on gene relative abundance table of 110 Indian samples
only and observed their separation according to region and diet (Please see Additional
File 5: Figure S13). We have also performed polyserial correlation to observe the effect
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of diet and location on separation of samples using gene abundance (Please see
Additional File 13). The location and diet both were observed to be significantly
associated (FDR Adj. P< 0.01) with PC1 explaining the maximum variation in the
unsupervised clustering of Indian samples (Line: 288-292).

--Finally, I would strongly encourage the authors to be more careful with their
conclusions on "the gut microbiome and its functional consequences on human
health". The present study did not investigate "non-healthy" individuals from the
respective regions. It might very well be that the same or very similar observations
would have been made with respect to faecal/serum metabolite levels and correlations
to respective microorganisms if "non-healthy" individuals were included

Reply: As suggested by the reviewer, we have revised the discussion and conclusion
sections, and have carefully rewritten the interpretations and conclusions related to
human health. We have also revised the title of the manuscript as suggested in the
later comments.

--The Data Description section should be extended. It should include description of the
metabolomic data that was generated as well as of the metadata which was collected
(Age, BMI, etc.). Some of this information is provided in the Methods "Study design
and subject enrolment" and should be moved to the Data Description instead.

Reply: As per the suggestion, we have now included the description of the
metabolomic data, BMI, age, metadata, study design and subject enrolment in the Data
Description section (Line: 109-132). Moreover we have now provided a separate table
for data collected for different samples in Additional File 1.

--Instead of reporting "thresholded" p-values (e.g., "P<0.05)"), please report the actual
p-values.

Reply: We have replaced the threshold P-values with the actual P-values at most
places in the manuscript. However at places such as Line: 317, where multiple
species/genes are mentioned we have reported a threshold P-value for considering
significant ones.

--I would encourage the authors to include the version and parameters of tools that
were used in the Methods.

Reply: We have now included the version and parameters of the tools that were used
in the Methods section (Please see Methods section).

--Moreover, it appears that references are occasionally missing, e.g., for the WMW
test, FDR-adjustment, Polyserial correlation/biserial correlations, Reporter features
algorithm, etc.

Reply: Thanks for pointing it out. We have now added the references for the statistical
tests used for the analysis.

--The readability of the manuscript should be further improved, e.g., by involving a
professional editing service.

Reply: We have carefully read the manuscript and have made specific efforts to
improve the readability. I hope you would find the revised manuscript much improved
than the previous version.

My comments below refer to the second row of line numbers, i.e., the one _not_ in
typewriter font.
# TITLE
--Title: "its implications on human health": It is not clear what the "its" refers to. I would
suggest adjusting the title accordingly. Moreover, while it has been shown that diet has
an effect on the gut microbiome, I do not know whether "due" is the right wording here.
I prefer how the authors phrased it in the abstract, e.g., "showed associations with". I

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



would thus recommend a more careful wording. Moreover, no "non-healthy" individuals
were included in the present study, hence making the conclusion of "implications"
rather difficult due to lack of supporting evidence (s.a., my general comments)

Reply: We thank the Reviewer for this suggestion. We have revised the title to provide
more emphasis on the unique composition of Indian gut microbiome and the functional
associations revealed through metabolomics approach. The revised title now reads as
“The unique composition of Indian gut microbiome, gene catalogue and associated
faecal metabolome deciphered using multi-omics approaches”. I hope the reviewers
would find it more appropriate than the earlier title.

# ABSTRACT
--L25: "comprehensively": This could be debated, e.g., at what sequencing depth would
one consider to have covered the composition and/or function "comprehensively".
Please remove this.

Reply: We have removed the word ‘comprehensive’ from this line. (Line: 25).

--L26: "including 16S rRNA marker gene and shotgun metagenomics": This sounds to
me as if the "16S rRNA marker gene" sequencing is also considered "metagenomics",
which it is not. I would thus suggest "including 16S rRNA gene amplicon sequencing,
metagenomic sequencing, and ...".

Reply: We agree with the reviewer and understand that 16S rRNA marker gene
sequencing is not metagenomics. While framing the sentence it appeared as one of
the methods for metagenomics, and we thank the reviewer for pointing it out. We have
now revised it in the manuscript (Line: 26-27).

--L32: "BCAA": This abbreviation was not introduced before. Same applies to "SCFA in
L34". Please adjust accordingly throughout and for all other abbreviations in the
manuscript.

Reply: We have now provided the expanded form of all abbreviations at the first
instance of their inclusion in the manuscript and have made these changes at all
required places (Line: 33, 36, 37).

--L37: "BCAAs were found higher": "higher" in what? I assume in concentration, but
this should be clarified in the text.

Reply: Indeed, we were referring to the BCAA concentration, and we have now revised
this sentence (Line: 38-40).

--L41: "its functional consequences on human health": I think that this is too strong of a
claim here. In particular, this study involved only healthy individuals, hence, while there
have been differences observed, these differences may not necessarily have a positive
or negative effect, but could be neutral. Put differently, different gut microbiomes may
be related to healthy individuals or "non-healthy" individuals might have revealed
similar findings.

Reply: We agree with the Reviewer and have revised the sentence (Line: 43-44).

# MAIN TEXT
--L63: "constitution": This typically refers to the "the highest laws of a sovereign state, a
federated state, a country or other polity."
(https://en.wikipedia.org/wiki/Constitution_(disambiguation)). The authors should
consider reformulating this, e.g., by using "condition" or a more appropriate term.
Maybe the authors were referring to "composition"? It is not really clear to me,
especially with respect to "understanding its variability". It is not just the taxonomic but
also the functional composition which has been shown to be of importance. Hence, I
would encourage the authors to clarify their point more explicitly here. Finally, this
sentence may be misleading as "dysbiosis" is typically used when comparing (at least)
one phenotype (e.g., lean) to another (e.g., obese). However, this study is focussed
only on one phenotype, i.e., "healthy".
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Reply: We agree that the word ‘constitution’ can be replaced with ‘composition’ and
have revised this sentence by including all the suggestions made by the reviewer
(Lines: 54-55).

--L69: "WGS": This abbreviation was not properly introduced. Please make sure to do
so for all abbreviations throughout the manuscript.

Reply: Thank you for this comment. We have now introduced this abbreviation and all
other abbreviations in the manuscript at their first usage (Line: 59-60).

--L72: "Branch" -> "Branched".

Reply: We have corrected this word (Line: 62-63).

--L83: I would rephrase "from the major world populations".

Reply: We have rephrased this statement (Line: 74).

--L86: I would rephrase "equally dominated". Typically, "domination" is used when a
single entity has a majority stake.

Reply: We have rephrased this word as ‘equal representation’ (Line: 77-78).

--L114: I am not sure if these two locations as well as the total cohort size (n = 110)
qualify as being "representative". I would thus suggest to remove the respective
wording. Same applies to "comprehensive" , s.a., my respective comment above.

Reply: We agree with the suggestion and have removed the word ‘representative’ and
reframed the sentence. (Line: 104-105).

--L115: "16S rRNA sequencing" -> "16S rRNA gene sequencing".

Reply: We have made this change (Line: 105-106).

--L133ff: Was the assembly done on reads from individual samples or on the pooled
set of reads? It is not clear as the authors emphasize pooling in the subsequent
sentence which reads to me as if this was _not_ done to generate the 1,337,547
contigs. Please clarify.

Reply: We wish to clarify that the assembly was performed on individual samples
separately. The reads were mapped back to the assembled contigs from individual
samples and the reads that did not map to the contigs from each sample were pooled
from all the samples and a denovo cross assembly was performed using the
unmapped reads from all the samples. We have employed a similar strategy for contigs
and gene catalogue construction as used in other studies [1]. We have now clearly
clarified this point in the revised manuscript (Line: 139-144, 590-592).
References:
Qin et al; A human gut microbial gene catalogue established by metagenomic
sequencing; Nature 2011 (see section Metagenomic sequencing of gut microbiomes).

--L139: Please remove "In addition". It sounds as if this is a result from the current
paper but it is not.

Reply: We have removed this word and have reframed the sentence. (Line: 146).

--L141: "populations" seems inappropriate here as the HMP and MetaHIT projects both
involved multiple populations themselves.

Reply: We agree with the reviewer and have now changed this word to “multiple
populations”. (Line: 147- 148)

--L145 + L146: Please specify what the numbers in the brackets with the "plus-minus"
mean. Are they representing the standard deviation?
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Reply: As correctly pointed out by the reviewer, the ‘plus-minus’ represent standard
deviation. We have now added standard deviation in the brackets, for example 69.2%
(± 4.01% standard deviation). (Line: 153,155).

--L147f: I am not sure what the authors wanted to say here. Do they mean that reads
from _other_ studies were mapped to the original IGC as well as to the updated IGC?

Reply: Here, we had mapped reads from microbiome samples of healthy individuals
from three different studies (USA datasets from HMP, Denmark dataset from MetaHIT
and Chinese datasets from Qin et al; 2012) on the original IGC and on the updated
IGC. We have reframed this statement (Line: 158-162) and the mapping is shown in
Fig. 1A. The results have been updated as per the revised gene catalogue.

--L150f: Please rephrase this to reflect that only a _subset_ of the genes of the 110
Indian gut samples in the current study are not represented in other gut microbiome
datasets. After all, 718,360 of the 1,479,998 non-redundant genes were added to the
original IGC but not the full extent of the current non-redundant genes.

Reply: We thank the Reviewer for this comment. We would like to mention that we
aligned the set of non-redundant genes (after removal of redundancy) identified in
Indian gut microbiome with the Integrated Gene Catalogue (IGC), and removed the
genes sharing ≥90% identity with IGC genes. Thus, the remaining genes from Indian
gut microbial gene catalogue which were unique to the IGC (sharing < 90% identity)
were added to generate the updated IGC. As per the revised gene catalogue, 943,395
genes from Indian microbiome samples were added to IGC, thus forming an updated
IGC containing only the non-redundant genes from Indian cohort. We have now
reframed the sentence (Line: 148-153, 163-164).

--L157: "non-reference" -> "reference-independent".

Reply: We have replaced ‘non-reference’ with ‘reference-independent’ (Line: 171)

--L159: Please remove "higher", it does not seem to fit here.

Reply: We have removed the word ‘higher’ from the position (Line: 175)

--L164: "PCA" stands for "Principal Component Analysis", hence, the second "analysis"
in the text is redundant.

Reply: We agree with reviewer and have removed the word ‘analysis’ (Line: 179-180)

--L166: Actually, if the data was projected to PC1, there would be quite some overlap.
The separation is actually benefiting from _both_ dimension, PC1 _and_ PC2. I would
suggest removing the "at PC1" altogether.

Reply: We agree with the reviewer and have removed ‘at PC1’ from this sentence
(Line: 181-182).

--L174: "16S rRNA markers" -> "16S rRNA gene markers".

Reply: We have replaced ‘16S rRNA markers’ with ‘16S rRNA gene markers’ (Line:
198).

--L175f: While, indeed, the amplicon and, to some extent, the metagenomic data
suggest members of the Prevotellaceae to be enriched in the present cohort, referring
to this family as a marker should be supported by quantitative analyses, e.g., statistical
analysis of differences in group means (t-Test or WMW-test) or a classification-based
approach (feature selection).

Reply: We thank the Reviewer for this observation and suggesting the need for a
statistical analysis to support it. We have now performed a feature selection test using
Random Forest analysis (Please see Additional File 5: Figure S4) showing the
selection of most important features (mean decrease in accuracy > 0.01; mean relative
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abundance ≥ 1% in at least one population) and their relative abundance in different
populations. The most discriminating features (families) which were able to classify
Indian samples from other populations were plotted rank-wise (Additional File 5: Figure
S5). The pairwise Wilcoxon rank sum test of important families between India and
other populations was performed and represented using box plots (Please see
Additional File 5: Figure S6). The analysis has been included in revised manuscript
(Line: 199-203).

--L184ff: This paragraph needs to be revised as it currently is hard to read. The
sentence in L193f was especially hard to read and I am still unsure about what "The
proportion of essential genes covered by top-ranking nine eggNOG clusters" means:
What is the meaning of "nine" in this context when the authors refer to 15,000 to
30,000 eggNOG clusters later.

Reply: We apologize for the typo error. We have removed the word “nine” from this
statement. We have also revised this paragraph to make it more readable. Please see
the changes made in the paragraph (Line: 215-220).

--L196f: It was not readily clear to me what "alpha diversity (Shannon) calculations
using gene abundances" meant and I found the Methods lacking on this point. What
gene(s) was/were used ? Moreover, Fig. S4's legend mentions "gene proportions".
How does this relate to "gene abundances"? It seems, from the Methods, that
rarefaction was used, while the remaining information is scarce on this point. However,
this is an important point as the sequencing depth in the current study (mean of
4,545,280 reads/sample) is not particularly deep (cf. Table 1) and, hence, gut
microbes' genomes may be covered only partially. In the study by Qin et al . (2010), an
order of magnitude more reads per sample ("an average of 62.5 million reads") were
produced, albeit at rather short sequencing lengths of 75 bp (compared to 150 bp in
the current study).

Reply: We apologise for the lack of clarity in this part. We earlier did not use rarefaction
at gene level but the entire gene proportions were used to calculate the diversity. We
agree that sequencing depth can have large impact on diversity metrics. We have now
used raw gene abundance table which were rarefied at a depth of 1,000,000
seqs/sample for n=30 iterations, and the mean Shannon index were calculated and
plotted as box plot (Please see Additional File 5: Figure S9) (Kuang et al.;
GigaScience; 2017). We have now included this information in the methods section in
revised manuscript (Line: 228-230, 770-772).

--L202: What does "Eigen values, and their scores" mean, i.e., what is a "score" here?
Moreover, they are spelled "eigenvalues", i.e., in one word. Please correct throughout.

Reply: We have now revised the statement and also corrected the term ‘eigenvalues’
throughout the text as per the suggestions (Line: 235).

--L203: I am not sure if the authors refer here to "szignificantly" in a statistical sense or
not. If so, please include respective quantitive results to support this conclusion.

Reply: As you have rightly mentioned, we were referring to a statistically significant
observation, and have now provided the FDR Adjusted P-value in this sentence (Line
236-237).

--L206: How was the odds-ratio computed? In the Methods, the description refers to
LOC1 and LOC2, albeit, it seemed, i.e., I was not sure, that a comparison of Indian
microbiome vs. "Other" microbiome was intended. If this is the case, the authors
should clarify this in the Methods, i.e., that not only was LOC1 compared against LOC2
but also "Indian" vs. "Other" (maybe among other pairwise comparisons).

Reply: The Odds Ratio was computed  to obtain the enrichment of species/genes
between LOC1 and LOC2 as OR (k) = [∑s=LOC1 Ask/ ∑s=LOC1(∑i≠k Asi)]/
[∑s=LOC2 Ask / ∑s=LOC2 (∑i≠k Asi)], and also for enrichment in Indian microbiome
compared to other datasets consisting of USA, Denmark and China referred as
“OTHERS” : OR (k) = ([∑s=INDIA Ask/ ∑s=INDIA(∑i≠k Asi)]/ [∑s=OTHERS Ask /
∑s=OTHERS (∑i≠k Asi)]). We have now provided the details of comparison performed
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in the Methods section (Line: 809-812).

--L216ff: I welcome the careful wording chosen by the authors here. It appears that
there is no detailed dietary information available which could have been used to further
support the authors' hypothesis, but they might want to highlight this as a window of
opportunity for future study, i.e., including something like a food-frequency questionaire
to be able to quantitatively assess possible links to diet.

Reply: We thank the reviewer for this suggestion. This is an important point and we
have now included it in the revised manuscript (Line: 268-270).

--L227: Could the authors please elaborate on how the "Spearman's correlation
coefficient" was used in this context? I would have applied Fisher's exact test here.

Reply: As suggested by the Reviewer, we have now used Fisher’s exact test here.
Earlier, the Spearman’s correlations were applied to identify the correlation between
KO based and Genus based cluster allocation. Using Fisher’s exact test, we found no
differences between Genus level and KO level clustering (Fisher’s exact P-value =
0.6843) in the samples assignment (Line: 275). We have provided the file containing
details of cluster allocation for each sample (Please see Additional File 11).

--L235: "16S rRNA" -> "16S rRNA gene"

Reply: We have replaced 16S rRNA with 16S rRNA gene at all the places in revised
manuscript.

--L236: The term "PCA" has been used previously, so this is not the place to introduce
the abbreviation.

Reply: We agree and have now removed this term (Line: 284-285).

--L240: It was not clear to me if "taxonomic and functional diversity" were combined
here or not. However, this is important to clarify as taxonomy and function are only
partially linked.

Reply: We agree with the Reviewer that taxonomic and functional diversity are only
partially linked. We understand that the text could have led to this confusion. We have
now revised the text in manuscript and hope that it would read fine now (Line: 292-
293).

--L255: Is this analysis based on amplicon or based on metagenomic sequencing
data? L247 indicates the former, while MGS/CAGs are defined based on the latter.
Please clarify in the text.

Reply: The results mentioned in line number 300-302 were based on amplicon
sequencing data analysis using Phylum abundance, whereas the results in lines 305-
314 are based on taxonomic species identified from metagenomic sequencing data
using reads mapped to reference genomes. The results in line 314-320 are based on
the MGS analysis from clustering of gene abundance profiles. We apologize for this
confusion. We have now provided this information in the revised manuscript.

--L260: Please list "the two species".

Reply: We apologize for the confusion. We were referring to the two species mentioned
in the previous line. We have now revised the sentence to clearly refer to the above-
mentioned two species (Line: 320-321).

--L262: Isn't "high fiber-rich" redundant? I.e., either "diet high in fiber" or "fiber-rich
diet".

Reply: We agree with the Reviewer and we have now changed this word to fibre-rich
diet (Line: 323)

--L274: The conclusion drawn by the authors about the OPLS-DA results is misleading,
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s.a., https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990351/. Specifically, the OPLS-
DA model integrates the class information with the aim to _increase_ the between-
class separation. Hence, the separation observed in Fig. 4C may (partially) be a
consequence of the method used and not of actual separation being in the data. An
unsupervised method should be used to check for the presence of meaningful
separation followed by a supervised method to perform quantitative evaluation, e.g.,
PERMANOVA, to check how much of the variance is explained by the respective
covariates.

Reply: We agree with the reviewer that OPLS-DA model integrates class information
(in this case location) and increases the between class separation. As per the
reviewer’s suggestion, in addition to OPLS-DA, we have now performed PERMANOVA
on metabolite abundance table to assess the effect of covariates and identify the ones
which explain maximum variation. We have now included the results of PERMANOVA
in the manuscript (Please see Table 2). Moreover OPLS-DA models using class
information for each of the covariates were used to calculate model Q2 which
assesses the quality of the measurement for each of the covariate (Please see Table
3). Since invalid models can still produce higher Q2 values due to over-fitting, the class
labels were randomly permuted for n=200 iterations and distribution of Q2 values were
produced to assess the reliability of the Q2 values. The reliable model should yield
significantly higher Q2 values compared to Q2 values generated from models with
randomly permuted labels (Please see Additional File 5: Figure S17). Moreover, an
unsupervised clustering of metabolite abundance is already performed (Please see
Figure 4A), and its polyserial/biserial correlation with different covariates identified PC1
to be correlated with location, and PC2 with the diet (Line: 340-348).

--L298f: I am not sure if I understood the authors' point right here. "result of its inward
transport in microbial cells by the BCAA transporters, thus leading to their
accumulation in the colon lumen": Do the authors' mean "uptake by the bacteria, i.e.,
transport into the microbial cell"? If so, I would not expect an accumulation in the lumen
as such.

Reply: We apologize for this confusion. We meant “faecal samples” here and not ‘colon
lumen’. We have revised this text appropriately in the manuscript (Line: 364-365)

--L305: Where do the authors show this comparison (serum vs. faeces)? Fig. 6A
compares Valine and Isoleucine in LOC1 samples and LOC2 samples, but not serum
vs. faeces.

Reply: We have now modified figure 6A showing the comparison of BCAA levels in
feaces vs serum (Please see revised Fig. 6A)

--L328: "the major pathway utilized by this species for BCAA biosynthesis": I am not
sure in how much the metagenomic and metabolomic data in this study allow to draw
this statement. Metatranscriptomic and metaproteomic data would likely be needed
here. I would thus suggest that the authors qualify/nuance this statement.

Reply: We agree with the reviewer. We have revised this text appropriately mentioning
the result rather than drawing any conclusion in the manuscript (Line: 391-395).

--L375ff: The average age of the cohort is rather low (mean of 29.72 years). Age,
however, is an important factor for rheumatoid arthritis. Hence, "A probable
explanation" could be toned down to "One aspect to this could be ...".

Reply: We thank the Reviewer for this suggestion. We have now revised this statement
accordingly (Line: 446-448)

--L419: "isoluecine" -> "isoleucine".

Reply: We have corrected this word (Line: 488).

--L439f: The second part of the sentence is redundant with the first part and could be
removed, or vice versa.
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Reply: We have now removed the redundant part from this sentence (Line 508-510).

--L459 - 460: "which appears promising in reducing the metabolic risk factors
originating through the interactions between diet and gut microbes to maintain a
healthy gut flora": This reads misleading as the "diet" was binary, i.e., "vegetarian" vs.
omnivorous" and such a statement likely requires for more fine-grained and specialized
studies than were performed in this work. Please adjust accordingly.

Reply: We agree with the reviewer. We have now revised this statement and have
toned down the general interpretations at various places in the Discussion section
(Line: 512-514).

--L463ff: This entire paragraph reads redundant with the remainder of the Discussion
and should thus be removed or substantially shortened.

Reply: We agree with the reviewer. We have now substantially shortened and revised
this paragraph in the manuscript (Line: 515-520).

--L599: "non-reference" -> "reference-independent".

Reply: We have corrected this word (Line: 647).

--L610: Could the authors please, in analogy to their HMP+NCBI results, report how
many of the remaining genes aligned to UNIREF?

Reply: In total, out of 10,839,539 genes present in the Updated gene catalogue,
2,773,591 genes were taxonomically annotated using NCBI + HMP reference genomes
at nucleotide level. The remaining 8,049,540 genes were aligned against UNIREF
database, and a total of 4,553,299 genes (56.56%) could be assigned with a
taxonomic annotation. We have now mentioned this information in Methods section
(Line: 656-660).

--L611f: This sentence should be rephrased.

Reply: We have now rephrased this sentence (Line: 660-662)

--L706f: How was this assessed and where can the interested reader find the results
for this statement?

Reply: We have provided results of CHI index and prediction strength in Additional File
9 with the values. The information about these metrics is provided in Methods section
(Line: 754-759).

--L709ff: It is not clear how the "Between class analysis" was peformed. The authors
should provide the respective details, e.g., which test, implementation etc.

Reply: Between Class Analysis was performed to support the clustering and to identify
the drivers of these clusters. The between class analysis is a type of principal
component analysis with instrumental variables. As in this case, ‘Location’ is a variable
for the separation between LOC1 and LOC2 within India, and “population” for
separation between India and other datasets (USA, Denmark and China). It is a
supervised projection of data where the distance between predefined classes (example
clusters/location) is maximised. We have provided a clear explanation in the
manuscript (Line: 761-767)

--L720: Does "geography" refer to "location" (LOC1 or LOC2) here?

Reply: As correctly pointed out by the reviewer, we meant the two locations (LOC1 and
LOC2), and have changed the word ‘geography’ with ‘location’ throughout the
manuscript (Line: 775)

--L732: Why was the negative correlation not considered?

Reply: We wish to mention that in this analysis, the objective was to observe the
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positive association and link them in a network plot. Hence, the negative correlations
were not considered. Moreover, plotting negative correlations was not possible in the
plot using igraph package in R.

# METHODS
--L485: Do you mean the respective table in "Additional_file_1.doc"? Not sure whether
this is under the control of the authors, but it should be checked in the proof that the
information is consistently named and can be readily found.

Reply: We apologize for this error. We have now changed the name ‘Supplementary
Table’ to ‘Additional File 1’ in the revised manuscript. We hope that it could now be
easily found.

--L507: "16S rRNA" -> "16S rRNA gene"

Reply: We have corrected this word at all places in the manuscript.

--L534: "phylogenetic distances between reads": Not sure, but did the authors mean
"phylogenetic distances between the samples" here?

Reply: The phylogenetic distances were used to calculate Unifrac distances between
the samples. The reads used here are the representative sequences from each OTU.
Thus, the phylogenetic distances were calculated between each OTU using the
representative sequences from OTUs. Using these phylogenetic distances, we
calculated Unifrac distances between samples. We have now revised this sentence in
manuscript (Line: 578-580, 772-774).

--L539f: How were host-origin reads identified? Which tool, version, and parameters?

Reply: Human reads were identified and removed from each sample using 18mer
matches parameter in Best Match Tagger (BMTagger) version 3.101
(http://casbioinfo.cas.unt.edu/sop/mediawiki/index.php/Bmtagger). We have now
mentioned this information in methods section (Line: 584-586).

--L561ff: This is probably for the formal proofs, but I would strongly encourage to
properly format here as it seems that, e.g, "bi" is supposed to read "b subscript i".

Reply: Thanks for bringing it to our notice. We have now formatted the formula (Line:
610)

--L1037ff: Please check whether "<" and "> are used correctly here." Typically "p <
0.05 is " considered significant and _not_ "P-value>0.05".

Reply: The ‘>’ and ‘<’ are correctly used in Figures 2c, 2d and S3. We used P > 0.05 to
show the non-significant dots plotted in ‘Red’ colour. The significant ones are shown in
‘Blue’ colour. We have now mentioned it in the figure legend (Line: 1112-1113).

# TABLES
--I do not know whether the information provided in Table 2 necessitates a separate
table. I leave this up to the authors to decide and to potentially discus this with the
journal.

Reply: We have now removed this table from the manuscript and included
PERMANOVA table as Table 2, which was also suggested by the reviewer in an earlier
comment. Also, we have now provided Table 3 showing validation of OPLSDA models
for each of covariate by generating a distribution of Q2 values from random
permutation (n=200) of labels and evaluating the number of Q2 above the model Q2
for each covariate.

# FIGURES
--5: "Logs-Odd Ratio" -> "Log-Odds Ratio"

Reply: Thanks for pointing out this typo. We have corrected it in Figure 5.
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--S6: The labels on the x-axis and y-axis were not readable. Please adjust accordingly.
Moreover, I am not sure in how much the "clouds" add value here. They are not further
discussed in the text and, hence, could be omitted for clarity.

Reply: The font-size of labels has been increased and we hope that it would be easily
readable now. The clouds show the density of the unique KOs in the two groups. It has
now been mentioned in the legends of this figure. The blue cloud represents the local
density estimated from the coordinates of orthologous groups (KO).

# LEGENDS
--Throughout: Please verify correct use of "16S rRNA" and "16S rRNA gene".

Reply: We have now changed 16S rRNA to 16S rRNA gene at all places throughout
the manuscript.

--L1015: "MWAS": Shouldn't this be "MGWAS"?

Reply: Thank you for pointing this type. We have corrected it in the figure legend and
also at all places in the manuscript.

--L1027: What does "Eigen values and their scores" mean, i.e., what is a "score" here?

Reply: The word ‘score’ has been removed, and ‘Eigen value’ have been replaced with
‘eigenvalue’ at all places in manuscript.

--L1092ff: This reads more like a discussion/conclusion and I would thus suggest to
remove this from the figure legend.

Reply: The figure legend of Figure 7 has been revised as per the suggestion (Line:
1162-1164).

Additional Information:
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requested in your manuscript?
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A description of all resources used,
including antibodies, cell lines, animals
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the “Availability of Data and Materials”
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Abstract 21 

Background 22 

Metagenomic studies carried out in the past decade have led to an enhanced understanding of the 23 

gut microbiome in human health, however, the Indian gut microbiome is still not well explored. 24 

We analysed the gut microbiome of 110 healthy individuals from two distinct locations (North-25 

Central and South) in India using multi-omics approaches, including 16S rRNA gene amplicon 26 

sequencing, whole genome shotgun metagenomic sequencing, and metabolomic profiling of faecal 27 

and serum samples. 28 

Results 29 

The gene catalogue established in this study emphasizes the uniqueness of the Indian gut 30 

microbiome in comparison to other populations. The gut microbiome of the cohort from North 31 

Central India, which was primarily consuming a plant-based diet, was found to be associated with 32 

Prevotella, and also showed an enrichment of Branched Chain Amino Acid (BCAA) and 33 

lipopolysaccharide (LPS) biosynthesis pathways. In contrast, the gut microbiome of the cohort 34 

from Southern India, which was consuming an omnivorous diet, showed associations with 35 

Bacteroides, Ruminococcus and Faecalibacterium, and had an enrichment of Short Chain Fatty 36 

Acid (SCFA) biosynthesis pathway and BCAA transporters. This corroborated well with the 37 

metabolomics results, which showed higher concentration of BCAAs in the serum metabolome of 38 

the North-Central cohort and an association with Prevotella. In contrast, the concentration of 39 

BCAAs were found higher in the faecal metabolome of the South Indian cohort, and showed a 40 

positive correlation with higher abundance of BCAA transporters. 41 

Conclusions  42 
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The study revealed the unique composition of Indian gut microbiome, established the Indian gut 43 

microbial gene catalogue, and also compared it with the gut microbiomes from other populations. 44 

The functional associations revealed using metagenomic and metabolomic approaches provide 45 

novel insights on the gut-microbe-metabolic axis, which will be useful for future epidemiological 46 

and translational researches. 47 

 48 

Keywords: Indian Gut Microbiome, Whole Genome Shotgun, Metagenomics, Metabolomics,  49 

Integrated Gene Catalog, Metagenome-Wide Association Study, Core gut microbiome, Short 50 

Chain Fatty Acids, Branched Chain Amino Acids 51 

 52 

Background 53 

Determining the taxonomic and functional composition of a healthy gut microbiome across 54 

different populations is essential for understanding its role in maintaining human health. Several 55 

large-scale, world-wide microbiome projects have revealed variability in the gut microbial 56 

composition of the healthy individuals due to factors such as mode of delivery, age, geographical 57 

location, diet, lifestyle, etc. [1-5]. Most gut microbiome studies have determined microbial 58 

taxonomy and functional diversity using 16S rRNA marker gene-based and/or Whole Genome 59 

Shotgun (WGS) approaches to understand the functional role of the gut microbiome. However, 60 

novel insights on the complex interplay between diet, gut microbes and human health, along with 61 

the role of key microbial metabolites, such as Short Chain Fatty Acids and Branched Chain Amino 62 

Acids, derived from the microbial fermentation of dietary fibres are beginning to emerge from 63 
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recent gut metabolomics studies [6, 7]. Moreover, the direct impact of the microbial metabolome 64 

on human health is also becoming apparent from the recent studies focusing on the ‘gut 65 

microbiome- host metabolism axis’ [8]. Therefore, an integrative approach using both 66 

metagenome and metabolome-based characterizations of the gut microbiome appears pragmatic 67 

for gaining deeper functional and mechanistic insights into the role of gut microbes on human 68 

health. 69 

The large-scale studies carried out so far mainly represent the gut microbiome of urban populations 70 

primarily from Europe, US and other ‘WEIRD’ countries (i.e., the Western, Educated, 71 

Industrialized, Rich, and Democratic countries) [9, 10]. Only recently, some studies have 72 

characterized the human microbiome from diverse ethnic populations and found significant 73 

compositional variations compared to microbiome from other previously studied populations [11-74 

14]. India is the seventh largest country in the world and harbours the second largest population 75 

spread across multiple geographical locations with enormous diversity in ethnicity, lifestyles and 76 

dietary habits. India is a home to the majority of world’s vegetarian population but also has an 77 

almost equal representation of population consuming animal-based diets. Moreover, the Indian 78 

population has the highest prevalence of diabetes in the world [15]. According to the World Health 79 

Organization estimates (WHO, 2011), 53% of deaths in India in the year 2008 were attributed to 80 

metabolic conditions such as diabetes and cardiovascular diseases, which are predicted to reach 81 

~75% by 2030 [16].  82 

A few studies have investigated the gut microbiome of the Indian population. A recent study by 83 

Maji et al. has shown the functional association of human gut microbiome dysbiosis with 84 

tuberculosis through a time-course study carried on six tuberculosis patients in India [17]. The 85 

other studies were mainly limited by small cohort sizes and amplicon-based (16S rRNA gene) 86 
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sequencing and analysis [17-21]. Thus, several large-scale efforts are needed to identify the Indian 87 

population-specific microbiome biomarkers, and to understand the impact of gut microbiome on 88 

health and disease in the Indian population along with global comparisons.  89 

However, to uncover the enormous gut microbiome diversity inherent in the different sub-90 

populations of India, extensive sampling and analyses are required. Therefore, as the first large-91 

scale study from India, we selected two prominent locations in North-Central India, i.e. LOC1: 92 

Bhopal city, Madhya Pradesh, and Southern India, i.e. LOC2: Kerala. The two locations also had 93 

very different dietary habits. The Southern-India population (LOC2) diet was consisting of rice, 94 

meat and fish, whereas the North-Central population (LOC1) diet was consisting of carbohydrate-95 

rich food including plant-derived products, wheat and trans-fat food (high-fat dairy, sweets and 96 

fried snacks). In addition, the ‘Human Development Index Report, UNDP’ (United Nations 97 

Development Programme), India and SRS-based life-table (Sample Registration Survey, 2010-14) 98 

has revealed that the citizens from Kerala had the highest life-expectancy rates (>74 years) in India, 99 

whereas those in Madhya Pradesh (capital city ‘Bhopal’) exhibited the lowest (<65 years) [22]. 100 

Further, a higher predisposition of the North-Indian population towards diabetes, cardiovascular 101 

diseases and hypertension is known, which in contrast is much lower in Southern India, perhaps 102 

due to the lifestyle differences in the two regions [15, 23]. Thus, to gain deeper functional insights 103 

into the microbiome from these two distinct sub-populations of India, a multi-omics approach was 104 

carried out using amplicon-based profiling of taxonomic composition (16S rRNA gene 105 

sequencing), whole genome shotgun-based (WGS-based) profiling of metagenome, and GC-MS-106 

based profiling of faecal and serum metabolomic signatures. 107 

Data Description 108 
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The two selected locations, Bhopal (LOC1) and Kerala (LOC2) from North-Central and Southern 109 

parts of India were about 2,000 kms apart, and provided a distinct representation of the Indian 110 

population with respect to diets and lifestyle (Additional File 1). The 110 (62 females, 58 males) 111 

individuals recruited in this study were not suffering from any disease as reported by personal 112 

medical history and physical examination, and confirmed no exposure to antibiotics for at least 113 

one month prior to sampling. All the recruited individuals had an average BMI of 21.16 (±5.23 114 

standard deviation) and an average age of 29.72 (±17.41 standard deviation) and were not 115 

diagnosed with any disease at the time of sample collection, and thus were considered as ‘healthy’ 116 

(Additional File 1). Moreover they did not have a second-degree relative history of T2D. The 117 

recruitment of volunteers, sample collection, and other study-related procedures were carried out 118 

by following the guidelines and protocols approved by the Institute Ethics Committee of Indian 119 

Institute of Science Education and Research (IISER), Bhopal, India. Each faecal sample was 120 

frozen within 30 mins of the collection. The faecal samples were then used for 16S rRNA gene V3 121 

hypervariable region amplicon sequencing, WGS-based metagenomic sequencing, and 122 

metabolomic analysis. The serum samples collected from a subset of volunteers were used for GC-123 

MS based metabolomics analysis. The sequencing of V3 hyper-variable region of 16S rRNA gene 124 

and shotgun metagenome sequencing from the 110 faecal samples resulted into 54.87 million 125 

paired-end reads (503,460 ± 175,547 (mean ± standard deviation) reads/sample) and 499.98 126 

million paired-end reads (4,545,280 ± 1,498,663 (mean ± standard deviation) reads/sample), 127 

respectively (Methods, Additional File 2 and Additional File 3). The metabolomics analysis was 128 

also performed on all faecal and subset of serum samples collected from the same healthy 129 

participants using GC-MS, and the resultant CDF files were used for further analysis. The data 130 
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description of participants and the data generated from each sample is provided in Additional File 131 

1 under the Metadata information section. 132 

Analyses 133 

Construction of an Indian gut microbial gene catalogue and updated integrated gene 134 

catalogue (IGC) 135 

The first step for functional analysis was the construction of an extensive catalogue of gut 136 

microbial genes from the Indian population, since it was not previously available. A De Bruijn 137 

graph-based assembly of reads resulted in 2,165,507 contigs of length ≥500 bp with a total contig 138 

size of 3.086 Gbp representing 68.25% of total reads and a mean N50 value of 2,288bp. To obtain 139 

assemblies of low coverage genomic regions or genomes present in the Indian gut microbiome, 140 

the reads from each sample were mapped on assembled contigs obtained from their respective 141 

sample, and the remaining singletons (unassembled reads) from all the samples were pooled and 142 

re-assembled together into additional 45,839 contigs with length ≥500 bp and a total assembled 143 

length of 34.68 Mbp. A total of 1,551,581 non-redundant genes were predicted from contigs, which 144 

represent the gut microbial gene catalogue of the Indian cohorts.  145 

The integrated gene catalogue (IGC) established by Li et al. in a previous multicohort study 146 

consisted of 9,879,896 genes identified from 1,267 gut metagenomes representing multiple 147 

populations [24]. A total of 943,395 genes (sharing < 90% identity with IGC) out of 1,551,581 148 

from Indian gut microbial gene catalogue were identified as non-redundant genes and unique to 149 

IGC. The IGC was updated to construct an ‘Updated-IGC’ by adding these 943,395 non-redundant 150 

genes from the Indian gene catalogue. The updated-IGC consisting of 10,823,291 non-redundant 151 

genes (an 8.8% increase from IGC) was used as the reference gene catalogue for the subsequent 152 
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analysis performed in this study. A total of 70.74% (± 3.77% standard deviation) mean mapping 153 

coverage of reads from 110 Indian samples (~7.5% increase in the mapping of reads) was observed 154 

on the updated-IGC as compared to 63% (± 4.61% standard deviation) mean mapping on IGC 155 

(Fig. 1A and Additional File 4). The datasets from populations of USA (HMP), Denmark 156 

(MetaHIT) and China (a study from Qin et al.) mentioned in Table 1 were used for a comparative 157 

analysis of microbiome of Indian population with other populations [7, 10, 25]. The mapping of 158 

reads from other three datasets (HMP, MetaHIT and China) on updated-IGC (mean mapping 159 

coverage: HMP = 67.74%, China = 77.44% and MetaHIT = 75.21%) did not show a significant 160 

(P< 0.01) increment compared to their mapping coverage on IGC (mean mapping coverage: HMP 161 

(USA) = 66.93%, China = 77.37% and MetaHIT (Denmark) = 75.02%) as observed in Fig. 1A. 162 

This shows that the addition of subset of non-redundant genes (sharing < 90% identity with IGC) 163 

from the Indian gut microbiome to the IGC significantly (FDR Adj. P-value = 10-16; Wilcoxon 164 

rank-sum test) increased the mapping percentage of reads from Indian gut microbiome on the 165 

updated-IGC as compared to the other datasets.  166 

Identification of taxonomic signatures of Indian gut microbiome 167 

To determine the taxonomic and functional composition of the Indian gut microbiome and to 168 

identify Indian-specific gut-microbial signatures, a cross-population comparison was carried out 169 

using the 16S rRNA gene hyper-variable region and shotgun metagenomic data from other 170 

populations. A reference-independent metagenome-wide association study (MGWAS) was carried 171 

out to identify the Indian-specific gut metagenomic markers through a comparison with similar 172 

large-scale studies from other populations [26]. The genes from the metagenomic samples of four 173 

countries (India, China, USA and Denmark) were clustered (see Methods) into 924 clusters based 174 

on their co-occurrence and Pearson correlations (ρ ≥ 0.9) across samples resulting into 335 MGS 175 
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(metagenomic species) having ≥700 genes in each cluster, and 589 CAGs (co-abundance gene 176 

groups) consisting of ≥100 genes in each cluster. Out of the 924 metagenomic clusters, 195 could 177 

be assigned up to species level using the taxonomic assignment strategy described in Methods. 178 

Canberra distances were calculated from MGS/CAG abundance profiles and their Principal 179 

Component Analysis (PCA) was carried out using ‘countries’ as factors for explaining the variance 180 

between samples, which showed that the Indian population formed a distinct cluster separated from 181 

the other populations in PCA (Fig. 1B). It is interesting to note that the samples from the Indian 182 

cohort were more widely spread owing to the higher inter-sample Canberra distances between 183 

Indian samples (mean = 0.689) as compared to other datasets having average inter-sample 184 

distances of 0.61, 0.59 and 0.54 for USA, China and Denmark populations, respectively 185 

(Additional File 5: Figure S1). This could be attributed to the significant (FDR Adj. P-value = 186 

0.00013) differences in MGS abundance profiles between LOC1 and LOC2 populations as 187 

revealed on comparison of their principal coordinates (Additional File 5: Figure S2).  188 

Further, the identification of enriched metagenomic species (MGS) from P-values calculated using 189 

negative binomial (NB) model-based Wald test (implemented in DESeq2) and Log Odds Ratio 190 

showed that the species belonging to the genera Bacteroides, Alistipes, Clostridium, and 191 

Ruminococcus were depleted in the Indian population (China, Denmark and USA; Log Odds Ratio 192 

< -2 and Adj P-value <0.01), whereas the MGS/CAGs annotated as Prevotella, Mitsuokella, 193 

Dialister, Megasphaera, and Lactobacillus were found to be associated with the Indian population 194 

(Adj P-value < 0.01; Log Odds Ratio > 2), and were the major drivers for separation of Indian 195 

samples from other populations (Additional File 5: Figure S3; Additional File 6). Furthermore, 196 

the distribution of microbial families across ten different populations was also calculated using 197 

16S rRNA gene markers, which revealed Indian gut microbiome to have the highest abundance of 198 
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Prevotellaceae (Fig. 1C). The feature selection method applied using random forest along with 199 

pairwise Wilcoxon rank-sum test also identified Prevotellaceae to be significantly higher (FDR 200 

Adj. P< 0.05) in gut microbiome of Indian cohort compared to the other population datasets except 201 

Indonesia (P-value = 0.506) (Additional File 5; Figure S4, S5 and S6) where a comparable 202 

abundance of Prevotellaceae was present. The high abundance of Prevotellaceae in Indian 203 

population underscores its importance as the marker taxa for the Indian cohort. 204 

Microbial functions enriched in the Indian population 205 

Functional comparison of Indian microbiome with other populations was carried out by mapping 206 

the genes derived from assembled contigs to the EggNOG database. In total 69,386 EggNOG 207 

functions were identified from the Indian gut microbiome, including 2,328 novel functions 208 

obtained from clustering the unmapped genes (see Methods). The core microbial functions that are 209 

essential for microbial survival and present in almost 80% individuals were used for the functional 210 

comparison. The core microbiome was derived using a similar strategy as employed in MetaHIT 211 

(see Methods) [25]. A set of 1,890 essential genes from six bacterial species namely, Escherichia 212 

coli MG1655I and MG165II, Bacteroides thetaiotaomicron VPI-5482, Pseudomonas PA01, 213 

Salmonella enteric serovar Typhi and Staphylococcus aureus NCTC 8325 were obtained and were 214 

assigned with eggNOG annotations. The eggNOG abundance profile generated from relative 215 

abundance of genes observed in Indian and other population dataset were ranked based on their 216 

mean abundance in descending order. The range of eggNOGs that included 85% of the 1,890 217 

essential genes were considered as part of the core microbial eggNOG set for each population 218 

dataset and was used for the analysis. Most of the essential genes were included in the top-ranking 219 

clusters suggesting that the essential genes are present in higher abundance than the accessory 220 

function genes (Additional File 5: Figure S7).  221 
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The core microbiome of Indian samples was compared with the core microbiome of USA, China 222 

and Denmark populations. The proportion of essential genes covered by top-ranking eggNOG 223 

clusters showed that 85% of the essential genes could be covered in the least number (15,300) of 224 

eggNOGs in the case of Indian population, whereas it was covered by  a higher (30,900) number  225 

of eggNOGs in the case of USA (20,400), China (19,900) and Denmark populations (Additional 226 

File 5: Figure S8). These observations suggest that the core functional microbiome of Indian 227 

population is less diverse than the other populations. This corroborates well with the alpha 228 

diversity (mean Shannon index) calculated using gene abundance tables rarefied at 1,000,000 229 

seqs/sample (for n=30 random iterations), which also showed that the Indian microbiome is 230 

significantly (P-value < 10-16) less diverse than the microbiome of the other populations analysed 231 

in this study (Additional File 5: Figure S9).  232 

In total, 5,588 eggNOGs were characterized as core functions commonly present in the core 233 

microbiome of all the four population datasets. The co-inertia (Procrustes) analysis and the 234 

eigenvalues calculated from PCA using both core and accessory functions also showed that the 235 

Indian gut microbiome was significantly (FDR Adj. P-value = 6.4 x 10-10 , 2 x 10-16 and 0.05 with 236 

China, Denmark and USA, respectively for PC1) different from the other datasets (Fig. 2A & B). 237 

These results also show the uniqueness of Indian gut microbial functions in composition and 238 

diversity at both core and accessory levels. The Indian gut microbiome was found to be enriched 239 

(FDR Adj. P<0.05, Log Odds Ratio >1.5) in functions for carbohydrate and energy metabolism 240 

including degradation of complex polysaccharides and glycogen and was also enriched for 241 

enzymes from TCA cycle, which corroborates well with the carbohydrate-rich diet of the Indian 242 

population (Fig. 2C and 2D and Additional File 7: Enriched KO and EggNOG functions). 243 
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Unsupervised clustering of Indian samples and their association with previously identified 244 

enterotypes 245 

A study by Arumugam et al. classified the samples from multiple populations into clusters based 246 

on genus level profiles, and identified three prominent clusters called enterotypes [2]. In order to 247 

identify the enterotypes from Indian gut microbiome, a meta-analysis was performed using genus 248 

level abundances of samples from the four nations as used by Arumugam et al. along with the 249 

Indian cohort. There were three prominent clusters observed with majority (63.6%) of Indian 250 

population falling into enterotype-2, which was primarily driven by Prevotella. The analysis 251 

revealed differences in the distribution of samples from LOC1 and LOC2, where a higher number 252 

of samples from LOC1 (73.5%) were associated with enterotype-2 compared to LOC2 (54%). In 253 

contrast, LOC2 samples were associated with enterotype-1 (30.3%) and enterotype-3 (16.07%), 254 

which were driven by Bacteroides and Ruminococcus, respectively (Fig. 3A; Additional File 8).  255 

An independent microbial abundance-based clustering of Indian samples using Jensen Shannon 256 

distances revealed two prominent clusters. The clustering was validated using Calinski Harabasz 257 

index (CHI) and prediction strength, which uses a cross-validation approach to validate the 258 

robustness of clustering (Additional File 9). Cluster 1 was primarily enriched in species from 259 

genus Prevotella (P< 10-10), and Cluster 2 was quite widely spread and was enriched in species 260 

belonging to Bifidobacterium (P=10-13), Ruminococcus (P=0.031), Clostridium (P=0.04) and 261 

Faecalibacterium (P= 0.046) (Additional File 5: Figure S10, Additional File 10). The higher 262 

abundance of Prevotella in LOC1 and Bacteroides in LOC2 in India are perhaps due to the 263 

different dietary habits of the two locations. The LOC1 population was mainly consuming a 264 

carbohydrate-rich diet comprising of vegetable-based foods and grains, whereas the LOC2 265 

population was consuming a diet consisting of rice, meat and fish. Similar variations in 266 
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microbiome diversity due to differences in dietary habits have also been observed in earlier studies 267 

[27, 28]. However, to confirm the above observations and to assess the quantitative effect of dietary 268 

habits on microbial variations, further longitudinal studies are necessary where detailed dietary 269 

information needs to collected through a food-frequency questionnaire. 270 

A similar cluster analysis performed using the functional information derived from the abundance 271 

of KEGG Orthologs (KO) also showed the clustering of samples into two distinct clusters, namely  272 

C1 and C2 (Additional File 5: Figure S11). In comparison to clusters derived from taxonomic 273 

information, only 14 out of 110 samples were placed in different clusters using the functional 274 

information showing a significant concordance (P-value = 0.6841; Fisher’s exact test; Additional 275 

File 11). C1 was found enriched in genes coding for enzymes such as β- glucosidase (LOR = 276 

3.364; P-value = 10-20), and α-fucosidase (LOR = 0.73; P=10-8), which are involved in the 277 

breakdown of plant-polysaccharides, whereas the genes coding for enzymes such as lipase (LOR 278 

= -1.34; P=10-12), carnitine-coA dehydratase (LOR = -1.81; P-value = 0.029) and amino peptidase 279 

(LOR = -2.72; P=10-10), which are involved in the metabolism of animal-based diet, were enriched 280 

in C2 (FDR Adj. P<0.05) (Additional File 12). 281 

To identify the covariates explaining the maximum variations in microbial profiles across samples, 282 

unweighted unifrac distances were calculated using phylogenetic distances between OTU 283 

reference sequences and OTU table rarefied at 100,000 seqs/sample. The principal component 284 

analysis of Unifrac distances and the correlation of loadings for each sample with the covariates 285 

using polyserial/biserial correlation identified distinct locations (LOC1 and LOC2) and diet 286 

(vegetarian and omnivorous) to be the major covariates explaining the variation in taxonomic 287 

diversity between samples (Additional File 5: Figure S12, Additional File 13). An ordination of 288 

110 Indian samples using gene abundance profiles from metagenomic data showed location and 289 
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diet to be significantly (FDR Adj. P-value < 0.01; Polyserial Correlation) associated with PC1 290 

explaining the maximum variation between samples (Additional File 5: Figure S13, Additional 291 

File 13). A comparison of functional diversity using gene abundance curves with increasing 292 

number of samples performed between the two locations  showed that the microbiome profiles of 293 

LOC2 populations were more diverse in their composition compared to LOC1 populations 294 

(Additional File 5: Figure S14). The inter-individual Bray-curtis distances calculated on 295 

normalized gene abundance profiles between LOC1 and LOC2 populations also showed 296 

significant differences (FDR Adj. P<0.05), where LOC2 population displayed higher inter-297 

individual heterogeneity in their microbial community structure as compared to LOC1 population 298 

(Additional File5: Figure S15).  299 

Major differences in the microbiome profiles were apparent at Phylum level (using 16S rRNA 300 

gene amplicon sequencing) from the higher Bacteroidetes to Firmicutes ratio (P=0.002) in LOC1 301 

(1.93) compared to LOC2 (0.86), which have been previously reported as a result of differences 302 

in dietary habits, i.e. vegetarian or plant-based (carbohydrate-rich) vs. omnivore or animal-based 303 

(protein-rich) diets (Additional File 5: Figure S16) [29, 30]. Notably, these variations were not 304 

attributable to BMI (Spearman’s Rank correlation, FDR Adj. P=0.78). Taxonomic profiles 305 

generated from metagenomic datasets through reads mapped to reference genomes were compared 306 

between the two locations at genus and species level using NB model-based Wald test 307 

implemented in DESeq2. Prevotella and Megasphaera were observed to be higher in LOC1, 308 

whereas Ruminococcus and Faecalibacterium were higher in LOC2 (FDR Adj. P<0.05, Wilcoxon 309 

rank-sum test); (Fig. 3B). Within these genera, P. copri, P. stercorea species were significantly 310 

higher in LOC1, whereas F. prausnitzii and R. bromii belonging to genus Faecalibacterium and 311 

Ruminococcus, respectively were higher in LOC2. In addition, Akkermansia muciniphila, 312 
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Eubacterium siraeum and Roseburia hominis were observed higher in LOC2, and M. funiformis 313 

and M. hypermegale from genus Megamonas were higher in LOC1 (Fig. 3C). Moreover, the 314 

metagenomic species derived from clustering of gene profiles depicted that out of 86 differentially 315 

enriched MGS/CAG obtained from MGWAS, the MGS/CAGs annotated to Prevotella copri were 316 

found enriched in LOC1 (Log Odds Ratio > 2; Adj. P<0.05; 19 MGS/CAG), whereas MGS/CAGs 317 

annotated to SCFA producing species such as Faecalibacterium prausnitzii and Roseburia 318 

inulinivorans were enriched in LOC2 (Adj. P<0.05; Log Odds Ratio < -2; 67 MGS/CAG) 319 

(Additional File 14). Interestingly, both, F. prausnitzii and R. inulinivorans, species enriched in 320 

LOC2 are known SCFA producers, and are regarded as commensals with anti-inflammatory 321 

properties [31]. In contrast, Prevotella, which was abundant in the LOC1, is known to be 322 

associated with fibre-rich diet [32]. 323 

Defining the Indian gut metabolome  324 

The analysis of microbial community structure and functions from the two locations having 325 

different lifestyle and diet revealed significant insights. Previous studies have shown a direct role 326 

of diet in shaping the different gut microbiomes [33]. Thus, to gain deeper insights into the 327 

metabolic activity of microbiomes from LOC1 and LOC2 as driven by different diets, faecal 328 

metabolites were analysed using a GC-MS-based metabolomics approach. An unsupervised 329 

between class analysis of metabolomic profiles separated the samples into three separate clusters, 330 

and the robustness was confirmed using prediction strength and Silhouette index (Fig. 4A and 331 

4B). Polyserial correlation of covariates showed location to be the major factor explaining the 332 

variation at PC1 (FDR Adj. P<0.01) separating Cluster 1 from Cluster 2 and 3. In contrast, 333 

vegetarian and omnivorous diet groups emerged as other factors explaining the variation at PC2 334 

(FDR Adj. P<0.01), and separating Cluster-2 from 3 (Additional File 15). The Cluster-1 was 335 
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associated with LOC1 and showed higher concentration of saturated fatty acids including palmitic 336 

acid, stearic acid, and valeric acid. Cluster-3 was associated with LOC2 and showed higher 337 

abundances of BCAAs, valine, leucine and isoleucine, and SCFAs, propionate and butyrate 338 

concentrations. Cluster-2 was enriched in D-glucose, galactose, mannose, lauric acid and 339 

cadaverine (a polyamine associated with meat consumption) [34]. To assess the effect of different 340 

covariates on the separation of samples, PERMANOVA was performed (Table 2). The location 341 

was found to explain maximum variation for separation of samples, whereas diet was the second 342 

most important variable in explaining the variance. The OPLS-DA model was used to expose the 343 

class separation for each of the covariates using Q2 values which assesses the quality measurement 344 

(Table 3). The OPLS-DA models validated by random permutation (n=200) of class labels showed 345 

Q2 values for location and diet to be higher than Q2 values produced from random permutations 346 

with location showing highest Q2 values (Additional File 5: Figure S17). The OPLS-DA model 347 

also showed clear separation of samples between locations as class of separation (Fig. 4C). 348 

Positive correlation of BCAA transporters with BCAA levels in faecal metabolome 349 

We also identified the marker metabolites, which showed significant (Spearman’s correlation, 350 

FDR Adj. P<0.05) associations with LOC1 or LOC2. In total, 17 metabolite clusters were 351 

identified, of which nine were associated with LOC1, and eight were associated with LOC2 352 

(Additional File 16). These marker metabolites showed a positive association with MGS/CAGs. 353 

For instance, Prevotella annotated clusters correlated significantly with valeric acid and 354 

sedoheptulose metabolite markers, which showed a higher relative abundance in LOC1. In 355 

contrast, MGS/CAGs belonging to Faecalibacterium, Clostridium, Ruminococcus, and Alistipes 356 

were positively associated with BCAAs, cadaverine, propanoate and lauric acid in LOC2 (Fig. 357 

5A). In addition to the positive association of BCAAs with species enriched in LOC2, a correlation 358 
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analysis of significantly different (FDR Adj. P<0.05, DESeq2-based Wald test; Additional File 359 

17) functional modules revealed that faecal BCAA abundances were positively correlated with 360 

BCAA transporter abundance in LOC2. In contrast, BCAA abundance in the faecal metabolome 361 

showed a negative correlation (P<0.05) with BCAA biosynthesis pathways (Fig. 5B).  362 

The above observations are significant given that BCAAs are important metabolites involved in 363 

glucose homeostasis by stimulating insulin secretion [35]. Higher BCAA levels in the faecal 364 

samples could be a result of its inward transport in microbial cells by the BCAA transporters, 365 

leading to their accumulation in the microbial cells detected in faecal metabolome. This is 366 

concordant with higher relative abundance of Bacteroides vulgatus and Eubacterium sireaeum in 367 

LOC2 compared to LOC1, which are known to harbour higher abundance of BCAA transporters 368 

(Fig.3C) [8]. Further support for this hypothesis emerged from the correlation of circulating 369 

BCAA levels (valine and isoleucine) in serum with the corresponding concentrations in faeces. 370 

Interestingly, serum BCAA concentrations were significantly higher in LOC1 individuals as 371 

compared to LOC2 individuals, which is in contrast with their BCAA levels in the faecal 372 

metabolome (Fig. 6A). Thus, one possibility is that the accumulation of BCAA in the faeces of 373 

individuals of LOC2 was mediated by the inward transport of BCAA by the gut bacteria. In 374 

contrast, the lower BCAA accumulation in gut microbes and a higher BCAA biosynthesis by 375 

microbial species and its eventual absorption in serum appears to be a plausible reason for the 376 

higher BCAA concentrations in serum of LOC1 population. 377 

Role of Prevotella copri in the regulation of BCAA levels 378 

To explore the differences in association of functional pathway modules between the two 379 

locations, KOs within each module were correlated with KOs from other modules using 380 

Spearman’s correlation coefficient. The KOs showing significant differences in correlations 381 
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between LOC1 and LOC2 were identified. This differential correlation analysis of BCAA 382 

biosynthetic modules with other pathways in LOC1 and LOC2 revealed that BCAA modules were 383 

independently driven in LOC1 and LOC2 (Spearman’s rank correlation, FDR Adj. P<0.01) 384 

(Additional File 5: Figure S18A & B). To identify the species and the metabolic pathways that 385 

contributed most to the BCAA abundance in faecal and serum metabolome profiles, a correlation 386 

analysis with iterations leaving each species out was performed for each metabolic module (Figure 387 

6B). The species whose removal leads to a maximum change in the correlation of metabolic 388 

pathway with metabolite was identified, and was considered as an important contributor of that 389 

metabolite.  390 

Notably, the BCAA biosynthesis-dependent changes in BCAA levels were largely driven by 391 

Prevotella species through threonine-dependent and independent biosynthesis pathways as 392 

observed from Delta SCCbg values when genes from this species were removed (see Methods). 393 

The correlation network analysis with differential MGS/CAGs revealed threonine-independent 394 

isoleucine biosynthesis pathway to be highly correlated with Prevotella copri in LOC1 (Fig. 6C). 395 

The first enzyme, D-citramalate synthase, catalysing the first step of threonine-independent 396 

isoleucine biosynthesis pathway was also observed as highly enriched (LOR = 1.7) in LOC1 [36]. 397 

Further, BCAA biosynthesis pathways was found higher in LOC1, whereas BCAA transporters 398 

were higher in LOC2 (Fig. 6D) leading to the dynamic changes in BCAA concentrations in faecal 399 

and serum metabolome in LOC1 and LOC2 as observed in Fig. 6A.  400 

Discussion 401 

Compositional and functional human gut microbiome studies in different populations have been 402 

instrumental in establishing the role of gut microbiome in human health [2, 28, 37, 38]. However, 403 

such population-specific signatures and their functional roles are yet unknown for the Indian gut 404 
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microbiome. This study provides the first insights into the Indian gut microbiome represented 405 

through a cohort of 110 individuals from two prominent locations to reveal the taxonomic and 406 

functional diversity using 16S rRNA gene, metagenomic analysis, and metabolomic profiling. 407 

Though, the sequencing depth in the study was not too high (1.5 ± 0.5 Gbp per sample, mean ± 408 

standard deviation), but due to the generation of longer paired-end reads (150x2 bp), the sequence 409 

data generated from a cohort of 110 individuals appears reasonably enough to provide the first 410 

insights on the Indian gut microbiome. Given the high diversity of diet and lifestyle in India, the 411 

selection of two distinct locations (Bhopal-LOC1, and Kerala-LOC2) as the representative sub-412 

populations was an important consideration. LOC1 provided a representation of the population 413 

from North-Central India mainly consuming a carbohydrate and fat rich diet, whereas LOC2 414 

represented a population from Southern India consuming an omnivorous diet with rice and animal-415 

based products as the primary components. 416 

This study established the gene catalogue of the Indian gut microbiome, which provides the first 417 

insights into the yet unknown functional gut microbiome of the Indian population. The genes 418 

encoding several transposons, peptidase, glucosidase, and plant polysaccharide degradation 419 

enzymes were unique to the Indian population and not represented in other microbiome datasets. 420 

The Updated-IGC (IGC+India) constructed by the addition of unique non-redundant genes from 421 

the Indian population to the Integrated gene catalogue is likely to act as a reference dataset for gut 422 

microbiome studies for global comparative studies, and particularly for studies involving South-423 

Asian populations that have similar dietary habits and lifestyle.  424 

In addition to the basic housekeeping functions of the gut microbiome, which were also found 425 

abundant in other datasets, the Indian gut microbiome was enriched in functions for carbohydrate 426 

and energy metabolism including degradation of complex polysaccharides, which corroborates 427 
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well with the typical carbohydrate-rich diet of the Indian population [39]. The distant clustering of 428 

Indian samples from other populations revealed the unique composition of the Indian gut 429 

microbiota (Fig. 1B). Prevotella emerged as the most discriminatory genus associated with the 430 

Indian population as revealed by both amplicon and MGWAS. Its abundance was also indicated 431 

in the previous 16S rRNA gene-based microbiome studies of the Indian population carried out in 432 

small to medium-sized cohorts [18, 19]. Recently, Prevotella has been commonly observed in 433 

different non-Western communities that consume a plant-rich diet, such as in the Papua New 434 

Guineans, native Africans, rural Malawians, BaAka pygmies, etc [11, 40]. and has also been 435 

associated with vegetarianism in the Western populations [41, 42]. However, it has not been 436 

observed at such high abundance in the western countries so far. The MGWAS approach in this 437 

study showed the presence of Megasphaera, Lactobacillus and Mitsuokella as the other major 438 

driver genera associated with the Indian gut microbiome. 439 

Several recent studies have shown a relationship between the abundance of specific strains of 440 

Prevotella with inflammatory diseases, since it has a higher intrinsic capacity to stimulate Th17-441 

mediated inflammation, which is generally not expected in a strict commensal bacteria [41, 43, 442 

44]. However, the high abundance of Prevotella in the healthy gut microbiome of the Indian 443 

population does not corroborate with its potential inflammatory role reported so far. Since this 444 

study was only focussed on the gut microbiome of healthy individuals, it is difficult to draw 445 

conclusions on the potential inflammatory role of this species. One aspect to this could be the 446 

complex set of interactions between host genetic risk factors and environment in which the 447 

presence of Prevotella may be only one of the factors [45]. Further, strain-level variations are 448 

known in the inflammatory responses and not all species of Prevotella could be potentially 449 

inflammatory, as also evident from the known high genetic diversity within and between the 450 
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species of Prevotella [43]. Thus, the high abundance of Prevotella in the healthy microbiota 451 

emphasizes the requirement for larger cohort studies in different populations to gain deeper 452 

insights into the potential inflammatory roles of gut microbes. 453 

The abundance of Prevotella has been associated with plant-based diets, and the typical 454 

carbohydrate-rich diet of the Indian population could be one of the reasons for the over-455 

representation of this genus in the Indian gut microbiome [46]. Likewise, the predominance of 456 

other microbial species from genus Lactobacillus, Megasphaera and Mitsuokella could be due to 457 

the higher intake of fermented food and dairy products along with the carbohydrate-rich diet in 458 

LOC1 [46, 47]. Similarly, Bacteroides and Clostridium, which were abundant in LOC2, are 459 

associated with diets rich in animal-based products, consistent with the omnivorous diet of LOC2 460 

[42]. Interestingly, taxonomy-based clusters 1 and 2 showed associations with the two locations 461 

LOC1 and LOC2, and also with the two KO-based clusters (C1 and C2) (Additional File 5: Figure 462 

S10 and S11). It is to be noted that C1 was enriched in enzymes involved in the degradation of 463 

carbohydrate and plant polysaccharides, which correlates well with the carbohydrate-rich diet in 464 

LOC1. In contrast, C2 was enriched in enzymes involved in lipid and protein degradation, which 465 

relate to the constituents of an omnivorous diet in LOC2. These observations further support the 466 

correlation between location, diet, and enterotype. Although, the concept of enterotype 467 

classification is sometimes criticised due to statistical weakness in some studies, however, a meta-468 

analysis of Indian samples with samples from Arumugam et al. revealed three robust clusters with 469 

Indian samples mostly associated with enterotype-2 driven by Prevotella [2]. This statistically 470 

sound classification of samples from multiple population/studies into enterotypes has the potential 471 

to be clinically relevant in various aspects such as disease diagnosis, early-detection of disease, 472 

biomarker development, personalised treatments and xenobiotic metabolism [48]. It is a 473 
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representation of the major microbial species in the gut microbiome, and thus appears useful for 474 

microbiome-based population stratification. A robust statistical analysis with increased sample 475 

sizes, direct clinical associations, and detailed molecular interventions are essential for further 476 

strengthening its potential. 477 

The study also established the previously unknown faecal metabolome of the Indian population, 478 

which showed strong clustering into three metabolomic clusters differentiated by location and diet. 479 

The metabolomic clusters also correlated well with the respective dietary habits of the two 480 

locations, where metabolomic Cluster-1 showed an association with LOC1 and was enriched in 481 

saturated fatty acids such as palmitic acid and stearic acid, whereas metabolomic Cluster-3 showed 482 

an association with LOC2, and was enriched in BCAAs such as isoleucine, valine and leucine, and 483 

SCFAs such as propionic acid, and butyric acid. A medium chain fatty acid (MCFA) ‘lauric acid’ 484 

was also found abundant in LOC2 perhaps due to the high dietary consumption of coconut oil in 485 

this location [49, 50]. Lauric acid has known health benefits such as preventing fat deposition in 486 

blood vessels and acting as an anti-inflammatory and anti-oxidative agent [51].  487 

The major BCAA ‘isoleucine’ being produced through a less common threonine-independent 488 

pathway for isoleucine biosynthesis, and the higher enrichment of the key enzyme, D-citramalate 489 

synthase of the above pathway confirmed its higher abundance in LOC1 as compared to LOC2. 490 

Further, this pathway was found to be associated with a single species, Prevotella copri as reported 491 

earlier [8]. Taken together, it appears that the higher abundance of BCAA biosynthesis genes and 492 

a lower abundance of BCAA inward transporters in gut microbiome resulted in the lower BCAA 493 

accumulation in the fecal metabolome, and higher BCAA concentration in serum as observed in 494 

LOC1 (Fig. 7) [8]. However, a contrasting pattern was observed in the case of LOC2, where the 495 

lower abundance of BCAA biosynthesis genes and the higher abundance of BCAA inward 496 
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transporters correlated well with the higher and lower BCAA concentrations in faeces and serum, 497 

respectively. 498 

The higher levels of SCFAs in LOC2 could be a consequence of the consumption of omnivorous 499 

diet, which is associated with a Firmicute-rich gut microbiome [52]. SCFAs have well-established 500 

roles in human health as an energy source, an anti-inflammatory agent, and for improving intestinal 501 

homeostasis by increasing IL-18 production [53]. In contrast, higher serum BCAA levels have 502 

well-known roles in promoting insulin resistance and Type-2 Diabetes (T2D), and were found 503 

higher in the serum in LOC1. Several reports on the role of a high-fat diet in the modulation of 504 

microbiota and alteration in intestinal barrier are emerging, which results in the increased 505 

absorption and circulating levels of branched-chain amino acid (BCAA) and in the reduction of 506 

SCFAs such as butyrate, acetate, propionate, and secondary bile acids, as also noted in the case of 507 

LOC1 [54, 55]. High-fat and carbohydrate-rich diets have also been associated with an increase in 508 

abundance of Bacteroidetes (gram-negative bacteria) leading to a skewed Bacteroidetes: 509 

Firmicutes ratio towards the former phylum [32]. Such a ratio was also apparent in this study in 510 

LOC1 dominated by Prevotella from the phylum Bacteroidetes. Further, a higher serum 511 

concentrations of circulating BCAA were also observed in LOC1. These results provide hints on 512 

the role of dietary habits in shaping the gut microbiome and its plausible impact on the BCAA and 513 

SCFA dynamics observed in these populations.  514 

To conclude, this multi-omics based gut microbiome study of a healthy cohort populations from 515 

two different parts of India provides novel insights into the Indian gut microbiome and 516 

metabolome, and reveals the unique gene catalogue from the poorly characterized Indian 517 

population. Further studies using higher sequencing depths, and including both healthy and 518 
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diseased individuals will help in obtaining more comprehensive functional and taxonomic 519 

information of gut microbiome from Indian population and its impact on human health. 520 

Methods 521 

Study design and subject enrolment 522 

The study cohort consisted of 110 healthy individuals belonging to different age groups from 523 

infants (<1 year) to aged (>50 years), with an average subject age of 29.72 ± 17.4 years (mean ± 524 

sd) from two different locations across India i.e., Bhopal (LOC1, n=53) and Kerala (LOC2, n=57), 525 

which are separated by ~1000 miles. LOC1 was located in North-Central India with the majority 526 

of population being vegetarian, whereas LOC2 was located in Southern India where the population 527 

with dietary habits mostly consisting of rice, seafood and red meat (Diet description section in 528 

Additional File 1). According to the ‘Indian Food Composition Table’, the primary Indian diet is 529 

rich in carbohydrates such as rice, wheat and potato, and in fat and proteins from milk and dairy 530 

products [56]. In addition, several accompaniments to the primary diet also exist including a 531 

variety of grains, vegetables, fruits, and usage of oil, spices and animal products.  532 

The faecal samples for metagenomics and blood samples for serum metabolomics were collected 533 

from healthy participants and their metadata is provided in Additional File 1 under the Metadata 534 

information section. The recruitment of volunteers, sample collection, and other study-related 535 

procedures were carried out by following the guidelines and protocols approved by the Institute 536 

Ethics Committee of Indian Institute of Science Education and Research (IISER), Bhopal, India. 537 

Each faecal sample was frozen within 30 mins of the collection. A written informed consent was 538 

obtained from all subjects prior to any study-related procedures, along with information on gender, 539 

age, and diet for a period of one month prior to the collection of faecal samples. The recruited 540 
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individuals did not undergo any medication at least one month prior to the sample collection. All 541 

the recruited individuals had an average BMI of 21.16 (±5.23), and were not diagnosed with T2D 542 

at the time of sample collection, and did not have a second-degree relative history of T2D. The 543 

above samples were then used for 16S rRNA gene V3 hypervariable region amplicon sequencing, 544 

shotgun metagenomic sequencing, and metabolomic analysis.  545 

Faecal metagenomic DNA extraction 546 

Metagenomic DNA was isolated from all the faecal samples using QIAamp Stool Mini Kit 547 

(Qiagen, CA, USA) according to the manufacturer’s instructions. DNA concentration was 548 

estimated by Qubit HS dsDNA assay kit (Invitrogen, CA, USA), and quality was estimated by 549 

agarose gel electrophoresis. All the DNA samples were stored at -80 °C until sequencing. 550 

16S rRNA gene amplicon and shotgun metagenome sequencing 551 

The extracted DNA (5ng) was PCR amplified with seven different custom modified 5ʹ-end 552 

adaptor-ligated 341F and 534R primers (See the primer details section in Additional File 1) 553 

targeting the V3 hypervariable region of 16S rRNA gene. After evaluating the amplified products 554 

on 2% w/v agarose gel, the products were purified using Ampure XP kit (Beckman Coulter, Brea, 555 

CA USA). Amplicon libraries were prepared by following the Illumina 16S rRNA gene 556 

metagenomic library preparation guide. Metagenomic libraries were prepared using Illumina 557 

Nextera XT sample preparation kit (Illumina Inc., USA) by following the manufacturer’s protocol.  558 

Library size of all the libraries was assessed using Agilent 2100 Bioanalyzer (Agilent 559 

Technologies, Santa Clara, USA.), and quantified on a Qubit 2.0 fluorometer using Qubit dsDNA 560 

HS kit (Life technologies, USA) and by qPCR using KAPA SYBR FAST qPCR Master mix and 561 

Illumina standards and primer premix (KAPA Biosystems, Wilmington, MA, USA) following the 562 

Illumina suggested protocol. Both the amplicon and metagenomic libraries were loaded on 563 
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Illumina NextSeq 500 platform using NextSeq 500/550 v2 sequencing reagent kit (Illumina Inc., 564 

USA), and 150 bp paired-end sequencing was performed at the Next-Generation Sequencing 565 

(NGS) Facility, IISER Bhopal, India.  566 

Amplicon-based taxonomic analysis 567 

A total of 24 Gbps of data were retrieved on de-multiplexing of paired-end reads with an average 568 

of 210 Mbp per sample. The paired-end reads were assembled using FLASH and were quality 569 

filtered at Q20 (80% bases) Phred quality score using NGSQC Toolkit v 2.3.3 [57, 58]. The primer 570 

sequences were trimmed from the High Quality (HQ) reads. The reads were further clustered into 571 

OTUs using closed-reference OTU picking protocol of QIIME at ≥97% identity against ARB 572 

SILVA database release 132 (13th December 2017) [59, 60]. The most abundant read was selected 573 

as the representative sequence for each OTU and was assigned with taxonomy using the SILVA 574 

database. OTU table containing the abundance of each OTU for each sample was generated and 575 

used for further analysis. For phylogenetic analysis, representative 16S rRNA genes of phylotypes 576 

were aligned against a core set of 16S rRNA gene sequences using align_seqs.py with the PyNAST 577 

v.1.2.2 algorithm [61]. The unweighted unifrac distances between samples were calculated using 578 

rarefied OTU abundance (100,000 seqs/sample) table and phylogenetic distances between 579 

representative sequences from each OTUs [62]. 580 

Pre-processing of the Metagenomic reads 581 

A total of 150 Gbp of metagenomic sequence data (mean = 1.36 Gb) was generated from 110 582 

faecal samples. The metagenomic reads were filtered using NGSQC toolkit v2.3.3 with a cutoff 583 

≥Q20 [57]. The high-quality reads were further filtered to remove the host-origin reads (human 584 

contamination) from bacterial metagenomic reads using 18mer matches parameter in Best Match 585 

Tagger BMTagger v3.101 (http://casbioinfo.cas.unt.edu/sop/mediawiki/ index.php/Bmtagger), 586 
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which resulted in the removal of an average of 1% reads. The reads from each sample were 587 

assembled separately into contigs using IDBA ud version 1.1.0 [63] with parameters “-mink 31 –588 

maxk 87 –step 5”. The reads from each samples were mapped to contigs to estimate read 589 

recruitment using FR-HIT version 0.7 [64]. The unmapped reads resulting from each sample were 590 

pooled together and denovo assembly was performed on the combined set of singleton (unmapped) 591 

reads from all samples. The ORFs from each contig (length ≥ 500bp) were predicted using 592 

MetaGeneMark v.3.38 [65]. Pair-wise alignment of genes was performed using BLAT version 593 

2.7.6 [66], and the genes which had an identity ≥ 95% and alignment coverage ≥ 90% were 594 

clustered into a single set of non-redundant genes, from which the longest gene was selected as 595 

the representative ORF to construct the non-redundant gene catalog. 596 

Integrated Gene Catalog (IGC), which represents 1,297 human gut metagenomic samples 597 

comprising of HMP, MetaHIT and Chinese datasets, was retrieved [24]. The gene catalogue 598 

constructed from Indian samples was combined with the IGC to construct a non-redundant gene 599 

catalog (using identity ≥ 95% and alignment coverage ≥ 90%) and is referred to as ‘Updated-IGC’ 600 

in the subsequent analysis. 601 

Quantification of gene content 602 

The quantification of gene content was carried out using the strategy performed by Qin et al., [7]  603 

where the high-quality reads were aligned against the updated IGC using SOAP2 in SOAP aligner 604 

version 2.21 with an identity cut off ≥ 90% [67]. Two types of alignments were considered for 605 

sequence-based profiling:  606 

(1) The entire paired-end read mapped to the gene. 607 

(2) One end of paired-end read mapped to a gene and other end outside genic region. 608 
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In both cases, the mapped read was counted as one copy.  609 

The relative abundance of a gene within the sample was calculated as: a𝑖 =
b𝑖

∑ 𝑗b𝑗
 610 

ai: relative abundance of gene in sample S; xi: The times in which gene i was detected in sample S 611 

(the number of mapped reads); bi: copy number of gene i in sequenced data from sample S. 612 

Phylogenetic assignment of reads 613 

A total of 4,097 reference microbial genomes were obtained from Human Microbiome Project 614 

(HMP) and National Centre for Biotechnology Information (NCBI) on 5th December 2015 615 

(Additional File 18). The databases were independently indexed into two Bowtie indexes using 616 

Bowtie-2 version 2.2.9 [68]. The metagenomic reads were aligned to the reference microbial 617 

genomes using Bowtie-2. The mapped reads from both indexes were merged by selecting the 618 

alignment having the higher identity (≥ 90% identity). The percent identity was calculated using 619 

the formula: %identity = 100*(matches/total aligned length). The normalized abundance of a 620 

microbial genome was calculated by summing the total number of reads aligned to its reference 621 

genome. For reads showing hits to both indexed databases with equal identity, each genome was 622 

assigned 0.5 read count. The relative abundance of each genome was calculated by adding the 623 

normalized abundance of each genome divided by the total abundance. The Calinski Harabasz 624 

index (CHI) was used to calculate the variance between the clusters compared to the variance 625 

within clusters [2]. 626 

Construction of common core microbial functions 627 

To identify the core microbial functions in the gut microbiome of Indian populations and to 628 

understand their abundance compared to the other populations, the core microbiome was 629 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



constructed using a similar strategy as mentioned in MetaHIT [25]. However, to construct a 630 

comprehensive core functional microbiome, the information of essential functions from six 631 

different microbes including two strains of Escherichia coli, Bacteroides thetaiotaomicron, 632 

Pseudomonas aeruginosa, Salmonella enteric and Staphylococcus aureus, was used instead of 633 

considering a single microorganism. The list of essential genes was collected from DEG database 634 

v5.0 [69]. 1,890 genes were identified as essential genes in all the six microorganisms. These genes 635 

were aligned against eggnog v4.1 database using diamond and were annotated with eggNOG ID 636 

[70, 71]. The core gut microbiome functions were also calculated using the above strategy for the 637 

USA, Denmark and Chinese population gut microbial samples to remove the variations arising 638 

due to differences in data analysis procedures. Apart from identifying the clusters that represented 639 

≥85% genes within the range of essential gene functions, the low prevalent eggNOG functions, 640 

which were present in ≥ 0.0001% abundance in ≥ 80% of samples in that population, were further 641 

filtered out. This added filtration step helped in removing all the low abundant functions. To 642 

represent the core, the variance of these functions was also calculated between the two Indian 643 

locations. The eggNOGs showing significant deviations in variations (P-value≤ 0.05; Levene’s 644 

test) [72] were further filtered out from the analysis. 645 

Construction of Metagenomic Species for MGWAS 646 

To identify metagenomic markers using a reference-independent approach on metagenomic 647 

samples, a metagenome-wide association study was performed for 340 samples (age and gender 648 

matched) including India (both locations), USA, China and Denmark populations. The genes 649 

present in at least ≥10% of samples were considered and clustered using the canopy-mgs algorithm 650 

as described [73]. The genes having Pearson’s correlation coefficient (≥0.9) were clustered into 651 
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CAGs. Furthermore, the genes for which ≥ 90% abundance was obtained from a single sample 652 

were discarded.  653 

To determine the taxonomic origin of each MGS/CAG (metagenomic cluster), all the genes were 654 

aligned against reference microbial genomes of 4,097 genomes from HMP and NCBI at nucleotide 655 

level using BLASTN [74]. The alignment hits were filtered using an E-value ≤10-6 and alignment 656 

coverage ≥ 80% of the gene length, and 2,773,591 (25.6%) genes showed alignments against the 657 

reference genomes. The remaining 8,049,540 unassigned genes were aligned against UNIREF 658 

database (UniRef 50) at protein sequences [75], of which 4,553,299 genes (56.56%) could be 659 

assigned with taxonomic annotations. The sequences that found multiple top hits with equal % 660 

sequence identity and scores were further assigned taxonomy based on LCA (Lowest Common 661 

Ancestor) method. The genes were finally assigned to taxa based on comprehensive parameters of 662 

sequence similarity across phylogenetic ranks as described earlier [76]. The identity threshold of 663 

≥95% was used for assignment up to species level, ≥85% identity threshold for assignment up to 664 

genus level, and ≥65% identity was used for phylum level assignment using BLASTN. The 665 

taxonomic assignments of MGS/CAGs were performed with the criteria that ≥50% genes in each 666 

MGS should map to the same lowest phylogenetic group. Thus, if a particular species is assigned 667 

≥50% genes out of the total genes, the assignment will be carried out at species level rather than 668 

at genus or higher orders. The relative abundance of MGS/CAGs in each sample was estimated by 669 

using relative abundance values of all genes from that MGS/CAG. A Poisson distribution was 670 

fitted to the relative abundance values of the data. The mean estimated from Poisson distribution 671 

was assigned as the relative abundance of that MGS. The profile of MGS/CAGs were generated 672 

and used for further analysis. 673 

Faecal and Serum metabolomic sample preparation and derivatization 674 
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Lyophilized faecal samples were used to achieve better metabolite coverage as described 675 

previously [77].  Metabolites were extracted with 1 mL of ice-cold methanol: water (8:2) from 80 676 

mg of lyophilized samples in a bath ultrasonicator (Bioruptor TM UCD-200, Diagenode, USA) at 677 

4°C for 30 min followed by 2 min of vortexing. The supernatant was extracted by centrifugation 678 

at 18,000 g for 15 min at 4°C and dried at 50°C under a gentle stream of nitrogen gas. To remove 679 

the residual water molecules from the samples, 100uL of toluene was added to the dry residue and 680 

evaporated completely at 50°C under nitrogen gas. Dry extracted metabolites were first derivatized 681 

with 50 uL of methoxyamine hydrochloride (MOX) in pyridine (20 mg/mL) at 60°C for 2 hours, 682 

and the second derivatization was performed with 100 uL of MSTFA in 1% TMCS at 60°C for 45 683 

min to form trimethylsilyl (TMS) derivatives. Finally, 150 uL of the TMS derivatives was 684 

transferred into a GC glass vial inserts and subjected to GC/TOFMS analysis. Serum samples were 685 

prepared (polar metabolites only) and derivatized as described by Psychogium et al., 2011 [78].  686 

Method development and validation 687 

Matrix dilution approach was used for validating the linearity and range of dilution [77]. Pooled 688 

faecal samples were used to create the reference peaks to validate the peaks coming from 689 

individual samples, which were needed due to the presence of a relatively high abundance of faecal 690 

metabolites in the pooled samples. The supernatant of feces after extraction was serially diluted 2, 691 

5, 10, 50, 100, 200 and 500 times with methanol: water (8:2). At dilution 2, the maximum numbers 692 

of peaks were seen and were processed with the same dilution factor for all the samples. A total of 693 

30 chemical standards mixture and the pooled faecal samples were used to validate the method. 694 

Each stock solution of test standard was carefully prepared in deionized water or with pure ethanol 695 

(50,150 350, 500 um) for the determination of linear range, regression coefficient (R2), limit of 696 
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detection (LOD), and repeatability. L-norvaline (1, 2.5, 5, 10, 20 mg/ml in ethanol) was used as a 697 

spiked external standard for the optimized derivatization of the method. 698 

GC-MS analysis 699 

GC-MS was performed on an in-house Agilent 7890A gas chromatograph with 5975C MS system. 700 

An HP-5 (25 m × 320 um × 0.25 um i.d.) fused silica capillary column (Agilent J&W Scientific, 701 

Folsom, CA) was used with the open split interface. The injector, transfer line and ion source 702 

temperatures were maintained at 220, 220 and 250 °C, respectively. Oven temperature was 703 

programmed at 70°C for 0.2 min, and increased at 10°C/min to 270°C where it was sustained for 704 

5 min, and further increased at 40°C/min to 310°C where it was held for 11 minutes. The MS was 705 

operated in the electron impact ionization mode at 70eV. Mass data were acquired in full scan 706 

mode from m/z 40 to 600 with an acquisition rate of 20 spectra per second. To detect retention 707 

time shifts and enable Kovats retention index (RI) calculation, a standard Alkane series mixture 708 

(C10–C40) was injected periodically during the sample analysis. RIs are relative retention times 709 

normalized to n-alkanes eluted adjacently. For serum samples, we used 2uL aliquot with a split 710 

ratio of 4:1 on the same column as described above. The injector port temperature was held at 711 

250°C, and the helium gas flow rate was set to 1mL/min at an initial oven temperature of 50°C. 712 

The oven temperature was increased at 10°C/min to 310°C for 11min and mass data were acquired 713 

in full scan mode from m/z 40 to 600 with an acquisition rate of 20 spectra per second. 714 

Metabolomic analysis and metabolite profile generation 715 

Raw CDF files were used for peak identification and filtering, and the XCMS package in R were 716 

used for pre-processing of the peaks. First, the parameters used for pre-processing of the reads 717 

were optimized by calculating the reliability index using the formula given below: 718 
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Reliability index = (number of reliable peaks)2 /number of unreliable peaks. 719 

The reliable peaks were identified for each of the settings such as fwhm, S/N and bw, with a 720 

predefined range of values and regression coefficient was calculated for dilutions of QC samples. 721 

The number of peaks with a high coefficient of determination (R2 ≥ 0.9) were considered reliable, 722 

whereas the peaks with very low R2 (≤ 0.05) were considered unreliable peaks [79]. The finally 723 

optimized parameters were: profmethod = bin, method = matched Filter, fwhm =8 and 5 for 724 

faecal and serum samples, respectively, and S/N = 12 and 3 for faecal and serum samples, 725 

respectively, bw =5 (for first grouping), smooth = linear, family = gaussian, extra = 1, plot type 726 

= mdevden, missing =8, bw = 3 (for second grouping). Further, to compare across multiple 727 

samples, the peak intensities were normalized (root transformed) and scaled using z-728 

transformation. These normalized and scaled peak intensities were used for further statistical 729 

analysis. 730 

A multivariate statistical method, Orthogonal Projections to Latent Structures Discriminant 731 

Analysis (OPLS-DA) [80], was used to identify differences between LOC1 samples (n=53) and 732 

LOC2 (n=55) samples. Metabolites driving the differences were identified in metabolic profiles 733 

of LOC1 and LOC2 samples using correlations coefficients. The clusters of co-abundant 734 

metabolite profiles were identified using R package "WGCNA" [81]. Signed weighted 735 

metabolite co-abundance correlation after scaling and centering was calculated across all 736 

samples. The soft threshold of β = 15 was chosen for scale-free topology. The dynamic hybrid 737 

tree cutting algorithm was used to identify the clusters with a deepsplit = 4 and minimum cluster 738 

size = 4. The profile of each faecal metabolite cluster was summarized using eigenvector. The 739 

abundance profile of each cluster of metabolites (MES) was calculated using the same 740 

methodology as used for MGS cluster abundance profiles. 741 
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Retention index (RI) calculation  742 

GC-MS data obtained from the alkene series run was used to calculate the RI for each peak in 743 

the samples, and the obtained RI values were further used at the time of library search for the 744 

identification of individual metabolite.   745 

𝐼 = 100 𝑋 [𝑛 + (𝑙𝑜𝑔𝑡𝑥 − log 𝑡𝑛)/ (log 𝑡𝑛 + 1 − log 𝑡𝑛) 746 

Where, tx = retention time of the peak, tn = retention time of preceding alkane, and tn+1 = 747 

retention time of the following alkane. 748 

Clustering and enterotype Analysis  749 

Cluster of samples in the dataset were identified from the relative abundance profiles of Genus or 750 

Orthologous groups (OG) in the samples. The Jensen-Shannon distances (which estimates the 751 

probability distributions between the samples) were calculated and the abundance profiles were 752 

clustered using PAM (partitioning around medoids) clustering algorithm as mentioned previously 753 

[82]. The optimal number of clusters was assessed using Calinski Harabasz index (CHI) that has 754 

shown good performance in recovering the optimal number of clusters [83]. Similarly, the 755 

prediction strength from ‘fpc’ package in R which used cross-validation approach was also 756 

employed as another metric for cluster validation. Both the CHI and prediction strength showed 757 

quite significantly correlated results. For clustering, CHI and prediction strength gave non-758 

identical values, silhouette index was calculated to estimate the robustness of clusters. 759 

Between class analysis 760 

The between class analysis was performed to identify the drivers and support the clustering of the 761 

genus/species/OG abundance profiles into clusters. The between class analysis is a type of 762 

principal component analysis with instrumental variables which maximizes the separation between 763 
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classes of this variable. The instrumental variables here is the cluster classification using PAM 764 

clustering and the top species, which contributed the maximum to the principal components 765 

obtained from between class analysis were identified as driver species/genus/OG based on their 766 

eigenvalues. The analysis was performed using ade4 package in R. 767 

Diversity Analysis 768 

The inter-sample Canberra distances were also calculated using MGS Abundance between 769 

populations. The richness of microbiome samples across populations was obtained from Shannon 770 

index calculated using raw gene abundance table rarefied at equal depth (1,000,000 seqs/sample) 771 

over n=30 random samplings. The beta diversity for 16S rRNA genes (between the samples) was 772 

calculated  as unweighted UniFrac distances using OTU tables rarefied at 100,000 seqs/sample 773 

and phylogenetic distance between representative sequences from each OTU [84]. The effect of 774 

covariates such as age, diet, location (LOC1 and LOC2) and gender were compared for correlation 775 

with principal components identified from principal component analysis using UniFrac distances. 776 

The polyserial correlations with P-values were calculated for categorical variables and the 777 

significance of the covariates for explaining the variation was estimated at each principal 778 

component. 779 

Network Analysis 780 

Spearman's rank correlations were computed between each of the species/MGS and the between 781 

MGS and functional modules/metabolites. The correlations with significant P-values were selected 782 

and were used for the network analysis. The undirected links were generated between correlated 783 

nodes (species/KOs/modules) and the strength of the links were given weights based on their 784 

correlation coefficients. The network structure was generated using "igraph" package in R. The 785 

modularity of the network for KOs association was generated with each module representing the 786 
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functional modules defined in KEGG database. The negative correlation was not considered in 787 

generating the network modules. Moreover, the positive correlations were filtered (ρ ≥ 0.6) for 788 

most of the network analysis. 789 

Supervised learning 790 

Predictive models were built using supervised machine learning algorithm Random Forest 791 

(RF)[85]. The models were optimized using 10,000 trees and default settings of mtry (number for 792 

variables used to build the model). The mean three-fold cross-validation error rates were calculated 793 

for each of the binary tree and the ensemble of trees. The mean decrease in accuracy, which is the 794 

increase in error rates on leaving the variable out, was calculated for each prediction and tree and 795 

was used to estimate the importance score. The variables showing a higher mean decrease in 796 

accuracy of prediction were considered important for the segregation of the datasets into groups 797 

based on the categorical variable.  798 

Statistical Analysis 799 

All the statistical comparisons between groups were performed using Negative Binomial model-800 

based Wald test implemented in DESeq2  and non-parametric Wilcoxon Rank-Sum Test with FDR 801 

Adjusted P-Values to control for multiple comparisons [86-88]. The correlations between two 802 

variables and the correlations within were calculated using Spearman’s Correlation Coefficient 803 

with Adjusted P-Values [89]. The correlations between categorical and numeric variables were 804 

performed using Polyserial correlation/biserial correlations [90]. To identify the enrichment of 805 

enzymes/species associated with a host, Odds Ratio was used as a measure of the enrichment of a 806 

feature in a group. The Odds Ratio was calculated as OR (k) = [∑s=LOC1 Ask/ ∑s=LOC1(∑i≠k Asi)]/ 807 

[∑s=LOC2 Ask / ∑s=LOC2 (∑i≠k Asi)] for enrichment of genes/species between two locations, where 808 

Ask denotes abundance of species/gene k in sample S. Also the enrichment of species/genes 809 
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between Indian microbiome compared to other datasets consisting of USA, Denmark and China 810 

referred as “OTHERS” were computed as OR(k) ([∑s=INDIA Ask/ ∑s=INDIA(∑i≠k Asi)]/ [∑s=OTHERS Ask 811 

/ ∑s=OTHERS (∑i≠k Asi)]). All the graphs and plots were generated using the ggplot2 package in R.  812 

Correlation analysis between functional modules and metabolite clusters  813 

To calculate the association of microbial functional modules with faecal metabolite clusters, the 814 

Spearman's correlation coefficients were calculated to rank KOs for association with metabolite 815 

clusters and Metabotypes. To quantify the shift in Spearman correlation between given KEGG 816 

module and the metabolite cluster compared to the background distribution, the background 817 

adjusted median Spearman's correlation was calculated for a given KEGG module m as: 818 

SCCbg.adj = median (SCCKOs ϵ KEGG Module m) – median (SCCKOs KEGG Module m)  819 

Where SCCKO is the partial Spearman's correlation coefficient between KO and the metabolite 820 

cluster.  821 

Identification of microbial species driving the association between KEGG Module and metabolite 822 

abundance was done by iterating the correlation between KO belonging to the KEGG module and 823 

the metabolite after excluding the genes annotated to that KO from each species. The change in 824 

median Spearman’s correlation coefficient between the KOs and the metabolite, when genes from 825 

that species are excluded from the analysis, was calculated as described previously [8]. The species 826 

showing the maximum change in the overall correlation of module with metabotype was plotted. 827 
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Table 1. Metagenomic datasets used for comparative analysis (Meta-analysis) of the 1074 

microbiome and MGWAS 1075 

Dataset No. of samples Sequence data (GB) No. of genes 

INDIA 110 110  4,809,378 

USA 74 441  6,521,885 

DENMARK 85 103.87  7,141,214 

CHINA 71 180.78  5,464,702 

 1076 

Table2. PERMANOVA to assess the effect of Covariates on metabolomics profiles of samples  1077 

Variable Sum of Sq Mean Sq F-Model R2 P-value 

Location 0.05841 0.058406 4.9423 0.04455 0.0009 

Diet 0.04701 0.04701 4.2132 0.03586 0.0009 

Age 0.01618 0.01618 1.4505 0.0123 0.161 

Gender 0.00488 0.00488 0.4370 0.00373 0.927 

 1078 

Table3. OPLS-DA model and its validation for different covariates as class of separation 1079 

Variable R2X Q2 (cumulative) pR2 pQ2 

Location 0.165 0.205 0.005*** 0.005*** 

Diet 0.168 0.123 0.005*** 0.005*** 

Age 0.155 -0.00067 0.075 0.065 

Gender 0.106 -0.247 0.145 0.96 

Cluster (Genus 

based) 

0.16 0.15 0.005*** 0.005*** 

pR2 and pQ2 show p-values for validation of OPLS-DA model with p value < 0.01 shown as  1080 

significant (*) 1081 
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Figure title and legends 1082 

Fig. 1. Comparison of Indian gut microbiome with other major populations using 16S rRNA 1083 

gene and metagenomic datasets. (A) Percentage of total reads that could be mapped to IGC and 1084 

updated IGC containing Indian gene catalogue. Plotted are interquartile ranges (IQR in boxes), 1085 

median (as dark lines in the boxes), lowest and highest values within 1.5 times the IQR (shown as 1086 

whiskers extending from boxes) and outliers as points beyond these whiskers. The blue and red 1087 

boxes showed percentage of reads mapped to IGC and updated IGC (containing the Indian 1088 

microbial genes). (B) Principal Component Analysis using MGS/CAG proportion derived from 1089 

MGWAS. The samples are plotted along with the MGS/CAGs having taxonomic annotations. The 1090 

MGS/CAGs are coloured according to their phylum. Variations across populations are shown 1091 

using PC1 and PC2 along with factor loadings of major MGS/CAGs as biplots. (C) Illustration of 1092 

proportions of bacterial families in different populations and their composition as determined from 1093 

16S rRNA gene datasets (adult population only). The mean family compositions of abundant 1094 

families (≥1%) are represented in separate pie plots from 10 different country-wise datasets, 1095 

showing their overall microbial composition compared to Indian population. 1096 

Fig. 2. Functional variations and differences between Indian populations and other 1097 

populations determined from core & accessory microbial functions. (A) Procrustes analysis 1098 

was performed on Bray Curtis distances calculated from core EggNOG and accessory EggNOG 1099 

abundance tables in all populations. PCA analysis shows the concordance of core and accessory 1100 

functions in India, Denmark, USA and China populations. The red and black lines are associated 1101 

with core and accessory datasets, respectively. (B) Eigenvalues calculated from PCA of samples 1102 

using core EggNOGs and accessory EggNOGs are plotted. The boxplots showing for core and 1103 

accessory eigenvalues for all samples in different populations are shown. Each box plot represents 1104 
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the median shown as white line between the boxes, the upper and lower ends of the boxes 1105 

representing upper quartile (75th percentile) and lower quartile (25th percentile). The whiskers 1106 

extending on both the ends represent 2.5* IQR (Inter Quartile Range). The different coloured dots 1107 

overlaid for each sample are plotted over the box.  The enrichment or depletion of (C) Eggnog, 1108 

and (D) Kegg functions in India compared to other populations are shown as volcano plots. The 1109 

log-transformed FDR Adj. P-values calculated from negative binomial-based Wald test from 1110 

DESeq2 are plotted on the x-axis. The log odds ratio calculated for India vs Other datasets are 1111 

plotted on the y-axis. The EggNOGs/KOs with P-value<0.05 are shown in Blue whereas those 1112 

having P-values>0.05 are shown in Red. The EggNOGs/KOs extending on right and left side and 1113 

with P-value>0.05 are labelled as highly enriched in India and other datasets, respectively. 1114 

Fig. 3. Variations in gut microbiome at the two locations. (A) Between class Analysis, which 1115 

visualizes results from PCA and clustering, using genus level abundance from 37 cross national 1116 

dataset and genus abundance of 110 Indian samples obtained from mapping of reads to reference 1117 

genomes. The samples from LOC1 (cyan), LOC2 (pink) and 37 cross national samples from 1118 

Arumugam et al. (grey and labelled) are placed into three distinct enterotypes based on clustering. 1119 

(B) Significantly different genera (FDR Adj. P-value < 0.05; NB model-based Wald test) between 1120 

the two locations are shown as boxplots with boxes representing interquartile range (IQR), dark 1121 

lines between the boxes representing median values and whiskers representing the 1.5 x IQR on 1122 

each side. (C) Scatterplot of log-transformed mean values of species abundance in LOC1 (n=53) 1123 

and LOC2 (n = 57) individuals. Red colour gradient points represent differentially abundant (FDR 1124 

Adj. P< 0.05; NB model-based Wald test) species with lower p-values from Red to Blue.  1125 

Fig. 4. Between class analysis to identify metabotypes and their associated metabolites. (A) 1126 

Metabolite clusters (MES) abundance profiles of samples were generated and their clustering was 1127 
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performed using PAM (partition around medoids) clustering. The between class and PCA of JSD 1128 

distances and PAM clustering identified 3 clusters to be optimum for their segregation using (B) 1129 

Silhouette index. The metabolites valeric acids, and saturated fatty acids such as palmitic acid and 1130 

stearic acid, were found higher in Cluster1. The carbohydrates such as glucose and galactose were 1131 

found higher in Cluster2. The branched chain amino acids, lauric acid and butyric acid were found 1132 

higher in Cluster3. (C) OPLS-DA analysis using locations as classes shows locations as 1133 

differentiating factors in separating the samples based on their metabolomic profiles.  1134 

Fig. 5. Spearman’s Rank correlations of metabolites with species and metabolic modules. (A) 1135 

Spearman's Rank Correlation coefficients were calculated between significantly different 1136 

metagenomic species and significantly different metabolites between LOC1 and LOC2 1137 

populations. The correlations showing significant FDR Adj. P <0.05 are plotted. The bars on the 1138 

right show the Log Odds Ratio of the abundance of MGS with positive values indicating 1139 

enrichment in LOC1, and the negative values indicating enrichment in LOC2. (B) Spearman's 1140 

Rank correlations between significantly different (FDR Adj. P<0.05, NB model-based Wald test) 1141 

pathway modules and significantly different metabolite abundances in all samples. The significant 1142 

(P<0.05) correlations are plotted and the colour intensities depict the correlation coefficients. The 1143 

correlation of metabolites with locations is shown with labels in dark red colours showing 1144 

association with LOC2, and the labels in green colours showing correlation with LOC1.  1145 

Fig. 6. BCAA abundance and their differential correlation with LOC1 and LOC2. (A) Bar 1146 

plot showing z-normalized values of serum and faecal BCAA (Valine and Isoleucine) relative 1147 

concentration in LOC1 and LOC2. (B) The effect of specific microbial species on associations 1148 

between BCAA biosynthesis pathways and BCAA levels in faecal metabolome, illustrated by 1149 

change in background adjusted Spearman’s correlation coefficient when a given species has been 1150 
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excluded from analysis is shown (see Methods). The density plot shows the distribution of 1151 

correlation for species and the changes caused by specific species as marked by lines below. (C) 1152 

Network analysis of Spearman's correlations between the branched chain amino acids 1153 

biosynthesis, degradation and transport KEGG modules with MGS abundance in both LOC1 and 1154 

LOC2 populations. The node size is proportional to the degree of interactions and the links between 1155 

module and MGS show interactions or significant correlations (FDR Adj. P < 0.05) with negative 1156 

(in Red) and positive (in Blue) correlation coefficients.  (D) Plot showing relative abundance of 1157 

KOs associated with different modules of BCAA biosynthesis and transporters in LOC1 and 1158 

LOC2. 1159 

Fig. 7. BCAA transporters playing a key role in maintaining the levels of BCAAs in faeces 1160 

and serum 1161 

The dynamics of BCAA concentration levels in faecal and serum metabolome influenced by 1162 

microbial BCAA biosynthesis and transport pathways and their differential abundance in LOC1 1163 

and LOC2 is shown 1164 

 1165 

Additional Files 1166 

Additional File 1: Supplementary data containing the metadata and sample information 1167 

Additional File 2: Summary of sequencing statistics showing the number of reads per sample for 1168 

16S rRNA gene amplicon dataset 1169 

Additional File 3: Summary of sequencing statistics showing the number of reads per sample for 1170 

Whole Genome Shotgun metagenomic dataset 1171 
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Additional File 4: Summary of the reads mapped to Integrated Gene Catalogue and Indian 1172 

catalogue combined with IGC. 1173 

Additional File 5: Figures S1 to S18 1174 

Additional File 6: Differentially abundant MGS between India and other populations 1175 

Additional File 7: Differentially abundant functions (Kegg Orthologues (KOs) and EggNOGs) 1176 

between India and other populations. 1177 

Additional File 8: Sample-wise representation of Indian samples into Enterotypes identified from 1178 

Meta-analysis with 37 samples from four nations used in Arumugam et al. 1179 

Additional File 9: Calinski Harabasz index and prediction strength calculated for clusters derived 1180 

from 16S rRNA gene based genus abundance, metagenome based species abundance and 1181 

metagenome based KO abundance profiles. 1182 

Additional File 10: Mean relative abundance of genus in Cluster-1 and Cluster-2 and their 1183 

associated P-values of difference calculated using NB model based Wald test. 1184 

Additional File 11: The sample-wise association into clusters using Genus based and KO based 1185 

clustering and their differences. 1186 

Additional File 12: Differentially abundant KEGG orthologue functions between Cluster-1 and 1187 

Cluster-2. 1188 

Additional File 13: Polyserial correlation of covariates with principal components explaining 1189 

variations across samples using unweighted UniFrac distances. 1190 

Additional File 14: Differentially abundant MGS observed between two locations and their 1191 

enrichment calculated using Log Odds ratio and NB model based P-values. 1192 
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Additional File 15: Polyserial correlation of covariates with principal components explaining 1193 

variations across samples using metabolomics data. 1194 

Additional File 16: Table shows the Spearman’s rank correlation coefficient values of metabolites 1195 

with Metabotypes. 1196 

Additional File 17: Table shows the differential abundance of KEGG Modules between LOC1 1197 

and LOC2 1198 

Additional File 18: List of reference genomes from NCBI and HMP databases for reference 1199 

mapping  1200 
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To          1st November 2018 

The Editor 

GigaScience 

 

Dear Editor, 

On behalf of the co-authors, I wish to submit the revised manuscript entitled ‘The unique composition 

of Indian gut microbiome, gene catalogue and associated faecal metabolome revealed using 

multi-omics approaches’ for your kind consideration for publication in the GigaScience journal.  

We sincerely thank both the reviewers and editor for the valuable comments and suggestions that 

helped in making significant improvements in the manuscript. We have revised the manuscript as per 

the reviewer’s suggestions and have provided detailed replies to each comment. The revised 

manuscript text has been marked in Pink and Orange colours to indicate the changes made as per the 

suggestions of reviewer 1 and 2, respectively. The detailed reply to reviewer’s comments is also 

provided at the end of this letter. The prominent revisions made in the manuscript are mentioned below. 

 The title of the manuscript is revised as per the suggestions of reviewer 2 and editor. 

 The raw data has been released for public access at NCBI, and was also uploaded on the 

GigaScience ftp server. 

 ARB-SILVA taxonomy database is now used as reference database for 16S rRNA gene-based 

taxonomic analysis in place of Greengenes database. 

 The gut microbial gene catalogue of Indian cohort has been further improved and the 

downstream analysis using it has been updated.  

 Statistical analysis has been revised with DESeq2-based normalization and Wald test in place 

of Wilcoxon test. Addition analysis such as ordination of samples from Indian cohort as 

suggested by reviewer 2, and enterotype analysis using samples from Arumugam et al. 2011, 

as suggested by reviewer 1 have now been performed and included.   

 The manuscript text, figures, tables and supplementary data have been revised as per the 

reviewer’s suggestions and analysis performed during the revision. 

 The discussion has been toned-down and revised at several places as per the suggestions, 

particularly relating to the impact of microbiome composition on health. 

The revised manuscript presents the first large-scale multi-omics data and analysis of the gut 

microbiome of 110 healthy Indian individuals from two sub-populations (North-central and Southern 

India) with distinct dietary habits. The study reveals the unique composition of Indian gut microbiome, 

and provides significant clues on the role of diet in shaping the gut microbiome. The study also 

established the previously unknown faecal metabolome of the Indian population. The ‘Updated-IGC’ 

constructed in this study consisting of both Indian and Integrated Gene Catalogues (India+IGC) will 

act as a valuable resource for the International gut microbiome community. We believe that the 

manuscript will be of interest to a wide range of readers in the field of gut microbiome research. 

We confirm that we have not discussed this work with any board members of GigaScience and further 

affirm that the reported work is original and is not under consideration in any other journal for 
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Replies to Comments -Reviewer 1 

 

The revised manuscript text has been marked in Pink and Orange colours to indicate the changes 

made as per the suggestions of reviewer 1 and 2, respectively. 

 

Reviewer #1: The study entitled "Multi-omics analysis reveals Indian gut microbiome variations 

due to diet and location and its implications on human health" describes an in-depth sequencing 

and metabolomic analysis of a unique set of samples from two distinct locations in India. The 

authors correlate bacterial species composition and fecal metabolites in order to draw 

conclusions about health in the two geographic locations and the link with diet and disease risk. 

Specifically, the North Central, primarily vegetarian population, consumes a high proportion of 

high-fat and sugary foods and ranks among the lowest for life-expectancy. This is compared to 

a Southern location with an omnivorous population with a much higher life expectancy and 

lower risks of T2D and cardiovascular disease. 

The correlation and discussion of specific metabolites and risk factors in the North Indian 

population versus the Southern population, and the conclusions appears to be supported by the 

data. The authors concentrate on a limited number of major metabolites, BCAAs and SCFAs, 

and link these to pathways identified in the bacterial species that are present in the populations. 

This focused approach is quite effective and the subsequent detailed discussion of P. Copri is 

very relevant (previous association with rheumatoid arthritis). The importance of bacteria-

driven metabolism and its association with vegetarian diets are all interesting points where this 

study of the Indian population brings news perspectives. 

Indeed the uniqueness of the Indian population, an under-sampled population, is a major 

contribution to the available databases. It is for this reason that I consider the work appropriate 

for publication with a certain number of minor revisions prior to publication: 

 

Reply: We thank the reviewer for appreciating our work and providing suggestions which really 

helped in improving the manuscript. We have tried our best to satisfactorily address the comments and 

have performed all the suggested analysis. Additionally, we have improved the metagenomic assembly 

of Indian gut microbiome using IDBA-UD assembler (Kuang et al.; GigaScience; 2017: Please see 

Methods section). The mean N50 values across all samples showed an increase from 946 bp to 2,288 

bp, and the total contig size increased from 1.78 Gbp to 3.086 Gbp (Please see Supplementary Figure 

1) in the revised assembly. The updated non-redundant gene catalogue for Indian gut microbiome now 

consists of 1,551,581 genes. The genes from Indian gene catalogue were added to the Integrated Gene 

Catalogue (IGC) to construct the ‘Updated Integrated Gene Catalogue’ (India+IGC), which now 

consists of 10,823,291 non-redundant genes. We have updated all the corresponding results as per the 

revised Updated IGC and the suggestions provided by reviewer. 

Reference 

Kuang et al.; Connections between the human gut microbiome and gestational diabetes mellitus; 

GigaScience; 2017; doi 10.1093/gigascience/gix058 

 

 

 

General comments: 

-Subjects were excluded if there was reported use of antibiotics during the previous month. How 

was this cutoff determined and was any analysis performed on the cohort to determine if there 



was any residual effect of antibiotic use (a known issue in India)? This could be as simple as a 

PCoA plot, using time since last antibiotics exposure as a variable in the 16s diversity analysis. 

Reply: We agree with the Reviewer that antibiotic treatment can have residual effects on the gut 

microbiome and is an important consideration while collecting the samples. A few recent studies have 

specifically examined these effects, such as the study carried out by Suez et al. demonstrated that a 

period of 28 days was sufficient for spontaneous recovery of microbiome composition after antibiotic 

treatment (Please refer Figure 2 of the article [1]). A recent study by Ruixin Liu et al. [2] has also used 

the same criteria, where the subjects who did not receive any antibiotic treatment for at least one month 

prior to sample collection were selected (Please refer to Online Methods: ‘Faecal sample collection 

and DNA extraction’ section of the cited manuscript). Dethlefsen and Relman [3] show that 

microbiome communities return to their initial state within one week after the end of antibiotic course. 

However, we agree that the return of microbiome composition to initial state do vary depending on the 

type of antibiotic used and can be incomplete. We also agree with the Reviewer’s suggestion that a 

PCoA using time as variable since last antibiotic exposure and estimating its effect would help to 

identify the effect of treatment on microbiome composition. However, we did not collect this data 

during the sample collection, and thus could not perform this analysis. Nevertheless, as per the above 

mentioned studies including the recent ones, we were very careful in recruiting only those volunteers 

who were not exposed to any antibiotic treatment for over a month.  

References 

1. Jotham Suez et al; Post-Antibiotic Gut Mucosal Microbiome Reconstitution is Impaired by 

Probiotics and Improved by Autologous FMT; Cell; 2018; doi:10.1016/j.cell.2018.08.047 

2. Ruixin Liu et al; Gut microbiome and serum metabolome alterations in obesity and after 

weight-loss intervention; Nature Medicine; 2017; doi:10.1038/nm.4358 

3. Les Dethlefsen and David Relman; Incomplete recovery and individualised responses of the 

human distal gut microbiota to repeated antibiotic perturbation; PNAS; 2011; 

doi:10.1073/pnas.1000087107 

 

-Could the authors please explain their use of Greengenes 13_5? This release dates to 2013. Was 

SILVA tested? 

 

Reply: We used the Greengenes database because of its wide use in large number of microbiome 

studies (Yatsunenko et al; Nature; 2011 & Nakayama et al; Sci Rep; 2016) and also in some of our 

early publications (Maji et al; Environ Microbiol; 2018, Pullikan J et al; Microb Ecol; 2018). We agree 

with the Reviewer’s suggestion of using ARB SILVA database for taxonomic classification of 16S 

rRNA gene sequences since the Greengenes database has not been updated after May 2013, which 

justifies the use of more recently updated SILVA database.  

As per Reviewer’s suggestion, we have now repeated the 16S rRNA gene analysis using ARB SILVA 

database release 132 (13th December 2017) as reference database for taxonomic annotation. In order 

to visualize the differences in the results generated from analysis using the two databases, we compared 

the taxonomies and OTUs generated from the two databases. The Supplementary Table 1 provides 

details on the percentage of reads assigned at different hierarchical levels using Greengenes and ARB 

Silva database as reference. There was a marked increase in assignment of OTUs at genus level using 

ARB SILVA database (95.2%) compared to Greengenes database (54.56%). The increase in the 

taxonomic annotation was also observed for other population datasets used in the comparison 

(Supplementary Table 1). 

After the reanalysis of 16S rRNA gene data using the annotations from ARB SILVA database, the 

results have been updated in the revised manuscript in the Results and Figures (please see Figure 1C, 



Additional File 5: Figure S3, Figure S5 and Figure S10). We observed similar trends with significant 

improvements in the annotations of OTUs at the genus level. 

References 

Tanya Yatsunenko et al; Human gut microbiome viewed across age and geography; Nature; 2012; 

doi:10.1038/nature11053 

Jiro Nakayama; Diversity in the gut bacterial community of school-age children in Asia; Nature 

Scientific Reports; 2015; doi:10.1038/srep08397 

Maji A. et al; Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis 

patients by alteration of butyrate and propionate producers; Environmental Microbiology; 2018; 

doi:10.1111/1462-2920.14015 

Pullikan J. et al; Gut microbial dysbiosis in Indian children with Autism Spectrum Disorders; 

Microbial Ecology; 2018; doi:10.1007/s00248-018-1176-2 

 

-I am convinced of the utility of the study, despite some of the additional comments below. 

Therefore, I would request that the raw shotgun metagenomics data also be made available, and 

not just the assembled contigs as is currently the case. This is extremely important so that future 

groups can improve on assemblies and annotations as more data is generated from future 

studies. 

 

Reply: As per the reviewer’s suggestion, we have now released the raw reads data which can be found 

at NCBI SRA (https://www.ncbi.nlm.nih.gov/sra) with Project ID: PRJNA397112. The assembled 

contigs, genes and gene catalogue will also be uploaded on the Giga Science ftp server, which can be 

accessed by any researcher for the future studies.  

 

Specific comments: 

Line 209: "Detection of Enterotypes" The authors use the term 'analysis of enterotypes', 

referring to Arumugam et al., for the analysis performed in this section and relate the results to 

those found in the previous study. However the resulting two enterotypes are more accurately, 

and simply, called clusters, as they are based on two distinct populations in the current study 

only. This is in contrast to four-country, 22-metagenome analysis performed in Arumugam et al. 

I would suggest that the terminology be revised. This same type of nomenclature is repeated in 

line 272: 'metabotype.' I thank that referring to these as clusters is more accurate and more 

consistent. 

It is also present in the discussion (lines 400-401) and methods (699). I would just stress again 

that two distinct geographical locations which can be statistically separated into two groups, 

within a single study, does not constitute an enterotype as defined in Arumugam et al. As LOC1 

and LOC2 are distinct in this study, factoring this information into clinically relevant models 

(lines 403-408) does not require a further variable. The analysis and conclusions about the two 

groups, nevertheless, appear valid. 

My suggestion, if the authors wish to use the "enterotype" comparison, would be to explore how 

this new dataset of 110 individuals fits when combined with that from Arumugam et al. Do the 

samples still classify into three enterotypes, and what is the distribution across LOC1 and 

LOC2? 

Reply: We agree with the Reviewer’s suggestion that the term ‘enterotype’ should be used when 

referring to cross national clusters resulting from similarities in microbiome profiles of different 

populations and their clustering into groups.  



We thank the reviewer for the valuable suggestion to compare the Indian samples with that of 

Arumugam et al., and see if the Indian samples could still be classified into the three enterotypes. Thus, 

we performed the meta-analysis of 37 samples from the four nations used in Arumugam et al. with our 

Indian cohort consisting of 110 samples (Please see Figure 3A and Additional File 8). We were able 

to classify the Indian samples into three enterotypes using genus-level abundance of 110 Indian + 37 

samples from four countries (Arumugam et al.). We also identified the distribution of samples from 

LOC1 and LOC2 in these three enterotypes. We could observe clear differences in representation of 

samples from India and the other four populations. We could also identify the differences in 

representation of samples from LOC1 and LOC2 among these enterotypes. We thank the Reviewer for 

suggesting this analysis, which helped in confirming the previous analysis and results. We have revised 

the results section ‘Line: 246-255’ to include the above analysis and have highlighted in pink. We 

have also revised the terminology from ‘enterotypes’ to ‘clusters’ when referring to the clusters using 

only Indian datasets in all the sections. 

 

Line 235: 16S Data Analysis 

The authors use rarefied reads for downstream analysis. This type of normalization, while useful 

for calculating UniFrac distances, is no longer accepted as the gold standard for statistical 

analysis of 16s data. See (McMurdie PJ, Holmes S. Waste not, want not: why rarefying 

microbiome data is inadmissible. PLoS computational biology. 2014). The authors should 

explain why they decided to use sub-sampling normalization. How the threshold of 100K was 

determined? 

 

Reply: We thank the reviewer for this important suggestion on normalizing the 16S rRNA gene counts. 

Regarding the threshold of 100K, it was a cut-off based on the lowest sequencing depth among all the 

samples. We agree with the reviewer that the rarefactions method is useful for calculating UniFrac 

distances, however for comparative analysis it is not the gold standard now, and should be replaced 

with the methods used in study by McMurdie et al; PLOS Computational biology, as highlighted by 

the Reviewer. We would like to mention that we did not use rarefaction in any of our statistical analysis 

or comparisons except for diversity estimations (Alpha and Beta Diversity). For statistical analysis, 

we used relative abundance of taxa. As per the reviewer’s suggestions, we have now revised all the 

statistical analysis performed using DESeq2 package in R as mentioned in the study (McMurdie et al.) 

suggested by the Reviewer. The Unifrac analysis has been revised based on OTUs picked using SILVA 

database (Please see Additional File 5: Figure S11 and Additional File 13). 

 

The differential analysis performed in relation to clinical data and location (lines 247-255) should 

be reanalyzed using current normalization methods (e.g. DeSeq2 or edgeR packages exist for R). 

 

Reply: We appreciate and agree with the reviewer’s suggestions on normalization. Earlier, we had 

calculated relative abundance by normalizing the raw count of each taxon with total number of reads 

in each sample. However, as per the reviewer’s suggestion we have now re-run all the differential 

analysis on raw counts at taxonomic level using negative Binomial model based-Wald test in DESeq2. 

The genera that showed significant difference between Location 1 and Location 2 were plotted (Please 

see Figure 3B). We also reanalysed the differential species between LOC1 and LOC2 using DESeq2 

based normalization on raw abundances of species obtained from mapping of metagenomic reads to 

the reference genomes (Please see Figure 3C). Further, differential analysis between clusters was also 

performed using DeSeq2 based normalization on raw counts (Please see Additional File 10). The 

results and figures have now been updated according to the latest analysis carried out using DESeq2. 



 

Lines 347-352: The addition of 110 individuals is a major contribution. Yet, I think that the 

authors would agree, any future metagenomics analysis of the intestinal microbiota, even those 

focusing on South-Asia populations, would best be accomplished using the IGC + this study's 

additional database. Analysis would not be performed using this study's catalog alone. Please 

consider rewording here to accurately present the impact of the study. 

 

Reply: We agree with the reviewer’s suggestion that IGC+ Indian gene catalogue (constructed in this 

study), referred to as ‘Updated-IGC’, would be more useful as a reference database than the Indian 

gene catalog alone even when studying the South-Asian populations. Thus, we have now also uploaded 

the ‘Updated IGC’ at the GigaScience web server. We have also revised the line 421-424 to include 

these changes. 

 

Line 561: The authors appear to perform normalization in relation to gene length, probably 

RPKM. Like 16s analysis, it has been demonstrated that this type of normalization is not the 

most appropriate for whole genome metagenomics analysis (https://doi.org/10.1186/s12864-016-

2386-y). The authors should rerun the analysis to validate that the bacterial species cited in the 

manuscript remain significant after applying a modern normalization method such as DESeq2 

or edgeR. Perhaps other significant species will also be identified. 

 

Reply: We do agree with the Reviewer that the method of normalization can have an impact on the 

results. As per the reviewer's suggestion, we have now recalculated gene abundance for all the datasets 

as raw counts instead of normalizing them by gene length, or as proportions. The raw read counts of 

genes were used for MGWAS analysis and the construction of MGS was performed. The MGS 

abundance was recalculated, and reanalysed using DESeq2. The P-values obtained were used for 

further analysis. The differential abundance of MGS between India and other datasets were determined 

using negative binomial model-based Wald test implemented in DESeq2 for calculating the P-values 

(Please see Additional File 5: Figure S2, Additional File 6). Moreover, the differential abundance (P-

value calculation) of MGS between LOC1 and LOC2 was also determined using DESeq2 based 

normalization (Please see Additional File 14). Using the raw abundance, we also re-calculated 

abundance of EggNOG, KEGG Orthologues (KO) and KEGG Modules and performed differential 

analysis using NB model based Wald test in DESeq2 (Please see Figure 2C, 2D and Additional File 7, 

Additional File 12, Additional File 17). We have now revised the manuscript at the above mentioned 

places to include the revised results. 

 

Line 603: The reference cited does not describe the canopy-mgs algorithm. The correct reference 

is Nature Biotechnology volume 32, pages 822-828 (2014); 'Identification and assembly of 

genomes and genetic elements in complex metagenomic samples without using reference 

genomes.' This reference also describes MGS (metagenomic species) that the authors refer to 

(Line 726, and elsewhere in text). 

 

Reply: We thank the Reviewer for pointing out this error. We have now corrected this reference in the 

manuscript (Line: 650). 

  



Reply to Comments- Reviewer 2 

 

The revised manuscript text has been marked in Pink and Orange colours to indicate the changes 

made as per the suggestions of reviewer 1 and 2, respectively. 

 

Reviewer #2: # SUMMARY 

In this manuscript Dhakan & Maji et al. report on their multi-omic analyses of 110 healthy 

individuals from two distinct regions in India. The authors obtained 16S rRNA gene (V3 region) 

amplicon sequencing data, metagenomic sequencing data, and metabolomic data from 

volunteers' faecal samples. In addition, metabolomic data from serum samples were obtained. 

Using the metagenomic sequencing data, the existing Integrated Gene Catalog (IGC) was 

expanded by adding novel, non-redundant genes derived from the India cohort. This represents 

an important addition to the IGC, thereby further complementing the global, human gut-derived 

microbial gene catalog. The authors compared the taxonomic composition (amplicon and 

metagenomic data) and the functional potential (metagenomic data) of Indian-derived gut 

samples to samples from earlier studies (China, Denmark, USA) and found the Indian 

microbiome to be largely distinct. The authors conclude that diet is likely to be a strong factor 

in this, especially since the eating habits are often strongly conserved according to region. Using 

the metabolomic data, Dhakan & Maji et al. identified differences in the faecal and serum 

concentrations according to region. 

# GENERAL COMMENTS 

Overall, I think that this study nicely complements existing microbiome studies by further 

expanding gut microbiome characterization to include samples derived from an Indian 

population and from different diets (plant-based and omnivorous). Moreover, it highlights the 

importance of complementary omics, here, metabolomics, in the study of host-microbe 

interactions. 

Reply: We thank the reviewer for appreciating our work and providing suggestions which really 

helped in improving the manuscript. We have tried our best to satisfactorily address the comments and 

have performed all the suggested analysis. Additionally, we have improved the metagenomic assembly 

of Indian gut microbiome using IDBA-UD assembler (Kuang et al.; GigaScience; 2017: Please see 

Methods section). The mean N50 values across all samples showed an increase from 946 bp to 2,288 

bp, and the total contig size increased from 1.78 Gbp to 3.086 Gbp (Please see Supplementary Figure 

1) in the revised assembly. The updated non-redundant gene catalogue for Indian gut microbiome now 

consists of 1,551,581 genes. The genes from Indian gene catalogue were added to the Integrated Gene 

Catalogue (IGC), to construct the ‘Updated Integrated Gene Catalogue’ (India+IGC) and now consists 

of 10,823,291 non-redundant genes. We have updated all the corresponding results as per the revised 

Updated IGC and the suggestions provided by reviewer. 

Reference 

Kuang et al.; Connections between the human gut microbiome and gestational diabetes mellitus; 

GigaScience; 2017; doi 10.1093/gigascience/gix058 

 

While many of the authors' conclusions are supported by the reported results, I found that some 

conclusions need to be toned down as there is not sufficient supporting evidence for these 

conclusions. Please also see my detailed comments.  



Reply: We have made our best efforts to address all the comments and have provided below a point-

wise reply to the comments and suggestions. We have also revised the Discussion section at several 

places to tone down the conclusions correlating the impact of microbiome composition on health as 

suggested by the reviewer.  

 

The metagenomic sequencing depth in this study is unfortunately not particularly deep, but 

neither is it shallow. While sequencing depth is always a limiting factor, it is an important factor 

if the objective is the recovery of novel genetic/genomic information. This needs to be considered 

when concluding. 

Reply: We agree with the reviewer that sequencing depth is a limiting factor in metagenomic studies. 

In this study, the sequencing depth was not too high (1.5 ± 0.5 Gbp per sample, mean ± standard 

deviation), compared to the datasets from other microbiome studies (METAHIT: 4.5 Gbp, 100bp 

reads; Human Microbiome Project: 2.9 Gb, 100bp reads; Qin et al; 2012: 2.61Gbp, 100 bp reads) that 

were used for comparison with Indian microbiome. However, through a read length of 150bp and a 

decent paired-end sequencing depth (1.5Gbp) of 110 individuals in this study, we have been able to 

provide the first insights on the Indian gut microbiome and reveal its unique composition. The increase 

in sequencing depth certainly would recover more novel genetic information from low abundant 

microbes which is an important point to consider while making the conclusions. We have now 

mentioned it in the discussion section and have also considered it while interpreting the results and 

deriving conclusions (Line: 408-411, 518-520). 

References 

Qin et a; A human gut microbial gene catalogue established by metagenomic sequencing; Nature; 

2010; doi 10.1038/nature08821. 

The Human Microbiome Project Consortium; Structure, function and diversity of the healthy human 

microbiome; Nature; 2012; doi 10.1038/nature11234. 

Qin et al; A metagenome-wide association study of gut microbiota in type-2 diabetes; Nature; 2012; 

doi 10.1038/nature11450. 

 

Moreover, I found the variation/spread of the samples from the Indian cohort exceptionally large 

(Fig. 1 B). This might be something the authors could elaborate on. 

Reply: We agree with the reviewer that the spread of the samples from the Indian cohort needs to be 

discussed in the manuscript. The reason for this variation/spread is the higher inter-sample distances 

between samples from Indian population compared to other populations (Additional File 5: Figure 

S1). We have now analysed the principal coordinates from PCA in Figure 1B (Please see Additional 

File 5; Figure S2). The Wilcoxon rank sum test of coordinates at PC1 revealed significant difference 

between LOC1 and LOC2 coordinates. A plausible reason could to be the dietary differences between 

LOC2 population (non-vegetarian diet) and LOC1 population (plant-based diet), resulting into 

significant (FDR Adj. P-value = 0.0013) differences observed in their MGS abundance profiles 

(Additional File 5: Figure S2). We have now included this analysis and elaborated it in the results 

(Line: 182-188). 

 

An experiment which I would have liked to see - I am not saying that it is necessary, though - is 

an ordination of the 110 samples alone, i.e., not contrasting against samples from other studies 



but rather within the current study. I would be curious to know if there is substantial separation 

of samples according to region and/or diet. 

Reply: We thank the reviewer for this suggestion and have now performed an ordination of samples 

based on gene relative abundance table of 110 Indian samples only and observed their separation 

according to region and diet (Please see Additional File 5: Figure S13). We have also performed 

polyserial correlation to observe the effect of diet and location on separation of samples using gene 

abundance (Please see Additional File 13). The location and diet both were observed to be 

significantly associated (FDR Adj. P< 0.01) with PC1 explaining the maximum variation in the 

unsupervised clustering of Indian samples (Line: 288-292). 

 

Finally, I would strongly encourage the authors to be more careful with their conclusions on "the 

gut microbiome and its functional consequences on human health". The present study did not 

investigate "non-healthy" individuals from the respective regions. It might very well be that the 

same or very similar observations would have been made with respect to faecal/serum metabolite 

levels and correlations to respective microorganisms if "non-healthy" individuals were included 

Reply: As suggested by the reviewer, we have revised the discussion and conclusion sections, and 

have carefully rewritten the interpretations and conclusions related to human health. We have also 

revised the title of the manuscript as suggested in the later comments.  
 

 

The Data Description section should be extended. It should include description of the 

metabolomic data that was generated as well as of the metadata which was collected (Age, BMI, 

etc.). Some of this information is provided in the Methods "Study design and subject enrolment" 

and should be moved to the Data Description instead. 

Reply: As per the suggestion, we have now included the description of the metabolomic data, BMI, 

age, metadata, study design and subject enrolment in the Data Description section (Line: 109-132). 

Moreover we have now provided a separate table for data collected for different samples in Additional 

File 1. 

 

 

Instead of reporting "thresholded" p-values (e.g., "P<0.05)"), please report the actual p-values. 

Reply: We have replaced the threshold P-values with the actual P-values at most places in the 

manuscript. However at places such as Line: 317, where multiple species/genes are mentioned we have 

reported a threshold P-value for considering significant ones. 

 

I would encourage the authors to include the version and parameters of tools that were used in 

the Methods. 

Reply: We have now included the version and parameters of the tools that were used in the Methods 

section (Please see Methods section). 

 

Moreover, it appears that references are occasionally missing, e.g., for the WMW test, FDR-

adjustment, Polyserial correlation/biserial correlations, Reporter features algorithm, etc. 

Reply: Thanks for pointing it out. We have now added the references for the statistical tests used for 

the analysis. 



 

The readability of the manuscript should be further improved, e.g., by involving a professional 

editing service. 

 

Reply: We have carefully read the manuscript and have made specific efforts to improve the 

readability. I hope you would find the revised manuscript much improved than the previous version. 

 

My comments below refer to the second row of line numbers, i.e., the one _not_ in typewriter 

font. 

# TITLE 

Title: "its implications on human health": It is not clear what the "its" refers to. I would suggest 

adjusting the title accordingly. Moreover, while it has been shown that diet has an effect on the 

gut microbiome, I do not know whether "due" is the right wording here. I prefer how the authors 

phrased it in the abstract, e.g., "showed associations with". I would thus recommend a more 

careful wording. Moreover, no "non-healthy" individuals were included in the present study, 

hence making the conclusion of "implications" rather difficult due to lack of supporting evidence 

(s.a., my general comments) 

Reply: We thank the Reviewer for this suggestion. We have revised the title to provide more emphasis 

on the unique composition of Indian gut microbiome and the functional associations revealed through 

metabolomics approach. The revised title now reads as “The unique composition of Indian gut 

microbiome, gene catalogue and associated faecal metabolome deciphered using multi-omics 

approaches”. I hope the reviewers would find it more appropriate than the earlier title. 

 
 

# ABSTRACT 

L25: "comprehensively": This could be debated, e.g., at what sequencing depth would one 

consider to have covered the composition and/or function "comprehensively". Please remove 

this. 

Reply: We have removed the word ‘comprehensive’ from this line. (Line: 25). 

 

L26: "including 16S rRNA marker gene and shotgun metagenomics": This sounds to me as if 

the "16S rRNA marker gene" sequencing is also considered "metagenomics", which it is not. I 

would thus suggest "including 16S rRNA gene amplicon sequencing, metagenomic sequencing, 

and ...". 

Reply: We agree with the reviewer and understand that 16S rRNA marker gene sequencing is not 

metagenomics. While framing the sentence it appeared as one of the methods for metagenomics, and 

we thank the reviewer for pointing it out. We have now revised it in the manuscript (Line: 26-27). 

 

L32: "BCAA": This abbreviation was not introduced before. Same applies to "SCFA in L34". 

Please adjust accordingly throughout and for all other abbreviations in the manuscript. 

Reply: We have now provided the expanded form of all abbreviations at the first instance of their 

inclusion in the manuscript and have made these changes at all required places (Line: 33, 36, 37).  



 

L37: "BCAAs were found higher": "higher" in what? I assume in concentration, but this should 

be clarified in the text. 

Reply: Indeed, we were referring to the BCAA concentration, and we have now revised this sentence 

(Line: 38-40). 

 

L41: "its functional consequences on human health": I think that this is too strong of a claim 

here. In particular, this study involved only healthy individuals, hence, while there have been 

differences observed, these differences may not necessarily have a positive or negative effect, but 

could be neutral. Put differently, different gut microbiomes may be related to healthy individuals 

or "non-healthy" individuals might have revealed similar findings. 

Reply: We agree with the Reviewer and have revised the sentence (Line: 43-44). 

 

# MAIN TEXT 

L63: "constitution": This typically refers to the "the highest laws of a sovereign state, a federated 

state, a country or other polity." (https://en.wikipedia.org/wiki/Constitution_(disambiguation)). 

The authors should consider reformulating this, e.g., by using "condition" or a more appropriate 

term. Maybe the authors were referring to "composition"? It is not really clear to me, especially 

with respect to "understanding its variability". It is not just the taxonomic but also the functional 

composition which has been shown to be of importance. Hence, I would encourage the authors 

to clarify their point more explicitly here. Finally, this sentence may be misleading as "dysbiosis" 

is typically used when comparing (at least) one phenotype (e.g., lean) to another (e.g., obese). 

However, this study is focussed only on one phenotype, i.e., "healthy". 

Reply: We agree that the word ‘constitution’ can be replaced with ‘composition’ and have revised this 

sentence by including all the suggestions made by the reviewer (Lines: 54-55). 

 

L69: "WGS": This abbreviation was not properly introduced. Please make sure to do so for all 

abbreviations throughout the manuscript. 

Reply: Thank you for this comment. We have now introduced this abbreviation and all other 

abbreviations in the manuscript at their first usage (Line: 59-60). 

 

L72: "Branch" -> "Branched". 

Reply: We have corrected this word (Line: 62-63). 

 

L83: I would rephrase "from the major world populations". 

Reply: We have rephrased this statement (Line: 74). 

 

L86: I would rephrase "equally dominated". Typically, "domination" is used when a single 

entity has a majority stake. 

Reply: We have rephrased this word as ‘equal representation’ (Line: 77-78). 

 

L114: I am not sure if these two locations as well as the total cohort size (n = 110) qualify as being 



"representative". I would thus suggest to remove the respective wording. Same applies to 

"comprehensive" , s.a., my respective comment above. 

Reply: We agree with the suggestion and have removed the word ‘representative’ and reframed the 

sentence. (Line: 104-105). 

 

L115: "16S rRNA sequencing" -> "16S rRNA gene sequencing". 

Reply: We have made this change (Line: 105-106). 

 

L133ff: Was the assembly done on reads from individual samples or on the pooled set of reads? 

It is not clear as the authors emphasize pooling in the subsequent sentence which reads to me as 

if this was _not_ done to generate the 1,337,547 contigs. Please clarify. 

Reply: We wish to clarify that the assembly was performed on individual samples separately. The 

reads were mapped back to the assembled contigs from individual samples and the reads that did not 

map to the contigs from each sample were pooled from all the samples and a denovo cross assembly 

was performed using the unmapped reads from all the samples. We have employed a similar strategy 

for contigs and gene catalogue construction as used in other studies [1]. We have now clearly clarified 

this point in the revised manuscript (Line: 139-144, 590-592). 

References: 

Qin et al; A human gut microbial gene catalogue established by metagenomic sequencing; Nature 2011 

(see section Metagenomic sequencing of gut microbiomes). 

 

L139: Please remove "In addition". It sounds as if this is a result from the current paper but it 

is not. 

Reply: We have removed this word and have reframed the sentence. (Line: 146). 

 

L141: "populations" seems inappropriate here as the HMP and MetaHIT projects both involved 

multiple populations themselves. 

Reply: We agree with the reviewer and have now changed this word to “multiple populations”. (Line: 

147- 148) 

 

L145 + L146: Please specify what the numbers in the brackets with the "plus-minus" mean. Are 

they representing the standard deviation? 

Reply: As correctly pointed out by the reviewer, the ‘plus-minus’ represent standard deviation. We 

have now added standard deviation in the brackets, for example 69.2% (± 4.01% standard deviation). 

(Line: 153,155). 

 

L147f: I am not sure what the authors wanted to say here. Do they mean that reads from _other_ 

studies were mapped to the original IGC as well as to the updated IGC? 

Reply: Here, we had mapped reads from microbiome samples of healthy individuals from three 

different studies (USA datasets from HMP, Denmark dataset from MetaHIT and Chinese datasets from 

Qin et al; 2012) on the original IGC and on the updated IGC. We have reframed this statement (Line: 



158-162) and the mapping is shown in Fig. 1A. The results have been updated as per the revised gene 

catalogue. 

 

L150f: Please rephrase this to reflect that only a _subset_ of the genes of the 110 Indian gut 

samples in the current study are not represented in other gut microbiome datasets. After all, 

718,360 of the 1,479,998 non-redundant genes were added to the original IGC but not the full 

extent of the current non-redundant genes. 

Reply: We thank the Reviewer for this comment. We would like to mention that we aligned the set of 

non-redundant genes (after removal of redundancy) identified in Indian gut microbiome with the 

Integrated Gene Catalogue (IGC), and removed the genes sharing ≥90% identity with IGC genes. Thus, 

the remaining genes from Indian gut microbial gene catalogue which were unique to the IGC (sharing 

< 90% identity) were added to generate the updated IGC. As per the revised gene catalogue, 943,395 

genes from Indian microbiome samples were added to IGC, thus forming an updated IGC containing 

only the non-redundant genes from Indian cohort. We have now reframed the sentence (Line: 148-

153, 163-164). 

 

L157: "non-reference" -> "reference-independent". 

Reply: We have replaced ‘non-reference’ with ‘reference-independent’ (Line: 171) 

 

L159: Please remove "higher", it does not seem to fit here. 

Reply: We have removed the word ‘higher’ from the position (Line: 175) 

 

L164: "PCA" stands for "Principal Component Analysis", hence, the second "analysis" in the 

text is redundant. 

Reply: We agree with reviewer and have removed the word ‘analysis’ (Line: 179-180) 

 

L166: Actually, if the data was projected to PC1, there would be quite some overlap. The 

separation is actually benefiting from _both_ dimension, PC1 _and_ PC2. I would suggest 

removing the "at PC1" altogether. 

Reply: We agree with the reviewer and have removed ‘at PC1’ from this sentence (Line: 181-182). 

 

L174: "16S rRNA markers" -> "16S rRNA gene markers". 

Reply: We have replaced ‘16S rRNA markers’ with ‘16S rRNA gene markers’ (Line: 198). 

 

L175f: While, indeed, the amplicon and, to some extent, the metagenomic data suggest members 

of the Prevotellaceae to be enriched in the present cohort, referring to this family as a marker 

should be supported by quantitative analyses, e.g., statistical analysis of differences in group 

means (t-Test or WMW-test) or a classification-based approach (feature selection). 

Reply: We thank the Reviewer for this observation and suggesting the need for a statistical analysis 

to support it. We have now performed a feature selection test using Random Forest analysis (Please 

see Additional File 5: Figure S4) showing the selection of most important features (mean decrease in 

accuracy > 0.01; mean relative abundance ≥ 1% in at least one population) and their relative abundance 



in different populations. The most discriminating features (families) which were able to classify Indian 

samples from other populations were plotted rank-wise (Additional File 5: Figure S5). The pairwise 

Wilcoxon rank sum test of important families between India and other populations was performed and 

represented using box plots (Please see Additional File 5: Figure S6). The analysis has been included 

in revised manuscript (Line: 199-203). 

 

L184ff: This paragraph needs to be revised as it currently is hard to read. The sentence in L193f 

was especially hard to read and I am still unsure about what "The proportion of essential genes 

covered by top-ranking nine eggNOG clusters" means: What is the meaning of "nine" in this 

context when the authors refer to 15,000 to 30,000 eggNOG clusters later. 

Reply: We apologize for the typo error. We have removed the word “nine” from this statement. We 

have also revised this paragraph to make it more readable. Please see the changes made in the 

paragraph (Line: 215-220). 

 

L196f: It was not readily clear to me what "alpha diversity (Shannon) calculations using gene 

abundances" meant and I found the Methods lacking on this point. What gene(s) was/were used 

? Moreover, Fig. S4's legend mentions "gene proportions". How does this relate to "gene 

abundances"? It seems, from the Methods, that rarefaction was used, while the remaining 

information is scarce on this point. However, this is an important point as the sequencing depth 

in the current study (mean of 4,545,280 reads/sample) is not particularly deep (cf. Table 1) and, 

hence, gut microbes' genomes may be covered only partially. In the study by Qin et al . (2010), 

an order of magnitude more reads per sample ("an average of 62.5 million reads") were 

produced, albeit at rather short sequencing lengths of 75 bp (compared to 150 bp in the current 

study). 

Reply: We apologise for the lack of clarity in this part. We earlier did not use rarefaction at gene level 

but the entire gene proportions were used to calculate the diversity. We agree that sequencing depth 

can have large impact on diversity metrics. We have now used raw gene abundance table which were 

rarefied at a depth of 1,000,000 seqs/sample for n=30 iterations, and the mean Shannon index were 

calculated and plotted as box plot (Please see Additional File 5: Figure S9) (Kuang et al.; 

GigaScience; 2017). We have now included this information in the methods section in revised 

manuscript (Line: 228-230, 770-772).  

 

L202: What does "Eigen values, and their scores" mean, i.e., what is a "score" here? Moreover, 

they are spelled "eigenvalues", i.e., in one word. Please correct throughout. 

Reply: We have now revised the statement and also corrected the term ‘eigenvalues’ throughout the 

text as per the suggestions (Line: 235). 

 

L203: I am not sure if the authors refer here to "szignificantly" in a statistical sense or  

not. If so, please include respective quantitive results to support this conclusion. 

Reply: As you have rightly mentioned, we were referring to a statistically significant observation, and 

have now provided the FDR Adjusted P-value in this sentence (Line 236-237). 

 

L206: How was the odds-ratio computed? In the Methods, the description refers to LOC1 and 

LOC2, albeit, it seemed, i.e., I was not sure, that a comparison of Indian microbiome vs. "Other" 



microbiome was intended. If this is the case, the authors should clarify this in the Methods, i.e., 

that not only was LOC1 compared against LOC2 but also "Indian" vs. "Other" (maybe among 

other pairwise comparisons). 

Reply: The Odds Ratio was computed  to obtain the enrichment of species/genes between LOC1 and 

LOC2 as OR (k) = [∑s=LOC1 Ask/ ∑s=LOC1(∑i≠k Asi)]/ [∑s=LOC2 Ask / ∑s=LOC2 (∑i≠k Asi)], and also for 

enrichment in Indian microbiome compared to other datasets consisting of USA, Denmark and China 

referred as “OTHERS” : OR (k) = ([∑s=INDIA Ask/ ∑s=INDIA(∑i≠k Asi)]/ [∑s=OTHERS Ask / ∑s=OTHERS (∑i≠k 

Asi)]).  

We have now provided the details of comparison performed in the Methods section (Line: 809-812).  

 

L216ff: I welcome the careful wording chosen by the authors here. It appears that there is no 

detailed dietary information available which could have been used to further support the 

authors' hypothesis, but they might want to highlight this as a window of opportunity for 

future study, i.e., including something like a food-frequency questionaire to be able to 

quantitatively assess possible links to diet.  

Reply: We thank the reviewer for this suggestion. This is an important point and we have now 

included it in the revised manuscript (Line: 268-270). 

 

L227: Could the authors please elaborate on how the "Spearman's correlation coefficient" was 

used in this context? I would have applied Fisher's exact test here. 

Reply: As suggested by the Reviewer, we have now used Fisher’s exact test here. Earlier, the 

Spearman’s correlations were applied to identify the correlation between KO based and Genus based 

cluster allocation. Using Fisher’s exact test, we found no differences between Genus level and KO 

level clustering (Fisher’s exact P-value = 0.6843) in the samples assignment (Line: 275). We have 

provided the file containing details of cluster allocation for each sample (Please see Additional File 

11).  

 

L235: "16S rRNA" -> "16S rRNA gene" 

Reply: We have replaced 16S rRNA with 16S rRNA gene at all the places in revised manuscript. 

 

L236: The term "PCA" has been used previously, so this is not the place to introduce the 

abbreviation. 

Reply: We agree and have now removed this term (Line: 284-285). 

 

L240: It was not clear to me if "taxonomic and functional diversity" were combined here or not. 

However, this is important to clarify as taxonomy and function are only partially linked. 

Reply: We agree with the Reviewer that taxonomic and functional diversity are only partially linked. 

We understand that the text could have led to this confusion. We have now revised the text in 

manuscript and hope that it would read fine now (Line: 292-293). 

 

L255: Is this analysis based on amplicon or based on metagenomic sequencing data? L247 

indicates the former, while MGS/CAGs are defined based on the latter. Please clarify in the text. 



Reply: The results mentioned in line number 300-302 were based on amplicon sequencing data 

analysis using Phylum abundance, whereas the results in lines 305-314 are based on taxonomic species 

identified from metagenomic sequencing data using reads mapped to reference genomes. The results 

in line 314-320 are based on the MGS analysis from clustering of gene abundance profiles. We 

apologize for this confusion. We have now provided this information in the revised manuscript. 

 

L260: Please list "the two species". 

Reply: We apologize for the confusion. We were referring to the two species mentioned in the 

previous line. We have now revised the sentence to clearly refer to the above-mentioned two species 

(Line: 320-321). 

 

L262: Isn't "high fiber-rich" redundant? I.e., either "diet high in fiber" or "fiber-rich diet". 

Reply: We agree with the Reviewer and we have now changed this word to fibre-rich diet (Line: 323) 

 

L274: The conclusion drawn by the authors about the OPLS-DA results is misleading, s.a., 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990351/. Specifically, the OPLS-DA model 

integrates the class information with the aim to _increase_ the between-class separation. Hence, 

the separation observed in Fig. 4C may (partially) be a consequence of the method used and not 

of actual separation being in the data. An unsupervised method should be used to check for the 

presence of meaningful separation followed by a supervised method to perform quantitative 

evaluation, e.g., PERMANOVA, to check how much of the variance is explained by the respective 

covariates. 

Reply: We agree with the reviewer that OPLS-DA model integrates class information (in this case 

location) and increases the between class separation. As per the reviewer’s suggestion, in addition to 

OPLS-DA, we have now performed PERMANOVA on metabolite abundance table to assess the effect 

of covariates and identify the ones which explain maximum variation. We have now included the 

results of PERMANOVA in the manuscript (Please see Table 2). Moreover OPLS-DA models using 

class information for each of the covariates were used to calculate model Q2 which assesses the quality 

of the measurement for each of the covariate (Please see Table 3). Since invalid models can still 

produce higher Q2 values due to over-fitting, the class labels were randomly permuted for n=200 

iterations and distribution of Q2 values were produced to assess the reliability of the Q2 values. The 

reliable model should yield significantly higher Q2 values compared to Q2 values generated from 

models with randomly permuted labels (Please see Additional File 5: Figure S17). Moreover, an 

unsupervised clustering of metabolite abundance is already performed (Please see Figure 4A), and its 

polyserial/biserial correlation with different covariates identified PC1 to be correlated with location, 

and PC2 with the diet (Line: 340-348). 

 

L298f: I am not sure if I understood the authors' point right here. "result of its inward transport 

in microbial cells by the BCAA transporters, thus leading to their accumulation in the colon 

lumen": Do the authors' mean "uptake by the bacteria, i.e., transport into the microbial cell"? 

If so, I would not expect an accumulation in the lumen as such. 

Reply: We apologize for this confusion. We meant “faecal samples” here and not ‘colon lumen’. We 

have revised this text appropriately in the manuscript (Line: 364-365) 

 



L305: Where do the authors show this comparison (serum vs. faeces)? Fig. 6A compares Valine 

and Isoleucine in LOC1 samples and LOC2 samples, but not serum vs. faeces. 

Reply: We have now modified figure 6A showing the comparison of BCAA levels in feaces vs serum 

(Please see revised Fig. 6A) 

 

L328: "the major pathway utilized by this species for BCAA biosynthesis": I am not sure in how 

much the metagenomic and metabolomic data in this study allow to draw this statement. 

Metatranscriptomic and metaproteomic data would likely be needed here. I would thus suggest 

that the authors qualify/nuance this statement. 

Reply: We agree with the reviewer. We have revised this text appropriately mentioning the result 

rather than drawing any conclusion in the manuscript (Line: 391-395). 

 

L375ff: The average age of the cohort is rather low (mean of 29.72 years). Age, however, is an 

important factor for rheumatoid arthritis. Hence, "A probable explanation" could be toned 

down to "One aspect to this could be ...". 

Reply: We thank the Reviewer for this suggestion. We have now revised this statement accordingly 

(Line: 446-448) 

 

L419: "isoluecine" -> "isoleucine". 

Reply: We have corrected this word (Line: 488). 

 

L439f: The second part of the sentence is redundant with the first part and could be removed, 

or vice versa. 

Reply: We have now removed the redundant part from this sentence (Line 508-510). 

 

L459 - 460: "which appears promising in reducing the metabolic risk factors originating 

through the interactions between diet and gut microbes to maintain a healthy gut flora": This 

reads misleading as the "diet" was binary, i.e., "vegetarian" vs. omnivorous" and such a 

statement likely requires for more fine-grained and specialized studies than were performed in 

this work. Please adjust accordingly. 

Reply: We agree with the reviewer. We have now revised this statement and have toned down the 

general interpretations at various places in the Discussion section (Line: 512-514). 

 

L463ff: This entire paragraph reads redundant with the remainder of the Discussion and 

should thus be removed or substantially shortened. 

Reply: We agree with the reviewer. We have now substantially shortened and revised this paragraph 

in the manuscript (Line: 515-520). 

 

L599: "non-reference" -> "reference-independent". 

Reply: We have corrected this word (Line: 647). 



 

L610: Could the authors please, in analogy to their HMP+NCBI results, report how many of the 

remaining genes aligned to UNIREF? 

Reply: In total, out of 10,839,539 genes present in the Updated gene catalogue, 2,773,591 genes were 

taxonomically annotated using NCBI + HMP reference genomes at nucleotide level. The remaining 

8,049,540 genes were aligned against UNIREF database, and a total of 4,553,299 genes (56.56%) 

could be assigned with a taxonomic annotation. We have now mentioned this information in Methods 

section (Line: 656-660). 

 

L611f: This sentence should be rephrased. 

Reply: We have now rephrased this sentence (Line: 660-662) 

 

L706f: How was this assessed and where can the interested reader find the results for this 

statement? 

Reply: We have provided results of CHI index and prediction strength in Additional File 9 with the 

values. The information about these metrics is provided in Methods section (Line: 754-759). 

 

L709ff: It is not clear how the "Between class analysis" was peformed. The authors should 

provide the respective details, e.g., which test, implementation etc. 

Reply: Between Class Analysis was performed to support the clustering and to identify the drivers of 

these clusters. The between class analysis is a type of principal component analysis with instrumental 

variables. As in this case, ‘Location’ is a variable for the separation between LOC1 and LOC2 within 

India, and “population” for separation between India and other datasets (USA, Denmark and China). 

It is a supervised projection of data where the distance between predefined classes (example 

clusters/location) is maximised. We have provided a clear explanation in the manuscript (Line: 761-

767) 

 

L720: Does "geography" refer to "location" (LOC1 or LOC2) here? 

Reply: As correctly pointed out by the reviewer, we meant the two locations (LOC1 and LOC2), and 

have changed the word ‘geography’ with ‘location’ throughout the manuscript (Line: 775) 

 

L732: Why was the negative correlation not considered? 

Reply: We wish to mention that in this analysis, the objective was to observe the positive association 

and link them in a network plot. Hence, the negative correlations were not considered. Moreover, 

plotting negative correlations was not possible in the plot using igraph package in R.  

 

# METHODS 

L485: Do you mean the respective table in "Additional_file_1.doc"? Not sure whether this is 

under the control of the authors, but it should be checked in the proof that the information is 

consistently named and can be readily found. 

Reply: We apologize for this error. We have now changed the name ‘Supplementary Table’ to 

‘Additional File 1’ in the revised manuscript. We hope that it could now be easily found. 



 

L507: "16S rRNA" -> "16S rRNA gene" 

Reply: We have corrected this word at all places in the manuscript. 

 

L534: "phylogenetic distances between reads": Not sure, but did the authors mean 

"phylogenetic distances between the samples" here? 

Reply: The phylogenetic distances were used to calculate Unifrac distances between the samples. 

The reads used here are the representative sequences from each OTU. Thus, the phylogenetic 

distances were calculated between each OTU using the representative sequences from OTUs. Using 

these phylogenetic distances, we calculated Unifrac distances between samples. We have now 

revised this sentence in manuscript (Line: 578-580, 772-774). 

 

L539f: How were host-origin reads identified? Which tool, version, and parameters? 

Reply: Human reads were identified and removed from each sample using 18mer matches parameter 

in Best Match Tagger (BMTagger) version 3.101 

(http://casbioinfo.cas.unt.edu/sop/mediawiki/index.php/Bmtagger). We have now mentioned this 

information in methods section (Line: 584-586). 

 

L561ff: This is probably for the formal proofs, but I would strongly encourage to properly 

format here as it seems that, e.g, "bi" is supposed to read "b subscript i". 

Reply: Thanks for bringing it to our notice. We have now formatted the formula (Line: 610) 

 

L1037ff: Please check whether "<" and "> are used correctly here." Typically "p < 0.05 is " 

considered significant and _not_ "P-value>0.05". 

Reply: The ‘>’ and ‘<’ are correctly used in Figures 2c, 2d and S3. We used P > 0.05 to show the 

non-significant dots plotted in ‘Red’ colour. The significant ones are shown in ‘Blue’ colour. We 

have now mentioned it in the figure legend (Line: 1112-1113). 

 

# TABLES 

I do not know whether the information provided in Table 2 necessitates a separate table. I 

leave this up to the authors to decide and to potentially discus this with the journal. 

Reply: We have now removed this table from the manuscript and included PERMANOVA table as 

Table 2, which was also suggested by the reviewer in an earlier comment. Also, we have now 

provided Table 3 showing validation of OPLSDA models for each of covariate by generating a 

distribution of Q2 values from random permutation (n=200) of labels and evaluating the number of 

Q2 above the model Q2 for each covariate. 

 

# FIGURES 

5: "Logs-Odd Ratio" -> "Log-Odds Ratio" 

Reply: Thanks for pointing out this typo. We have corrected it in Figure 5. 

 

S6: The labels on the x-axis and y-axis were not readable. Please adjust accordingly. Moreover, 



I am not sure in how much the "clouds" add value here. They are not further discussed in the 

text and, hence, could be omitted for clarity. 

Reply: The font-size of labels has been increased and we hope that it would be easily readable now. 

The clouds show the density of the unique KOs in the two groups. It has now been mentioned in the 

legends of this figure. The blue cloud represents the local density estimated from the coordinates of 

orthologous groups (KO). 

 

# LEGENDS 

Throughout: Please verify correct use of "16S rRNA" and "16S rRNA gene". 

Reply: We have now changed 16S rRNA to 16S rRNA gene at all places throughout the manuscript. 

 

L1015: "MWAS": Shouldn't this be "MGWAS"? 

Reply: Thank you for pointing this type. We have corrected it in the figure legend and also at all 

places in the manuscript. 

 

L1027: What does "Eigen values and their scores" mean, i.e., what is a "score" here? 

Reply: The word ‘score’ has been removed, and ‘Eigen value’ have been replaced with ‘eigenvalue’ 

at all places in manuscript. 

 

L1092ff: This reads more like a discussion/conclusion and I would thus suggest to remove this 

from the figure legend. 

Reply: The figure legend of Figure 7 has been revised as per the suggestion (Line: 1162-1164). 

 


