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Appendix E1 

Methods: Three Compartment Breast Imaging and Feature Extraction for 
Quantitative 3CB Image Analysis 

Three compartment breast (3CB) imaging is a dual-energy imaging technique that is easily integrated 
into existing full-field digital mammography (or digital breast tomosynthesis) units with inexpensive 
modifications. 3CB imaging produces quantitative and reproducible information of the water, lipid, and 
protein content, the three ‘compartments’, throughout the imaged breast (24). Hologic Selenia full-field 
digital mammography systems (Hologic, Inc.) were used to image women with 3CB at two clinical sites. 
This system configuration has a molybdenum x-ray anode and two internal x-ray filters of either 
molybdenum or rhodium. Two mammographic images were acquired on each woman's affected breast 
using a single compression. The first exposure was made to mimic the clinical screening or diagnostic 
mammogram conditions such that Selenia's internal software chooses the voltage and current settings 
based on breast thickness (usually below 30 kVp). The second mammographic image was acquired at a 
fixed voltage of 39 kVp (the highest attainable voltage on the Selenia unit) and fixed current for all 
participants. This high-energy exposure was made using an additional 3-mm plate of aluminum in the 
beam to raise the average energy of the high-energy image. We limited the total dose of this procedure 
to be approximately 110% of the mean-glandular dose of an average screening mammogram. 

Derivation of thickness maps of the 3 breast compartments of water, lipid, and protein is possible 
through 1) the use of dual-energy mammography and 2) the use of phantoms modeling each 
compartment and different compartment thickness combinations. In the phantoms, water is modeled by 
plastic water, lipid by wax, and protein by Delrin. 3CB imaging uses two phantoms: a calibration 
phantom of 51 compartment thickness combinations imaged prior to each study participant, and a 
smaller phantom (the “SXA phantom”) attached to the mammography paddle imaged concurrently with 
the study participant (Fig E1). The SXA phantom contains 9 modeled thickness combinations and 9 
metal beads. The position of this within-image phantom was used for the breast thickness estimation 
since the compressed thickness given by the mammography unit was not accurate enough due to the 
paddle tilt angle (33). It was also used to solve the attenuation equations at the two x-ray energies. For 
monochromatic x-rays, the attenuation equations at two energies can be solved analytically to yield the 
three compartments, ie, the water-lipid-protein thicknesses, for a known breast thickness. For 
polychromatic x-rays (as in mammography) this is no longer the case and a Taylor expansion up to 
second order was used to derive the compartment thicknesses. It is important to note that 3CB imaging 
yields quantitative and reproducible compartment thickness maps throughout the imaged breast. The 
calibration standards and 3CB algorithms are described in full elsewhere (24). It takes only a few 
seconds to generate the 3CB maps from the dual-energy mammography acquisitions. 

In quantitative 3CB (q3CB) image analysis, ie, in the analysis of the quantitative 3CB thickness 
maps, ‘simple’ features were extracted from the water, lipid, and protein thickness maps: the mean, 
median, standard deviation, and skewness within a lesion (based on the computer segmentation, see 
Appendix E2) and within a 2 mm band surrounding the lesion. Moreover, the difference, as well as the 
ratio, in values between a lesion and its surrounding were calculated, resulting in 16 features for each 
compartment (16 for water, 16 for lipid, and 16 for protein thickness maps, respectively) (Table E1). 
However, in our current work we used a predefined q3CB feature signature derived from reanalysis of 
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pilot study data (28): median water thickness within a mass (fq,1), the median water thickness within the 
surrounding parenchyma (fq,2), the ratio of the median water thicknesses of a mass and surrounding 
parenchyma (fq,3), and the skewness of the lipid thickness within a mass (fq,4, quantifying the asymmetry 
of the lipid thickness distribution or, in other words, the extent to which the lipid thickness distribution 
differs from a normal distribution). 

Appendix E2 

Methods: Lesion Segmentation and Feature Extraction for Mammography 
Radiomics 

The mammographic masses were segmented on the low-energy mammograms (equivalent to 
conventional diagnostic digital mammograms) with a dual-step method that uses as input the images and 
the approximate lesion centers (in this case the centers of the radiologist mass delineations) (26). The 
first step was to obtain an initial estimate of the mass boundary and the second step was to further refine 
that initial estimate. The initial estimate for the boundary was obtained through a method based on the 
radial gradient index which is a measure combining boundary irregularity and mass size (34). The radial 
gradient index ranges between negative one (spherical dark mass in a bright background, an ‘ideal’ mass 
in breast ultrasound) and one (spherical bright mass in a dark background, an ‘ideal’ mass in 
mammography). In this initial segmentation step, a mammogram was first multiplied by a Gaussian 
function that was centered at the manually indicated approximate mass center and had a fixed width (15 
mm in our application). Candidate mammographic mass boundaries were then obtained though iterative 
gray value thresholding that image and for each candidate boundary the radial gradient index was 
calculated (34). The initial estimate for the mass margin was chosen as the candidate boundary with the 
maximum radial gradient index. The final computer mass delineation was obtained using the initial 
boundary estimate and original mammogram as input to an active contour method (26). 

For mammography radiomics, 32 features pertaining to mass size, shape, morphology (including 
margin), and texture were calculated. In this work, however, we used a predefined feature signature of 5 
features that was derived in our previous work on a different dataset (27) (Table E2). 

Appendix E3 

Methods: Deriving Models for q3CB, Mammography Radiomics, and 
Combined Mammography Radiomics Plus q3CB Analyses, and Assessing 
the Potential for Additive Benefit 

The computer extracted tumor features (as described above) served as input to a linear discriminant 
(LDA) classifier, which was trained and tested within 10-fold cross-validation (Fig E2). For each of the 
10 training folds of the cross-validation, a linear model was obtained that merged for each mass the 
multiple input features into a single output of probability of malignancy, ie, the classifier weights of the 
LDA were determined using the ‘ground truth’ for the training fold. The model obtained for a given 
training fold was used to predict the probabilities of malignancy in the corresponding (independent) test 
fold and the values for the model coefficients were stored. After completion of the 10-fold cross-
validation, the estimated probabilities of malignancy for all the test folds were aggregated (since each 
mass was used in the testing capacity exactly one time) and used in combination with the ‘ground truth’ 
to assess performance. 
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Since 10-fold cross-validation results in 10 classification models, one for each of the 10 training 
folds, we assessed the stability (trustworthiness) of the estimated values for the coefficients of the linear 
classification models (those for the q3CB features, mammography radiomics features, and combined 
q3CB plus mammography radiomics features), we repeated 10-fold cross-validation 10 times. In each of 
the 10 cross-validations we randomly repartitioned the data into 10 nonoverlapping training and testing 
folds. Thus, we obtained 100 models for each analysis. For each model coefficient, the median value, 
25th and 75th percentiles were calculated and box plots were constructed. The narrower a ‘box’ in these 
box plots, the more stable, ie, reliable, the estimate for a model coefficient and the more likely that the 
values for the performance metrics will be reproducible. A ‘final’ model then, can be constructed by 
using the median values for each coefficient of the linear model. 

Our current study sought to 1) confirm that the mass signatures (feature combinations) obtained 
in previous work (through stepwise multilinear regression) (27,28) translated to the current dataset and 
2) to assess whether combining mammography radiomics and q3CB has potential for improving 
classification performance. The Pearson correlation coefficient (29) between probabilities of malignancy 
estimated from mammography radiomics and from the q3CB analysis was calculated to gain insight in 
the potential of mammography radiomics and q3CB analysis to complement each other. In other words, 
a high correlation between probabilities of malignancy estimated from mammography radiomics and 
q3CB would imply little potential for synergy, while a low correlation would imply that both approaches 
yield unique information. Bland-Altman analysis (35,36) was performed to assess whether the combined 
mammography radiomics plus q3CB analysis estimated overall higher probabilities of malignancy for 
invasive cancers and lower probabilities for the benign lesions than mammography radiomics. 

Appendix E4 

Results: The q3CB, Mammography Radiomics, and the Combined q3CB 
Plus Mammography Radiomics Models and Additive Benefit 

The coefficients for the linear models for q3CB, mammography radiomics, and combined q3CB plus 
mammography radiomics, proved to be quite stable (Fig E3). Interestingly, the weaker the predictive 
power of an individual feature, the wider the distribution for the corresponding model coefficient. The 
median water thickness within a mass and that within the surrounding parenchyma (fq,1 and fq,2) are 
slightly predictive of malignancy on their own with an area under the ROC curve (AUC) just better than 
random guessing (AUC = 0.5) and display a much larger spread in the values for their model coefficient 
than for the ratio of median water thicknesses (fq,3), which is the strongest single q3CB predictor of 
malignancy with an AUC of 0.69 (standard error 0.05). Similarly, for mammography radiomics, the 
distribution for the ‘weaker’ features diameter and average gray value (fm,1 and fm,2, respectively, both 
with AUC = 0.62 (0.05)) demonstrate a wider distribution in model coefficients than the ‘stronger’ 
features, with the full-width at half maximum of the region of interest radial gradient histogram, fm,4, 
being the strongest mammography radiomics predictor of malignancy with an AUC of 0.74 (0.04). 

Correlation between the probabilities of malignancy estimated by mammography radiomics and 
q3CB was fair (37), with a correlation coefficient of 0.38, but statistically significant (P < .001). Bland-
Altman analysis demonstrated additive benefit of q3CB and mammography radiomics, in that the 
combined mammography and q3CB approach yielded estimates for the probability of malignancy that 
were overall higher for the malignant lesions (by 0.03) and overall lower for the benign lesions (by-0.07) 
than estimated through mammography radiomics alone (Fig E4). 
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Table E1: q3CB features extracted from the lesion (L) as segmented automatically (5), 
its surrounding parenchyma (P, a 2 mm thick band around the segmented lesion), the 
difference in values for lesion and parenchyma (L-P), and the ratio of values for lesion 
and parenchyma (L/P) where √ indicates a feature was used in the q3CB signature, and 
– indicates a feature was calculated but not used in this work 

q3CB features derived from 3CB thickness 
maps: 

Water Lipid Protein 

 L P L-P L/P L P L-P L/P L P L-P L/P 
Mean (cm) — — — — — — — — — — — — 

Median (cm) √ √ — √ — — — — — — — — 
Standard deviation (cm) — — — — — — — — — — — — 

Skewness — — — — √ — — — — — — — 

Table E2: Mammography Radiomics Features as Extracted Based on Computer-
Segmented (26) Lesions 

Mammography radiomics features (27) 
fm,1 lesion maximum diameter 
fm,2 average gray value within lesion 
fm,3 contrast 
fm,4 full-width-at-half-maximum of the histogram of radial gradients of the lesion 

margin 
fm,5 full-width-at-half-maximum of the histogram of radial gradients within region of 

interest encompassing the lesion 
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