
Resource
PyMINEr Finds Gene and A
utocrine-Paracrine
Networks from Human Islet scRNA-Seq
Graphical Abstract
Highlights
d PyMINEr automates advanced scRNA-seq analyses without

coding

d Data integration of T2D-associated genes into co-expression

graph networks

d Consensus catalog of human pancreatic autocrine-paracrine

signaling networks

d BMP andWNT pathways are induced in human cystic fibrosis

pancreata
Tyler et al., 2019, Cell Reports 26, 1951–1964
February 12, 2019 ª 2019 The Author(s).
https://doi.org/10.1016/j.celrep.2019.01.063
Authors

Scott R. Tyler, Pavana G. Rotti,

Xingshen Sun, ..., Robert F. Mullins,

Andrew W. Norris, John F. Engelhardt

Correspondence
john-engelhardt@uiowa.edu (J.F.E.),
scottyler89@gmail.com (S.R.T.)

In Brief

Tyler et al. create PyMINEr, an open-

source program (https://

www.sciencescott.com/pyminer) that

automates analyses of expression

datasets without coding. These analyses

include clustering, differential

expression, pathway analyses, co-

expression networks, marker gene

identification, and autocrine-paracrine

signaling prediction. Integration of seven

datasets shows elevated BMP-WNT

signaling in cystic fibrosis pancreata.

mailto:john-engelhardt@uiowa.edu
mailto:scottyler89@gmail.com
https://doi.org/10.1016/j.celrep.2019.01.063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.01.063&domain=pdf


Cell Reports

Resource
PyMINEr Finds Gene
and Autocrine-Paracrine Networks
from Human Islet scRNA-Seq
Scott R. Tyler,1,* Pavana G. Rotti,1,2 Xingshen Sun,1,3 Yaling Yi,1,3 Weiliang Xie,1 Michael C. Winter,1

Miles J. Flamme-Wiese,4 Budd A. Tucker,4 Robert F. Mullins,4 Andrew W. Norris,3 and John F. Engelhardt1,3,5,*
1Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
2College of Engineering, University of Iowa Carver College of Medicine, Iowa City, IA, USA
3Center for Gene Therapy, University of Iowa Carver College of Medicine, Iowa City, IA, USA
4Institute for Vision Research, University of Iowa Carver College of Medicine, Iowa City, IA, USA
5Lead Contact

*Correspondence: john-engelhardt@uiowa.edu (J.F.E.), scottyler89@gmail.com (S.R.T.)

https://doi.org/10.1016/j.celrep.2019.01.063
SUMMARY

Toolsets available for in-depth analysis of scRNA-
seq datasets by biologists with little informatics
experience is limited. Here, we describe an infor-
matics tool (PyMINEr) that fully automates cell type
identification, cell type-specific pathway analyses,
graph theory-based analysis of gene regulation,
and detection of autocrine-paracrine signaling
networks in silico. We applied PyMINEr to interrogate
human pancreatic islet scRNA-seq datasets and
discovered several features of co-expression
graphs, including concordance of scRNA-seq-graph
structure with both protein-protein interactions and
3D genomic architecture, association of high-con-
nectivity and low-expression genes with cell type
enrichment, and potential for the graph structure to
clarify potential etiologies of enigmatic disease-
associated variants. We further created a consensus
co-expression network and autocrine-paracrine
signaling networks within and across islet cell types
from seven datasets. PyMINEr correctly identified
changes in BMP-WNT signaling associated with
cystic fibrosis pancreatic acinar cell loss. This
proof-of-principle study demonstrates that the
PyMINEr framework will be a valuable resource for
scRNA-seq analyses.
INTRODUCTION

Recent advances in single-cell RNA sequencing (scRNA-seq)

provide a rich resource of omic-level data that can help dissect

the complex signaling networks that govern cellular identity

and function (Jaitin et al., 2016; Patel et al., 2014). scRNA-seq

presents a cornucopia of data to bench scientists; however,

for those accustomed to more traditional datasets, the over-

whelming informatics tasks at hand can be daunting. To stream-

line the transition from the 2D matrix of scRNA-seq data into
Cell Rep
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meaningful biologic insights, we created a tool called Python

Maximal Information Network Exploration Resource (PyMINEr),

which addresses the gaps described below.

The first task when analyzing scRNA-seq data is identification

of cell types. Cell type identification is often performed by clus-

tering on a subset of genes, similarity or distance measures, or

an otherwise dimensionally reduced version of the transcrip-

tome. The next step often performed is iterative traditional

k-means clustering of the selected features (Gr€un et al., 2015; Ki-

selev et al., 2017; Shin et al., 2015); however, previous research

showed that the traditional k-means clustering approach yields

highly variable results (Arthur and Vassilvitskii, 2007). Another

pitfall of k-means clustering is the requirement for the user to

specify the number of groups (in the case of scRNA-seq, the

number of cell types), necessitating more unbiased methods

for determining the number of cell types (Gr€un et al., 2015).

This a priori specification will bias the outcome of clustering

and, thus, data interpretation. Overall, the methods of analysis

following cell type identification can also be quite variable.

Social network-style graph networks have been used previ-

ously to analyze RNA-seq data, with nodes in the graph repre-

senting genes, and a direct connection between two genes

indicating that they are co-expressed (Hong et al., 2013; Iancu

et al., 2012; Langfelder and Horvath, 2008); however, co-expres-

sion graphs are often underutilized when interrogating these da-

tasets. Because gene expression patterns underlie the structure

of expression graphs, this structure can be used to study tran-

scriptional features of cellular identity in normal and pathologic

disease states. By way of analogy, social network connectivity

between individuals can reveal important information about the

friends and behaviors of individuals; we integrate this within

our automated pipeline, applied to gene expression.

Aberrant gene regulation underlies many aspects of human

diseases; dysfunction of pancreatic endocrine and exocrine cells

in diabetes is one well-recognized example (Porte, 1991).

Pancreatic disease can manifest as aberrant hormone process-

ing and secretion, dysregulated autocrine or paracrine signaling,

changes to cell identity, and/or alterations in transcriptional con-

trol of these processes (Grant et al., 2006; Khodabandehloo

et al., 2016; Nicolson et al., 2009; Prentki andNolan, 2006; Rutter

et al., 2015). Insights into genes that may affect the development
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of type 2 diabetes (T2D) have emerged from genome-wide anal-

ysis of associated SNPs; however, the functional significance of

many coding and non-coding SNPs remains obscure (Morris

et al., 2012). Given the systems-level complexity of diabetes,

we selected this disease to leverage the power of the PyMINEr

analytic pipeline with human islet scRNA-seq.

A cell’s local environment affects numerous processes that

define its identity and function in both health and disease. In

fact, many cell fate decisions are made in response to extracel-

lular input provided by secreted cytokines interacting with their

receptors (Behfar et al., 2002; Gnecchi et al., 2008; Watabe

and Miyazono, 2009). Transcripts that encode secreted ligands

and their cognate receptors are embedded in scRNA-seq data-

sets, suggesting that scRNA-seq alone may be sufficient to

reveal a cell’s ability to signal to itself and to other cells. However,

it is not yet possible to automatically convert this information

to knowledge of cell type-specific autocrine and paracrine

signaling.

To address the above described gaps, we created PyMINEr.

This tool enables analysis of scRNA-seq data by integrating

expression graphs with information about protein-protein inter-

actions (Szklarczyk et al., 2015), cell type enrichment, SNP

genome-wide associations (Morris et al., 2012), and protein:DNA

interactions (chromatin immunoprecipitation sequencing [ChIP-

seq]) (ENCODEProject Consortium, 2012), all in a fully integrated

pipeline that performs each of these tasks with little effort by the

user. We demonstrate that co-expression graphs harbor many

relationships that are latent and typically unseen but biologically

important. In addition, we have integrated PyMINEr analyses of 7

different human scRNA-seq datasets (7,603 cells), creating a

consensus co-expression network and autocrine-paracrine

signaling network. Our examination of the autocrine-paracrine

circuits within and between islet cell types identified by PyMINEr

correctly predicted that the pancreatic acinar cell ablation seen

in human cystic fibrosis (CF) pancreata would lead to the induc-

tion of the BMP and WNT pathways. Rather than providing a li-

brary of functions that are individually applied programmatically,

nearly all of the informatic tasks described here are performed by

PyMINEr with a single command line that generates a hypertext

markup language (html) web display explanation of the results.

PyMINEr can be applied to any dataset to uncover the structure

underlying the corresponding complex biologic systems.

RESULTS

PyMINEr Overview
To address the informatic challenges presented by scRNA-seq,

we sought to produce a tool that rapidly translates an unlabeled

2D expression matrix to biologically interpretable and actionable

hypotheses. The challenges addressed by PyMINEr include

automated cell type identification, basic statistics comparing

cell types with each other, pathway analyses of the genes en-

riched in each cell type, and the generation of co-expression net-

works that enable a graph theory approach to interpreting gene

expression. Last, we integrated an approach for predicting

autocrine-paracrine signaling networks in silico and pathway an-

alyses that enable a deeper understanding of the signaling net-

works between cells. These informatic analyses are performed
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with a single short command line that generates an html web

page of the collated PyMINEr results (Figure 1A). An example

of the output generated by PyMINEr is provided in the tutorials

(https://www.sciencescott.com/pyminer). All methods and algo-

rithms are described in detail in the STAR Methods. Below, we

describe scRNA-seq of human pancreatic islets and application

of the PyMINEr analytic pipeline as a test case (Figure 1B).

Cell Type Identification Using PyMINEr
The problem of clustering cells into their appropriate cell types

has two components: (1) identifying cells that are sufficiently

similar to each other to be considered members of the same

cell type, and (2) establishing the number of cell types present

in the dataset. For the identification of similar cells, we devised

an algorithm using an ‘‘anti-gravity’’ style method of centroid

seeding for k-means clustering (Figure S1; see STAR Methods

for details). For synthetic (Figures S2A and S2B) and real-world

(Figures S2C–S2G) datasets, this method of clustering was

more accurate than either the traditional k-means or k-means++

methods, asmeasured by cluster purity, entropy, ormutual infor-

mation. We also developed an algorithm to determine the num-

ber of cell types in the dataset (Figures S3A–S3F). It was more

accurate than the maximum gap statistic, a previously published

method implemented in RaceID (a previously published software

for identifying cell types from scRNA-seq) (Figures S3G–S3I;

Gr€un et al., 2015). Indeed, PyMINEr showed a greater level of

self-consistency compared with RaceID with respect to identi-

fying cell types from scRNA-seq data (Figures S3I–S3M).

Application of the PyMINEr analytic pipeline to our human

pancreatic islet scRNA-seq dataset revealed eight major cell

types within human islets, including endocrine cells (beta, alpha,

epsilon, delta, and pancreatic polypeptide cells), exocrine cells

(acinar and ductal cells), and stromal cells. PyMINEr-based iden-

tification of cell types and categorization of differentially ex-

pressed genes between cell types (Figures 2A–2C; Tables S1

and S2) led to the rediscovery of many known but also the dis-

covery of unknown islet cell type-enriched genes. PyMINEr auto-

mates pathway analysis of the gene lists associated with each

cell type (Tables S2C–S2E). Notably, PyMINEr’s entropy-based

pathway meta-analyses correctly identified beta cells as endo-

crine pancreatic cells (HPA:031020) through integrated gProfiler

Human Protein Atlas (HPA) analyses (Reimand et al., 2016; Uhlén

et al., 2015). Similarly, PyMINEr correctly identified acinar

cells as the most abundant pancreatic exocrine cell type

(HPA:031010) (Figure 2B; Tables S2D and S2E). These findings

demonstrate that the pathway analyses integrated in PyMINEr

can correctly identify the tissue of origin from scRNA-seq data.

See STAR Methods for details regarding pathway analyses.

PyMINEr Co-expression Graphs
Representing RNA-seq data as a social network-style graph (via

expression correlations) has several advantages. Graph net-

works make it possible to use graph theory analyses, which

are not frequently used in basic biology. PyMINEr identifies all

non-parametric Spearman correlations between genes, creating

a graph network in which a connection between two genes indi-

cates that their expression is correlated; in other words, the

genes are co-expressed. Because of the non-linear relationships

https://www.sciencescott.com/pyminer


Figure 1. PyMINEr Pipeline and Implementation for scRNA-Seq

(A) An example command line input for running PyMINEr, for which the only required argument is the input file. If you have genes of interest however, this can also

be provided. At the end of a PyMINEr run, an interactive html file organizing and describing the results is generated.

(B) The PyMINEr analytic pipeline as utilized in this study. We used PyMINEr to analyze scRNA-seq, identify cell types, and generate expression graph networks

integrated with Z score enrichment for each cell type. Integration of the graph structure and cell type enrichment analyses with GWAS data enabled the iden-

tification of several previously undescribed cell type-specific expression patterns for poorly described type 2 diabetes (T2D)-associated genes. The automated

generation of autocrine and paracrine signaling networks through PyMINEr enabled confirmation of hypotheses predicted for the diseased human cystic fibrosis

pancreas, where cellular compartments are remodeled.

See STAR Methods and Figures S1–S3 for details regarding clustering methods and benchmarking.
associated with transcription at the cellular level (Levine et al.,

2013), this approach is better suited than parametric methods

(Hong et al., 2013; Iancu et al., 2012; Langfelder and Horvath,

2008) for discovering transcriptional relationships in the context

of scRNA-seq. As expected, PyMINEr revealed strong correla-

tions between genes that are enriched within the same cell

type; these correlations are represented as direct connections

within the network (Table S2F; Figure 2D). In fact, when the

network was overlaid with gene enrichment Z scores for each

cell type, domains of high expression enrichment were observed

for each islet cell type (Figure 2E).

Graph Networks Are Reproducible from scRNA-Seq
across Platforms
Recently, the scRNA-seq field has begun to favor datasets with

more cells sequenced at lower depth rather than datasets with

few cells sequenced deeply. To test whether the co-expression

networks built by PyMINEr are robust to the trade-off of cell num-

ber and sequencing depth, we compared network topologies
built from our human islet scRNA-seq dataset (few cells at high

depth) to one produced by others (more cells at low depth) (Table

S3; Segerstolpe et al., 2016). Consistent with the expectation

that PyMINEr is robust in both scenarios, the overall graph struc-

tures created by PyMINEr for each of the two datasets were

highly concordant (Spearman rho = 0.36, p z 0.0; Pearson

R = 0.32, p z 0.0; c2 = 868,755, p z 0.0; Figures 3A and 3B;

Tables S2F and S3C).

To provide a broadly useful resource to the fields of pancre-

atic biology, we analyzed 6 additional datasets (7 including our

own), amassing a resource created from 7,603 human islet cells

(Figure 3C; Li et al., 2016; Muraro et al., 2016; Segerstolpe

et al., 2016; Wang et al., 2016; Xin et al., 2016). Using

these analyses, we also created a consensus expression

network of gene-gene correlations found in 33% or more of da-

tasets (analyses available at https://www.sciencescott.com/

pancreatic-scrnaseq). We also examined these datasets for

the expression of newly proposed beta cell marker

genes, including markers of mature beta cells (flattop:FLTP
Cell Reports 26, 1951–1964, February 12, 2019 1953
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Figure 2. Characterization of Human Pancreatic Islet scRNA-Seq Gene Enrichment and Network Graphs

(A) A heatmap of each cell type and an associated cell type marker. Cell types are color-coded along the top of the heatmap, with colors matching those in (C).

(B) The top five Human Protein Atlas (HPA) pathways for beta cells (top, red) and acinar cells (bottom, brown). Importantly, integrated pathway analyses by

PyMINEr correctly identified the human body part and sub-organ.

(C) The number of genes enriched in each identified cell type as identified by PyMINEr.

(D) Examples of expression relationships that give rise to the network model of transcription based on scRNA-seq data. Cell type-enriched genes (INS andMAFA

in beta cells, CELA3A and AMY2A in acinar cells) are co-expressed in particular cell types. Points in the scatterplots correspond to the expression level of the

indicated gene; the identity of the associated cell is indicated by the color of the point. Of particular note are beta cells (red) and acinar cells (brown); other cell

types are color-coded as in (C). Black lines show locally estimated scatterplot smoothing (LOESS) of locally weighted regressions. Spearman correlation rho and

p values are shown for gene-gene expression relationships for cell type-enriched genes.

(E) Graphic representation of cell type Z score enrichment, illustrating differences in transcriptional networks across cell types. Formost cell types, certain regions

within the network showed transcriptional enrichment across the topology of the network.
[Bader et al., 2016]; urocortin3:UCN3 [van der Meulen et al.,

2012]). In contrast to what is observed in the intact pancreas,

these genes were expressed in very few islet cells (Bader

et al., 2016; van der Meulen et al., 2012), suggesting loss of

mature beta cells in cultured human pancreatic islets. Others

have proposed four unique subsets of beta cells with variable
1954 Cell Reports 26, 1951–1964, February 12, 2019
positivity for CD9 and ST8AI1. Although we observed relatively

similar proportions of these beta cells, as reported previously

(Dorrell et al., 2016), we also observed expression of these

genes in many different endocrine and non-endocrine cells

(Figure 3C); this may indicate that these genes are representa-

tive of a cell state as opposed to a cell type. Lineage trace



(legend on next page)
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experiments in animal models will likely be needed to deter-

mine the stability of these newly proposed marker genes.

Expression Graph Networks Are Enriched for Physical
Protein-Protein Interactions and Genomic
Neighborhoods
Given the premise that genes whose protein products function

together at the molecular level must be co-expressed within

the same cell (Figure 4A), we hypothesized that co-expressed

genes (i.e., first neighbors or one-degree separated genes) are

likely to physically interact with each other. To test this hypothe-

sis, we compared the transcriptional graph network defined by

PyMINEr with previously annotated protein-protein interactions

(Szklarczyk et al., 2015). Indeed, protein-protein interactions

were over-represented in the PyMINEr-generated network (10.9-

fold increase over random; one-sample t test: p = 4.7e�23;

n = 10 Monte Carlo simulations) (Figure 4B). This outcome sug-

gests that previously undescribed interactions may be repre-

sented in the expression graph and further indicates that genes

involved in related cellular processes have evolved to maintain

coordinated transcription.

We also hypothesized that coordinated transcription between

insulator sites would be detectable using the PyMINEr-gener-

ated co-expression graph. To test this hypothesis, we examined

concordance between the structure of PyMINEr co-expression

graph and a graph network generated by connecting all genes

located between two adjacent CCCTC-binding factor (CTCF)/

cohesin insulator sites. Indeed, genes located between the

same insulator sites were more likely than expected by

chance to share a direct network connection in the graph struc-

ture generated from human islet scRNA-seq (c2 = 596.2,

p = 1.12e�131; Figures 4C–4E). Thus, the transcription graph

structure is directly related to the binding loci of the insulating

CTCF-cohesin complexes that orchestrate the 3D conformation

of the genome.

Empirical Power Adjustment for Network Construction
without Imputation
Variable levels of dropout in scRNA-seq result in variable power

for detecting gene-gene correlations when constructing net-

works. Several methods have recently been developed to impute

thesemissing values to prevent this change in power.We bench-

marked two of these methods, SAVER (Huang et al., 2018) and

scImpute (Li and Li, 2018), assessing their effect on network

structure. Both methods caused large-scale structural changes

to the network built from our scRNA-seq dataset (Figure S4A;

networks built from Table S1A or imputed versions of it); SAVER
Figure 3. Graph Structure Is Conserved across Human Islet scRNA-Se

(A) A schematic example of the shortest path between two genes in a network. In

red lines (i.e., A and B are 2 degrees of separation away from each other).

(B) The correlation corresponding to overall network structure when comparing th

et al. (2016). The plot indicates the shortest path between all gene-gene pairs w

indicate that the overall structures of the two networks built by these two datase

higher depth (average reads per cell = 2,842,414; i.e., 1,421,207 paired-end fra

graphs can be generated with fewer cells.

(C) Heatmaps of known and posited islet marker genes form the 6 additional datas

www.sciencescott.com/pancreatic-scrnaseq.

See Figure S4 for notes regarding adjusting for variable power across datasets f
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tended to blur relationships into a single co-regulated gene set

(Figures S4A and S4B), whereas scImpute drastically altered

structure in a manner directly attributable to the manually set hy-

perparameter determining the number of cell types (Figure S4A).

Given these results, we hypothesized that scImpute would syn-

thesize the number of clusters a user requests even from

completely random data. Indeed, when fed a synthetic random

dataset, scImpute created clearly separable clusters in the exact

number specified by the user (Figure S4C). To our knowledge, all

imputation methods violate the assumption of independence of

measures, decreasing within group variance, and increasing be-

tween group variance. Although imputed datasets may be

appropriate for some forms of analyses, the violation of this

assumption makes imputed datasets less appropriate for statis-

tical comparison between cell types.

Because of these imputation issues, we implemented an

empirical false positive measure to determine the appropriate

Spearman correlation cutoff in creating a graph network. This

dynamic cutoff algorithm performs bootstrap shuffling on the da-

taset to determine the null distribution of Spearman correlations

when no true relationships exist. This enables PyMINEr to build

expression networks with an automatic power adjustment

without altering the original dataset or violating the assumptions

of independence required by all statistical tests.

Last, an issue with creating co-expression networks lies in the

large scale of the computation problem. Every gene must be

compared with all other genes, thus requiring 2.65e8 compari-

sons. Furthermore, the size of scRNA-seq datasets are growing

at an exceptional rate; we therefore benchmarked PyMINEr’s

correlation algorithm to EGAD’s, a recently released R package

created for this purpose. We found that PyMINEr’s network con-

struction implementation is substantially and significantly faster

(25- to 50-fold speed-up, p = 2.7e�36; Figures S4D and S4E;

Ballouz et al., 2017).

AGene’s Network Connectivity Is Related to the Level at
which It Is Transcribed
At the single-cell level, studies in bacteria have shown that tran-

scription from identical weak promoters is highly variable

because of intrinsic cellular noise; however, transcription from

two identical strong promoters is typically highly correlated (Elo-

witz et al., 2002). To determine how problematic low-expression

genes will be in PyMINEr analyses of scRNA-seq data, we deter-

mined whether the expression level of a gene is related to the

number of correlations it has with other genes (also called

network connectivity or degree in graph theory). Thus, we calcu-

lated the median level of transcription for each gene, but only
q Datasets from Different Laboratories

this case, the shortest path between gene A and gene B is two, denoted by the

e network built by PyMINEr using our dataset and the dataset from Segerstolpe

ithin each network. Linear regression is shown by the blue line. These results

ts are similar. Of note, our dataset contained fewer cells (185) sequenced at a

gments). This demonstrates that, with sufficient depth of sequence, network

ets analyzed here. Full PyMINEr analyses for these datasets available at https://

or constructing graph networks.
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Figure 4. Graph Structure Is Related to Protein-Protein Interactions and CTCF-Cohesin Demarcations in the Genome

(A) Schematic illustration of the rationale for the experiment. Given that the two physically interacting proteins must be present within the same cell, it follows that

the transcripts of these genes might be co-regulated.

(B) Among co-regulated genes, the percentage of those known to interact (based on StringDB) is significantly higher than those in simulated random networks

derived from a Monte Carlo random pairing of expressed genes to create equally long adjacency lists (p = 4.73e–23, n = 10 simulations, 2-sided 1-sample t test).

This indicates that the co-regulatory network generated by PyMINEr can yield biologically meaningful results.

(C) Log10 distances between the RAD21, CTCF, and SMC3 binding sites from each other. Each plane corresponds to the binding sites for the indicated tran-

scription factor; the distance of that binding site from its nearest binding site for the other two factors is then noted in the scatterplot. Red points are positive for

RAD21, CTCF, and SMC3, all within 150 bases of each other. Blue points represent loci that are bound by RAD21 and CTCF within 150 bases, but the nearest

SMC3 binding site was over 150 bases away. Red and blue populations were used as insulator demarcations across the genome.

(D) A schematic illustration of insulating CTCF-cohesin loci, which partition the genome into insulated domains.

(E) We observed significant concordance between the co-expression graph from scRNA-seq and the graph representing the genes partitioned between n in-

sulation sites (x axis). Interestingly, we also observed a modest enrichment for gene co-expression in gene-gene pairs separated by one or two insulating sites;

however, this significance disappears in gene-gene pairs separated by three or four insulating sites. This evidence fits with the model of genome conformation

manifest from CTCF-cohesin loop extrusion with optional stopping sites. This observation also indicates that, although the regulatory elements within a single

insulated domain are strongest, there remains regulatory bleedover across insulation sites, likely because of stochastic CTCF binding site skipping during the

process of loop extrusion (Sanborn et al., 2015).

See Figure S5 and Table S4 for other notable properties of the graph structure as it pertains to cell type-specific gene expression patterns.
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within cells that expressed the gene of interest at a non-zero

level; we call this median non-zero expression. As expected,

for many genes, connectivity was correlated with its median

non-zero expression (Figure S5A; p < 1e�18); intuitively, this

can be explained by stochasticity at low expression levels, which

would lead to noisier, less detectable correlations (Elowitz et al.,

2002).

Interestingly, however, a distinct group of genes did not follow

this pattern, showing high connectivity (i.e., degree) but low me-

dian non-zero expression (Figures S5B–S5E). Strikingly, 46% of

these genes were significantly enriched in at least one islet cell

type (Figures S5F and S5G; Table S4). These findings indicate

that genes that are weakly expressed but coordinately regulated

may significantly contribute to cellular identity in pancreatic

islets. Notably, genes expressed at low levels are more suscep-

tible to dropout in datasets with low sequencing depth. This sug-

gests that (at least in the cell types examined here) there may be

an appreciable trade-off between sequencing depth and cell

number when trying to identify genes enriched in specific cell

types.

scRNA-Seq Graph Structure Enables Assignment of
T2D-Associated Gene Expression Patterns to
Pancreatic Cell Types
Having established the robustness of PyMINEr-generated graph

networks, we aimed to use the network connections uncovered

by PyMINEr in conjunction with cell type Z scores for genes to

guide the discovery of cell type expression patterns for

genome-wide association study (GWAS)-identified T2D-associ-

ated genes and loci (Morris et al., 2012; Figure 5; Table S2A).

Although many well-studied T2D-associated genes showed

enrichment in their expected cell types, this was not universally

true. For example, we found that BSCL2 (previously implicated

in adipocyte function; Liu et al., 2014) was enriched in a network

hub for alpha cells; indeed, alpha cells expressed high levels of

BSCL2 protein in human pancreata (Figures 5I and 5J). Further

mirroring the scRNA-seq networks at the RNA level, BSCL2 pro-

tein was also expressed in other endocrine cells. We additionally

validated basolateral localization of TSPAN8 in ductal cells

(TSPAN8 is a gene near an intergenic T2D locus) (Figures 5E

and 5K). Consistent with these observations, an independent

scRNA-seq dataset (Segerstolpe et al., 2016) validated high

BSCL2 expression in alpha cells (p = 1.8e�16, 1-way

ANOVA; Z = 6.3) and high TSPAN8 enrichment in ductal cells
Figure 5. Cell Type-Specific Enrichment of T2D-Associated Genes

(A) A subset of the larger networks shown in Figure 2E focused on T2D-associ

indicated by color (Morris et al., 2012). Gene associations newly discovered thro

(B–I) The Z score enrichment of T2D-associated genes by cell type (from our data

subset of the transcriptional network built by PyMINEr. As indicated, panels co

stromal (F), delta (G), acinar (H), and alpha cells (I). Highly enriched genes are sh

shown in blue. If a gene passed the threshold for significant enrichment for the

annotations for all T2D-associated genes, including those not shown here.

(J) Immunofluorescence staining of a human pancreas section for glucagon (G

counterstaining with Hoechst dye (nuclei, blue) (n = 5). Although many alpha ce

(examples noted with arrows).

(K) Representative immunofluorescence staining of a human pancreas section fo

(green), with Hoechst counterstain of nuclei (blue) (n = 4).

(J and K) Higher magnifications of the areas marked by yellow boxes are shown
(p = 5.8e�312, 1-way ANOVA; Z = 28.1) (Table S3B). Notably,

many T2D-associated SNPs fall in non-coding regions of the

genome, as in the case of the intergenic SNP near TSPAN8

(rsID: rs7955901). Although additional experiments are needed

to understand the pathologic involvement of these genes in the

noted cell types, these results show that combined information

about network graph structure and cell type enrichment can

guide the selection of cell types for further study of pathology-

associated variants.

Discovery of Autocrine and Paracrine Signaling
Networks through PyMINEr
The final major automated task in the PyMINEr pipeline is the in

silico prediction of autocrine and paracrine signaling networks.

To identify receptor-receptor and ligand-receptor pairs,

PyMINEr first filters cell type-enriched genes for those that

encode either receptors or secreted ligands (The Gene Ontology

Consortium, 2017). Next, PyMINEr cross-references gene-gene

pairs for physical protein-protein interactions (Szklarczyk et al.,

2015), building up a network of protein level interactions within

and across cell types. Lastly, PyMINEr integrates pathway ana-

lyses (Reimand et al., 2016) for each pair of cell types to identify

the overarching biologic processes involved in autocrine or para-

crine signaling between these cell types (Figure 6A). Note that

PyMINEr only reports results that are relatively cell type-to-cell

type-specific, ignoring very broad signaling pathways that are

not cell type-dependent; this enables amore targeted interpreta-

tion to signaling pathways that are informative across cell types

rather than broad generic signaling mechanisms.

We created a consensus autocrine-paracrine signaling

network from not only our dataset but all 7 human pancreatic da-

tasets we analyzed with PyMINEr (made from genes enriched in

a given cell type in 50% or more of datasets). To test the veracity

of the PyMINEr-based networks, we looked for known pancre-

atic hormone interactions; indeed, PyMINEr foundmany of these

interactions, conforming to the current state of knowledge

within pancreatic endocrinology (Figure 6B). Seeing the accu-

racy found within the consensus autocrine-paracrine signaling

network, we created an Kullback-Leibler (KL) divergence-based

pathway meta-analysis algorithm to guide discovery of previ-

ously undescribed signaling interactions (Figure S6). Interest-

ingly, ductal cells showed the greatest number of interactions

in this dataset (Figure 6C; Table S5A). Notably, ductal cells are

the progenitors for both endocrine and acinar cells during
ated genes. The nature of the associations that were previously published is

ugh the cited meta-analysis are denoted as ‘‘newly associated locus.’’

set) are displayed over the two largest connected components of the T2D gene

rrespond to beta (B), epsilon (C), pancreatic polypeptide cells (D), ductal (E),

own in red, whereas genes whose expression is low in the given cell type are

given cell type, then it is highlighted with a cyan ring. Table S2A lists cell type

CG; alpha cells, red), BSCL2 (green), and insulin (INS; beta cells, white) and

lls were positive for BSCL2, we also observed expression in other islet cells

r pan-cytokeratin (highlights primarily the ductal epithelium, red) and TSPAN8

below the primary images. All scale bars represent 20 mm.
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Figure 6. In Silico Predicted Autocrine-Paracrine Signaling Networks Center around Developmental Pathways for Pancreatic Ductal Cells
(A) An overall schematic of the analytic pipeline incorporated in PyMINEr. Not shown but also included are gProfiler pathway analyses on all cell type interactions.

The consensus 7 human pancreatic islet dataset was used for this analysis (available for download at https://www.sciencescott.com/pancreatic-scrnaseq).

(B) A subset of the autocrine-paracrine signaling network found by PyMINEr containing pancreatic hormones and their receptors. Colors are indicative of the cell

type producing the noted gene (gray indicates that it is produced by more than one cell type at appreciably high levels).

(C) A network showing the number of predicted autocrine-paracrine interactions between all cell types from the human pancreatic islet datasets.

(D) A schematic of the BMP pathway ligands and receptors as determined by PyMINEr. In brief, endocrine cell types tend to produce activating ligands, acinar

cells tend to produce inhibitory ligands, and ductal cells produce a mixture of these proteins as well as activin and transforming growth factor (TGF) receptors

(which can be activated by BMPs).

(E) A schematic of the PyMINEr-predicted signaling by the WNT pathway ligands and receptors among ductal, stromal, beta, and PP cells.

See Figure S6 for details regarding the pathway-ranking algorithm developed and implemented in PyMINEr.
development (Kopp et al., 2011). Consistent with this, we

observed significant enrichment of developmental pathways

within the ductal-centric autocrine and paracrine signaling net-

works (Table S5B). We therefore sought to validate autocrine

and paracrine signaling from ductal cells that were pertinent to

these developmental pathways. PyMINEr predicted substantial

ductal signaling through the bone morphogenic protein (BMP)

and Wingless/Integrated (WNT) pathways (Figures 6D and 6E).

Interestingly, endocrine cells produced high levels of BMP li-

gands, whereas acinar cells produced high levels of follistatin

(FST) and Chordin (CHRD), which inhibit BMP signaling. Ductal

cells, which give rise to both endocrine and acinar cells during

development, expressed both activating and inhibitory ligands.

In addition to predicting BMP paracrine signaling as described

above, PyMINEr suggested that beta-catenin-dependent auto-

crine signaling via the canonical WNT and Frizzled (FZD)

signaling pathway occurs within ductal cells (Table S5).
1960 Cell Reports 26, 1951–1964, February 12, 2019
The paracrine (BMP) and autocrine (WNT) signaling predicted

by PyMINEr raised interesting testable hypotheses. Given that

BMPs are largely produced at higher levels in endocrine and

ductal cells, whereas BMP inhibitors are produced by acinar

and ductal cells, we hypothesized that loss of the acinar cell

compartment would result in enhanced BMP signaling within

the pancreas. Acinar cells make up a large part of the pancreas

and are destroyed in the setting of chronic pancreatitis. A well-

characterized form of chronic pancreatitis occurs in cystic

fibrosis (CF), a recessive disease caused by loss of function of

a chloride and bicarbonate channel called cystic fibrosis trans-

membrane conductance regulator (CFTR), where acinar cells

are destroyed early in life (Bogdani et al., 2017). We tested the

hypothesis that loss of acinar cells in the CF pancreas leads to

an elevation of BMP signaling by evaluating the nuclear down-

stream signaling effector of the BMP pathway (active phosphor-

ylated SMAD5 [pSMAD5]). Indeed, the levels of pSMAD5 were

https://www.sciencescott.com/pancreatic-scrnaseq
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higher in CF than non-CF pancreata (2-way ANOVA; genotype,

p = 1.7e�6). This pattern held true for both ductal cells (cytoker-

atin-positive) and islet cells (insulin-positive) (2-way ANOVA with

Tukey honest significant difference (HSD); ductal, p = 5.7e�4;

islet cell, p = 2.1e�5; Figures 7A–7C). Because cytoplasmic in-

sulin can overlap with the nuclei of non-beta cells, we sought

to more definitively determine whether beta cell nuclei showed

higher levels of pSMAD5; indeed, insulin and Nkx6.1 double-

positive cells contained higher levels of pSMAD5 in CF

compared with non-CF beta cells (2-way ANOVA with Tukey

HSD, p = 5.6e�3; Figures 7D–7F). Donor information and quan-

tification are provided in Tables S6A–S6C.

We next tested CF pancreata for disruption of the WNT

signaling pathway, as predicted by PyMINEr. We hypothesized

that WNT signaling would be altered in CF related pathology.

To test this possibility, we performed immunofluorescence stain-

ing for the active form of beta-catenin, a downstream signaling

effector of canonical WNT signaling, in CF and non-CF pan-

creata. Although levels of beta-catenin activity remained low in

many areas of CF ducts, some regions show substantial beta-

catenin induction compared with non-CF ducts (Figures 7G and

7H). Indeed, the levels of active beta-catenin were significantly

higher in CF ductal cells (2-way ANOVA with Tukey HSD,

p = 0.026) but not in insulin-positive islet cells (2-way ANOVA

with Tukey HSD, p = 0.056; Figure 7I; Table S6D). Although

testing in animal models will be required to directly attribute cell

type-specific autocrine-paracrine signaling to the differences in

pSMAD5 and active beta-catenin, these observations from hu-

manCF pancreata demonstrate the power of PyMINEr for gener-

ating testable hypotheses regarding the effects of human pathol-

ogies on autocrine and paracrine signaling. Furthermore, these

findings lay the groundwork for uncovering the phenotypic ef-

fects of the induction of these pathways in pancreatic disease.

DISCUSSION

In summary, we present PyMINEr, a tool that automates bioinfor-

matics techniques including (1) cell type identification, (2) detec-

tion of cell type-enriched genes, (3) creation of a graph network

representation of transcription, (4) creation of a putative auto-

crine-paracrine signaling network within and between cell types,
Figure 7. Validation of Predicted Perturbations in Signaling Pathways

(A and B) Five cystic fibrosis (CF) and six non-CF human donors were evaluated b

an index for active BMP signaling. pSMAD5-only images are shown below the m

(A) Co-localization of pSMAD5 and pan-cytokeratin in ductal cells.

(B) Co-localization of pSMAD5 and insulin in an islet.

(C) Quantification of pSMAD5 expression in both pan-cytokeratin-positive duct

pSMAD5 expression was significantly increased in both ductal and beta cells (Tu

(D and E) Protein staining for insulin (white), Nkx6.1 (red), and pSMAD5 (green) ve

cells (D).

(F) Quantification of cellular staining patterns in (D) and (E).

(G and H) Staining for active beta-catenin in CF and non-CF pancreata. pSMAD5

(G) Co-localization of active beta-catenin and pan-cytokeratin in ductal cells.

(H) Co-localization of active beta-catenin and insulin in an islet.

(I) Quantification of nuclear active beta-catenin expression in both pan-cytokera

catenin were significantly increased in ductal cells (Tukey HSD; ductal, p = 0.026

All quantifications were performed using the Metamorph cellular scoring module.

are noted in (C), (F), and (I). Each donor was tile-scanned and quantified, yielding
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and (5) pathway analyses of genes enriched in each cell type and

within the autocrine-paracrine signaling networks. This tool is

designed to expedite collaborations between bench and compu-

tational biologists so that these large datasets can be rapidly

converted into testable hypotheses. Furthermore, PyMINEr gen-

erates an html web display explaining these results. Many

currently available tools address only a small number of these in-

formatic tasks and do so by implementing a library of functions

that need to be individually applied and integrated programmat-

ically (Gr€un et al., 2015; Kiselev et al., 2017; Satija et al., 2015).

PyMINEr provides a full pipeline that, by default, performs unsu-

pervised clustering, creates co-expression graphs, calculates

basic statistics, generates significant enrichment gene lists

across cell types, generates putative autocrine-paracrine

signaling networks, performs automated pathway analyses, im-

plements KL divergence-based algorithms for pathway meta-

analyses, and provides visual displays of these analyses.

We also demonstrate the power of integrating expression

graph networks with other sources of data. Network structure

was found to be reproducible across scRNA-seq platforms

and laboratories. Furthermore, we show the association be-

tween network structure and protein-protein interactions as

well as the genomic positioning of insulator sites. The level of

data integration with expression graph structure presented

here was integral to our identification of previously undescribed

T2D-associated gene expression patterns. Furthermore, inte-

grating subcellular localization annotations with protein-protein

interaction databases enabled automated in silico construction

of autocrine and paracrine signaling networks.

Last, the PyMINEr pipeline enabled rapid generation of test-

able hypotheses pertinent to human disease. In the case of the

CF pancreas, PyMINEr predicted changes in developmental

signaling pathways, including both the balance of BMP signaling

between the endocrine and acinar cell types and the induction of

WNT-beta-catenin signaling within the ductal cell compartment.

The simplicity of input and magnitude of output for PyMINEr

should greatly accelerate the translation of scRNA-seq data

from an unlabeled 2D matrix to biologically interpretable find-

ings. As illustrated in this study, these PyMINEr-based analyses

can generate testable hypotheses that can guide insights into

human pathology. Finally, the advantages of this tool are not
within the Remodeled Cystic Fibrosis Pancreata

y immunofluorescence for expression of phosphorylated-SMAD5 (pSMAD5) as

erged images.

al cells and insulin-positive islet cells (2-way ANOVA; genotype, p = 1.7e-6).

key HSD; ductal, p = 5.7e-4; beta, p = 2.1e-5).

rifies that there is elevated signaling in CF beta cells (E) relative to non-CF beta

-only images are shown below the merged images.

tin-positive ductal cells and insulin positive islet cells. Levels of active beta-

) but not beta cells in the context of CF.

All scale bars represent 20 mm. The number of donors used in each experiment

the averages, which were used for analyses as noted in Table S6.



limited to scRNA-seq data and can be applied to any biologic

dataset.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS
B Single cell RNaseq

B Clustering cells

B Determining the number of cell types

B Cell type identification with PyMINEr for our dataset

B Significant enrichment

B Pathway analysis

B Co-expression and interaction comparison

B Graph visualizations

B Autocrine-paracrine signaling lists

B Protein staining for BSCL2, TSPAN8, GCG, INS, pan-

cytokeratin, Nkx6.1, active beta-catenin, phospho-

SMAD5

B RaceID comparison

B Overdispersed genes

B K-means, k-means++, and gap statistic

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Quantification and statistics for the expression of

pSMAD5 and active beta-catenin protein

B ChIPseq dataset analysis: CTCF, RAD21, and SMC3

ChIP

B Analysis of an independent human pancreatic scRNa-

seq dataset

B Reprocessing of other pancreatic datasets

B Correlation analysis

B Z-score enrichment

B Simulated datasets for comparing PyMINEr to

competing techniques

B Comparison of PyMINEr and gap statistic for esti-

mating group numbers

B Statistics for k-means, k-means++, and gap statistic

comparisons

B Comparison of PyMINEr to RaceID

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and six tables and can be found

with this article online at https://doi.org/10.1016/j.celrep.2019.01.063.

ACKNOWLEDGMENTS

We thank the Howard F. Ruby Endowment for Human Retinal Engineering for

providing the Fluidigm C1 instrument. The single-cell RNA-seq data presented

herein were obtained by the Genomics Division of the Iowa Institute of Human

Genetics, which is supported in part by the University of IowaCarver College of

Medicine. This work was supported by NIH grants R24 DK096518 (to J.F.E.

and A.W.N.), R24 HL123482 (to J.F.E.), and R01 DK115791 (to A.W.N. and

J.F.E.); a Fraternal Order of Eagles Diabetes Research Center grant (to
A.W.N.); the University of Iowa Center for Gene Therapy (DK54759); and the

Carver Chair in Molecular Medicine (to J.F.E). S.R.T. was supported by an

NIH predoctoral training grant in bioinformatics (NIGMS bioinformatics award

T32GM082729).

AUTHOR CONTRIBUTIONS

S.R.T. performed all RNA-seq quantifications, R analysis, and T2D gene anal-

ysis; conceived and wrote all algorithms, the PyMINEr program, the pipeline,

and experiments; performed staining and quantification for autocrine and

paracrine signaling; and participated in writing of the manuscript. P.G.R. per-

formed protein staining pertinent to T2D-associated genes and provided intel-

lectual input for autocrine and paracrine signaling. X.S., P.G.R., and M.C.W.

cultured islets used for scRNA-seq. Y.Y. curated human pancreas paraffin

blocks. P.G.R. and W.X. performed immunofluorescence as quality control

for human pancreatic islets. R.F.M., M.J.F.-W., and B.A.T. aided in the use

of the Fluidigm C1 instrument. A.W.N. guided experiments, interpreted data,

and edited the manuscript. J.F.E. conceived experiments, interpreted data,

and participated in writing the manuscript.

DECLARATION OF INTERESTS

The authors declare no conflicts of interest.

Received: June 25, 2018

Revised: December 6, 2018

Accepted: January 16, 2019

Published: February 12, 2019

REFERENCES

Arthur, D., and Vassilvitskii, S. (2007). k-means++: the advantages of careful

seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium

on Discrete Algorithms (Society for Industrial and Applied Mathematics),

pp. 1027–1035.

Bader, E., Migliorini, A., Gegg, M., Moruzzi, N., Gerdes, J., Roscioni, S.S.,

Bakhti, M., Brandl, E., Irmler, M., Beckers, J., et al. (2016). Identification of pro-

liferative and mature b-cells in the islets of Langerhans. Nature 535, 430–434.

Ballouz, S., Weber, M., Pavlidis, P., and Gillis, J. (2017). EGAD: ultra-fast func-

tional analysis of gene networks. Bioinformatics 33, 612–614.

Behfar, A., Zingman, L.V., Hodgson, D.M., Rauzier, J.-M., Kane, G.C., Terzic,

A., and Pucéat, M. (2002). Stem cell differentiation requires a paracrine

pathway in the heart. FASEB J. 16, 1558–1566.

Bogdani, M., Blackman, S.M., Ridaura, C., Bellocq, J.-P., Powers, A.C., and

Aguilar-Bryan, L. (2017). Structural abnormalities in islets from very young chil-

dren with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Sci.

Rep. 7, 17231.

Burns, J.C., Kelly, M.C., Hoa, M., Morell, R.J., and Kelley, M.W. (2015). Single-

cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal

inner ear. Nat. Commun. 6, 8557.

Dorrell, C., Schug, J., Canaday, P.S., Russ, H.A., Tarlow, B.D., Grompe, M.T.,

Horton, T., Hebrok, M., Streeter, P.R., Kaestner, K.H., and Grompe, M. (2016).

Human islets contain four distinct subtypes of b cells. Nat. Commun. 7, 11756.

Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. (2002). Stochastic

gene expression in a single cell. Science 297, 1183–1186.

ENCODE Project Consortium (2012). An integrated encyclopedia of DNA ele-

ments in the human genome. Nature 489, 57–74.

Forina, M., Leardi, R., Armanino, C., and Lanteri, S. (1988). PARVUS: An

Extendable Package of Programs for Data Exploration, Classification and Cor-

relation (Elsevier).

Gnecchi, M., Zhang, Z., Ni, A., and Dzau, V.J. (2008). Paracrine mechanisms in

adult stem cell signaling and therapy. Circ. Res. 103, 1204–1219.

Grant, S.F.A., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Manolescu,

A., Sainz, J., Helgason, A., Stefansson, H., Emilsson, V., Helgadottir, A., et al.
Cell Reports 26, 1951–1964, February 12, 2019 1963

https://doi.org/10.1016/j.celrep.2019.01.063
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref1
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref1
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref1
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref1
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref2
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref2
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref2
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref3
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref3
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref4
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref4
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref4
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref5
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref5
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref5
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref5
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref6
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref6
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref6
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref7
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref7
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref7
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref8
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref8
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref9
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref9
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref10
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref10
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref10
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref11
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref11
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref12
http://refhub.elsevier.com/S2211-1247(19)30092-0/sref12


(2006). Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of

type 2 diabetes. Nat. Genet. 38, 320–323.

Gr€un, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N.,

Clevers, H., and van Oudenaarden, A. (2015). Single-cell messenger RNA

sequencing reveals rare intestinal cell types. Nature 525, 251–255.

Hinrichs, A.S., Karolchik, D., Baertsch, R., Barber, G.P., Bejerano,G., Clawson,

H., Diekhans, M., Furey, T.S., Harte, R.A., Hsu, F., et al. (2006). The UCSC

GenomeBrowser Database: update 2006. Nucleic Acids Res. 34, D590–D598.

Hong, S., Chen, X., Jin, L., and Xiong, M. (2013). Canonical correlation analysis

for RNA-seq co-expression networks. Nucleic Acids Res. 41, e95.

Horton, P., and Nakai, K. (1996). A probabilistic classification system for pre-

dicting the cellular localization sites of proteins. Proc. Int. Conf. Intell. Syst.

Mol. Biol. 4, 109–115.

Huang,M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., Murray, J.I.,

Raj, A., Li, M., and Zhang, N.R. (2018). SAVER: gene expression recovery for

single-cell RNA sequencing. Nat. Methods 15, 539–542.

Iancu, O.D., Kawane, S., Bottomly, D., Searles, R., Hitzemann, R., and

McWeeney, S. (2012). Utilizing RNA-Seq data for de novo coexpression

network inference. Bioinformatics 28, 1592–1597.

Jaitin, D.A., Weiner, A., Yofe, I., Lara-Astiaso, D., Keren-Shaul, H., David, E.,

Salame, T.M., Tanay, A., van Oudenaarden, A., and Amit, I. (2016). Dissecting

Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-

Seq. Cell 167, 1883–1896.e15.

Khodabandehloo, H., Gorgani-Firuzjaee, S., Panahi, G., and Meshkani, R.

(2016). Molecular and cellular mechanisms linking inflammation to insulin

resistance and b-cell dysfunction. Transl. Res. 167, 228–256.

Kiselev, V.Y., Kirschner, K., Schaub, M.T., Andrews, T., Yiu, A., Chandra, T.,

Natarajan, K.N., Reik, W., Barahona, M., Green, A.R., and Hemberg, M.

(2017). SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods

14, 483–486.

Kopp, J.L., Dubois, C.L., Schaffer, A.E., Hao, E., Shih, H.P., Seymour, P.A.,

Ma, J., and Sander, M. (2011). Sox9+ ductal cells are multipotent progenitors

throughout development but do not produce new endocrine cells in the normal

or injured adult pancreas. Development 138, 653–665.

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformatics 9, 559.

Levine, J.H., Lin, Y., and Elowitz, M.B. (2013). Functional roles of pulsing in ge-

netic circuits. Science 342, 1193–1200.

Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification

from RNA-Seq data with or without a reference genome. BMC Bioinformatics

12, 323.

Li, W.V., and Li, J.J. (2018). An accurate and robust imputation method scIm-

pute for single-cell RNA-seq data. Nat. Commun. 9, 997.

Li, J., Klughammer, J., Farlik, M., Penz, T., Spittler, A., Barbieux, C., Berishvili,

E., Bock, C., and Kubicek, S. (2016). Single-cell transcriptomes reveal charac-

teristic features of human pancreatic islet cell types. EMBO Rep. 17, 178–187.

Dua, D., and Karra Taniskidou, E. (2017). UCI Machine Learning Repository.

Irvine, CA: University of California, School of Information and Computer Sci-

ence. http://archive.ics.uci.edu/ml.

Liu, L., Jiang, Q., Wang, X., Zhang, Y., Lin, R.C.Y., Lam, S.M., Shui, G., Zhou,

L., Li, P., Wang, Y., et al. (2014). Adipose-specific knockout of SEIPIN/BSCL2

results in progressive lipodystrophy. Diabetes 63, 2320–2331.

Manning, C.D., Raghavan, P., and Sch€utze, H. (2008). Introduction to Informa-

tion Retrieval (Cambridge University Press).

Morris, A.P., Voight, B.F., Teslovich, T.M., Ferreira, T., Segrè, A.V., Steinthors-

dottir, V., Strawbridge, R.J., Khan, H., Grallert, H., Mahajan, A., et al.; Well-

come Trust Case Control Consortium; Meta-Analyses of Glucose and Insu-

lin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of

ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology

Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Dia-

betes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis

(DIAGRAM) Consortium (2012). Large-scale association analysis provides in-
1964 Cell Reports 26, 1951–1964, February 12, 2019
sights into the genetic architecture and pathophysiology of type 2 diabetes.

Nat. Genet. 44, 981–990.

Muraro, M.J., Dharmadhikari, G., Gr€un, D., Groen, N., Dielen, T., Jansen, E.,

van Gurp, L., Engelse, M.A., Carlotti, F., de Koning, E.J., and van Oudenaar-

den, A. (2016). A Single-Cell Transcriptome Atlas of the Human Pancreas.

Cell Syst. 3, 385–394.e3.

Nicolson, T.J., Bellomo, E.A., Wijesekara, N., Loder, M.K., Baldwin, J.M., Gyul-

khandanyan, A.V., Koshkin, V., Tarasov, A.I., Carzaniga, R., Kronenberger, K.,

et al. (2009). Insulin storage and glucose homeostasis in mice null for the

granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated

variants. Diabetes 58, 2070–2083.

Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto,

H., Cahill, D.P., Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-

cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.

Science 344, 1396–1401.

Pham, D.T., Dimov, S.S., and Nguyen, C. (2005). Selection of K in K-means

clustering. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 219, 103–119.

Porte, D., Jr. (1991). Banting lecture 1990. b-cells in type II diabetes mellitus.

Diabetes 40, 166–180.

Prentki, M., and Nolan, C.J. (2006). Islet b cell failure in type 2 diabetes. J. Clin.

Invest. 116, 1802–1812.

Reimand, J., Arak, T., Adler, P., Kolberg, L., Reisberg, S., Peterson, H., and

Vilo, J. (2016). g:Profiler-a web server for functional interpretation of gene lists

(2016 update). Nucleic Acids Res. 44 (W1), W83–W89.

Rutter, G.A., Pullen, T.J., Hodson, D.J., and Martinez-Sanchez, A. (2015).

Pancreatic b-cell identity, glucose sensing and the control of insulin secretion.

Biochem. J. 466, 203–218.

Sanborn, A.L., Rao, S.S.P., Huang, S.-C., Durand, N.C., Huntley, M.H., Jewett,

A.I., Bochkov, I.D., Chinnappan, D., Cutkosky, A., Li, J., et al. (2015). Chro-

matin extrusion explains key features of loop and domain formation in wild-

type and engineered genomes. Proc. Natl. Acad. Sci. USA 112, E6456–E6465.

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial

reconstruction of single-cell geneexpressiondata.Nat.Biotechnol. 33, 495–502.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human pancreatic islets, from three donors, were used for scRNaseq; these were obtained through the International Islet Distribution

Program (IIDP). All human tissue sections were obtained from the National Development and Research Institutes, Inc (NDIR) which

manages informed consent and regulation compliance; sampleswere then processed through theUniversity of Iowa Pathology Core.

Both males and females were a part of this study; sex of the subjects is provided in Table S6A.

METHOD DETAILS

Single cell RNaseq
Samples and preparation

For each of the three human donors whose cells were studied here, we obtained 5,000 islet equivalents from the Integrated Islet Dis-

tribution Program (IIDP). Islets were cultured overnight in RPMI supplemented with 10 mM glucose, 10% FBS, and 1% Penn-Strep,

prior to single-cell RNaseq analysis using a FluidigmC1 instrument. For single-cell RNaseq, islets were prepared largely following the

protocol recommended by the manufacturer. Briefly, islets were digested with 0.25% trypsin, and filtered through a 40 mm cell

strainer, washed with PBS, and resuspended in islet culture medium. Cells were then diluted with Fluidigm buoyancy solution

(60:40, cells:solution) to a final concentration of �180,000 cells/mL. Buoyancy was previously tested using non-experimental islet

preparations as per manufacturer instructions. The C1 integrated fluidic circuit (IFC) was primed and loaded as described in the

C1 protocol. After cells were loaded onto the C1 chip, cell capture sites were manually scored for wells that were empty (no cells),

containedmultiple cells, or cells that appeared dead; thesewere either not sequenced ormanually removed and thus eliminated from

further analysis.

RNA spike-ins (Ambicon ArrayControl RNAs #1, 4, and 7) were obtained from Life Technologies (AM1780M) and used as described

in the C1 protocol, to control for the presence and health of cells. Ambion Array Control RNA spikes # 1, 4, and 7 were diluted 1:4000

into C1 lysis mix, and this mixture was then used as indicated by the Fluidigm C1 protocol. Given that other cell types may contain

different quantities of total cellular mRNA, the ratios of RNAspike to cellular transcripts could vary. Therefore, the above dilutions of

RNAspike may not be compatible with other cell types that were not sequenced here. Aliquots of the same RNAspike solution were

used for all C1 runs. cDNA synthesis was performed on the Fluidigm C1 using the SMARTer� Ultra� Low RNA Kit for the Fluidigm�
C1, whereas libraries were prepared using the Nextera XT Library Prep Kit.

RNaseq quantification

Sequencing was performed on an Illumina HiSeq 2500, run in high-throughput mode and using the Chemistry Kit Version 4 to

generate 125 base-pair end reads. A single lane was used for each C1 run. The sequences for the RNAspike-ins were added to

the reference human transcriptome, obtained from Ensembl (Version 38), and prepared with RSEM’s rsem-prepare-reference func-

tion, using poly-A tail length of 125, and suppressing N-to-G conversion (Li and Dewey, 2011). The sequences were then aligned and

quantified using Bowtie2 through RSEM. As an additional control for cell viability, cells whose transcripts were derived fromR 40%

RNAspike, or with fewer than 1e6 reads, were excluded from further analysis. The total average number of paired-end reads

was 2,842,414 (1,421,207 fragments) for all included cells; other sample statistics are included in Table S1B.

We then normalized TPM to the RNA spike-in, bymultiplying all transcript levels by 1million (to avoid floating-point errors) and then

dividing by the sum of the RNA spike-ins. Like other groups, after normalizing to the RNA spike-in we observed unequal distributions

between samples (Burns et al., 2015); we therefore also normalized to the upper quartile value of post RNA spike-in normalized

expression values, and discarded samples whose upper quartile expression value equaled zero.

Clustering cells
Recent papers have used traditional k-means clustering for cell-type identification in scRNaseq datasets (Burns et al., 2015; Gr€un

et al., 2015), but thismethodwas previously shown to yield inconsistent results (Arthur and Vassilvitskii, 2007). The general procedure

for traditional k-means clustering is as follows:

1. Randomly select k points in the dataset and assign the initial location of centroids to those points.

2. Calculate the squared Euclidean distance of all points within the dataset from each centroid.

3. Find each point’s closest centroid by this distance metric, and assign it to that centroid’s group.

4. Recalculate the location of each centroid as the mean of all its group members, assigned at step 3.

5. Repeat steps 2-4 several times.

Traditional k-means clustering, however, has several drawbacks. The results of k-means clustering are entirely dependent on the

initial location of the centroids; these centroids simply roll toward their nearest local point density over the iterations described above

(Arthur and Vassilvitskii, 2007). Because of this property, random selection of points to initialize the location of centroids can result in

the initialization of centroids very close together within the dataset, and can also leave large areas of the dataset without a centroid

initialized. This can lead to either a single population being labeled as two populations, or two populations being called a single

population, respectively (Figures S1A, S1B, and S1D).
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However, techniques have been developed to address this issue, with perhaps the most popular being k-means++ (Arthur and

Vassilvitskii, 2007). K-means++ simply modifies how centroids are initially seeded. Rather than being seeded randomly, centroids

are initialized sequentially as follows:

1. The first centroid is initialized uniformly randomly to a point in the dataset; in this case, each point has an equal chance of being

selected.

2. For each point, the squared Euclidean distance is calculated in relation to its closest previously seeded centroid.

3. Each additional centroid is then initialized randomly aswell, but using these distances as aweighted probability; this probability

weighting increases the chances of choosing a point that is not near a previously selected centroid location.

4. Steps 2-3 are repeated until the user-defined number of centroids (k) has been initialized.

5. Traditional K-means clustering is then performed.

This process decreases the probability of centroids being seeded close to each other. However, this technique only takes into

consideration the distance of a point from its nearest previously selected centroid, and not its distance from all previously selected

centroids. Overall though, this technique for centroid seeding is a substantial improvement over traditional, randomly seeded

k-means clustering.

We hypothesized that initializing centroids far from all other centroids would diminish the probability of cluster merging and splitting

(splitting is measured by cluster purity); indeed, applying this principle via PyMINEr proved this to be the case (Figures S1C and S1E).

In brief, PyMINEr selects centroids progressively, based on the distance from all previously selected centroids. The detailed steps for

centroid selection are as follows:

1. Initializing the first centroid to a point in the dataset:
a. Calculate the standard deviation of all points in the dataset.

b. For clustering iteration 1, choose the point with the greatest standard deviation and initialize the first centroid here.

c. For clustering iterations 2 and greater, use the standard deviation vector as weighted probabilities for selecting the first

centroid.

2. Initializing centroids 2 through k to other points in the dataset:

a. For each point in the dataset, calculate the sum of squared Euclidian distances from previously initialized centroids

(Equation 1). This is stored in matrix E, of n x kj-1 dimensions, where n is the number of samples and kj-1 is the number

of previously initialized centroids.

b. For each point, find the minimum squared Euclidean distance to a previously selected centroid. This is equivalent to the

row-wise minimum of E (Equation 2). This is stored in the one-dimensional vector M of length n (where n is the number

of points). This is the distance of each point to its closest previously initialized centroid.

c. Calculate the row-wise sums of E, and multiply byM, storing the final distance metric in the one dimensional, length n, vec-

tor D. This maximizes the distance from all previously initialized centroids, while penalizing for closeness to any of the pre-

viously selected centroids.

d. Initialize the next centroid to the point in the dataset with the maximum of D (Equation 3).

e. Continue this procedure until all needed (k) centroids have been initialized to a point in the dataset.

3. Proceed with k-means clustering, using centroids initialized to the above-defined points.

4. Calculate and store the quality of clustering [defined later as f(k)].

5. Repeat this full process (steps 1-4), minimally 10 times, and record the clustering solution yielding the minimum f(k)

(i.e., clustering with the best-separated groups).
Ei =
Xn

i

ði� kjÞ2 (Equation 1)
Mi =minðEiÞ (Equation 2)
Di =Mi

X
Ei (Equation 3)

The number of iterations can be set using the ‘-sample_cluster_iters < int > ’ argument in PyMINEr; as the number of iterations rises,

clustering is typically more accurate.

To more thoroughly evaluate this method, we tested the performance of PyMINEr clustering against both traditional k-means and

k-means++ clustering, over a range of conditions and using synthetic datasets where true group membership was known

(Figures S2A and S2B). We measured cluster splitting by two metrics called cluster purity and relative entropy (high purity and low
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entropy indicate less cluster splitting); merged clusters were quantified by relative mutual information (higher mutual information in-

dicates fewer cluster mergers). Indeed, PyMINEr outperformed both k-means++ and k-means clustering in these parameters (Fig-

ures S2C–S2E). To further test the accuracy of this centroid seeding method, we compared these methods using several common

real-world datasets including: 1) classifying types of wines based on their characteristics (https://archive.ics.uci.edu/ml/

machine-learning-databases/wine/wine.data), and 2) classifying subcellular localization of proteins in E. coli as previously

described (Horton and Nakai, 1996) (https://archive.ics.uci.edu/ml/machine-learning-databases/ecoli/ecoli.data). In each case,

PyMINEr’s clustering algorithm proved equal to or more accurate than k-means and k-means++ algorithms (Figures S3F and

S3G) (Dua and Karra Taniskidou, 2017).

Determining the number of cell types
We first attempted to identify cell types using the recently developed scRNaseq cell-type identification algorithm RaceID (Gr€un et al.,

2015). However, the estimates of the number of cell types and the clustering results were not self-consistent (Figures S3J and S3K). In

using RaceID, local minima were often produced at k = 2 in the Gap Statistic, and this resulted in the RaceID algorithm finding only a

single group. In such cases, the authors and developers suggested manually setting the number of cell types, and then allowing

RaceID to detect outliers (Gr€un et al., 2015). However, this is not an ideal, user-independent system, and can create bias. For these

reasons, we sought to develop an algorithmwith greater consistency; we chose to develop an adaptation of the previously published

algorithm described by Pham et al. (2005). In that publication, the defined algorithm was shown to be as accurate as, but faster than,

the gap statistic (which is the method used by RaceID). We also sought to modify the implementation of this algorithm to increase its

accuracy.

Pham et al. describe an equation f(k), which returns a metric for quality of clustering using k clusters; this algorithm progressively

evaluates f(k) for clustering results using k = 1 cluster through somemaximum number of clusters to consider (Pham et al., 2005). Our

implementation performs this process for k = 1 to O(n samples), and then performs a run-on for an additional 5 k until the global min-

imum of f(k) is no longer within the greatest 5 k estimates attempted. This allows for a more fluid estimate of k and can detect and

enable incremental progress with higher k estimates. Finally, we perform this process iteratively, as with the clustering described

above, logging the estimate of k each time (the clustering iteration whose k estimate yielded the lowest value for f(k) is used).

Then, due to inherent bias toward underestimating k (data not shown), we use the upper 90th percentile estimate of k as the final

estimate.

After making this estimate, PyMINEr again uses the clustering method described above, re-clustering samples for the estimated

number of (k) groups. The final clusters are produced using the iteration of clustering with the lowest f(k) value, and these are then

returned and written to file (Figures S3B–S3F).

Cell type identification with PyMINEr for our dataset
For determining cell types, we used the cell type sub-matrix (beta-cell:INS; alpha-cell:GCG; epsilon-cell:GHRL; ductal-cell:HNF1B;

PP-cell:PPY; stromal-cell:COL1A1; delta-cell:SST; acinar-cell:CELA3A). All variables were linear normalized (between 0 and 1) prior

to clustering analysis using PyMINEr. Using these cell type identifications, we performed subsequent PyMINEr analyses on the full

dataset (Z-scores, ANOVAs, significant enrichment, and network analyses).

Significant enrichment
In brief, significantly enriched variables are defined by both significant ANOVA results and a high Z-score enrichment for a group.

First, each variable is tested by 1-way ANOVA for a difference between groups. These p values are then corrected for multiple com-

parisons using Benjamini-Hochberg FDR correction; any gene whose FDR q value is % 0.05 is cross-checked for group level

Z-scores that surpass a default cutoff ofR 2. These variables are then considered significantly enriched in the group. These cutoffs

are the default values in PyMINEr, but they can be overridden by the user.

Pathway analysis
PyMINEr automates pathway analyses of not only genes enriched in the identified groups (described above), but also all the pre-

dicted autocrine and paracrine interactions within and between cell types. This is done using the gProfiler API (Reimand et al., 2016).

An important step in identifying cell types in scRNaseq following clustering is the conversion of group identities into a verbally un-

derstandable cell type. This is often done by looking for the expression of known cell type markers in each identified cell type; this

process, however, will only enable the identification of cell types that express known cell type markers. To facilitate a more unbiased

translation from gene enrichment to understandable cell identities, we integrated pathway analyses into PyMINEr as part of the auto-

mated analysis of gene sets identified as enriched in each cell type (Reimand et al., 2016). However, this can lead to the same anno-

tation of highly significant pathways for all cell types. For example, the gene-sets for each cell type in an immune cell dataset will likely

rank highly significant for immune related pathways. While notable, these findings do not help the user understand what is different

between cell types. The most important pathways and annotations will be those that are highly significance in some groups and not

significant in others. This pattern will appear as a bimodal distribution of significance. We therefore devised an algorithm that exam-

ines pathway significance across groups andmeasures the Kullback–Leibler (KL)-divergence of significance away from theGaussian
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null distribution. This information is further integrated with the overall -log10(p value) range (Figure S6). This metric normalized be-

tween 1e-4 and 1 (1e-4 is used to avoid division by zero in a later calculation). We call this metric the non-Gaussian-KL-range.

To use thismetric for ranking the individual importance of a given pathway for each group, wemultiply the importancemetric vector

by the linear normalized (0-1 within groups) -log10(p values). We then rank the importance of each pathway for individual groups by

reapplying the non-Gaussian-KL-range ranking method (Figure S6B).

Co-expression and interaction comparison
We compared the human protein-protein interactions described in the StringDB file 9606.protein.actions.v10.txt (Szklarczyk et al.,

2015) with the expression adjacency list generated from the above command line call from PyMINEr, calculating the percentage

of co-regulated genes that also showed an annotated protein-protein interaction. We next used the list of genes expressed in our

final dataset to generate an equal-length adjacency list that randomly pairs expressed genes, and again calculated the percentage

of these random pairings that contain interactions in the StringDB interaction list. The results of these 10 Monte Carlo simulations

were then compared to the true adjacency list generated by PyMINEr using a 1-sample t test (Figure 4B).

Graph visualizations
All inputs for these visualizations were generated by PyMINEr and loaded into Cytoscape for visualization (Burns et al., 2015). How-

ever, the most recent edition of PyMINEr generates its own graph displays. The human full transcriptome graphs were organized

using the perfuse force-directed layout algorithm; only the largest connected component was displayed. The T2D subgraph was

organized using the organic layout algorithm; the largest two connected components were displayed.

Autocrine-paracrine signaling lists
For each cell type, significantly enriched genes were filtered for proteins that are associated with the membrane via an extracellular

domain (GO:0009897, GO:0031232, GO:0031233, GO:0071575, GO:0098591, GO:0031362, GO:0098567, GO:0009986,

GO:0005886, GO:0042923, GO:0016021); for each cell type we also generated a separate list of significantly enriched genes that

are annotated as being secreted (GO:0005615, GO:0005576, GO:0044421). Any gene that appeared in both of these subsets was

removed from the secreted list, but remained in the receptor list. These subcellular localizations were obtained through the gProfiler

tool (Reimand et al., 2016). The lists of significantly enriched genes encoding extracellular and membrane-associated proteins were

then cross-referenced to the StringDB interaction list (9606.protein.actions.v10), and filtered to include only gene-gene pairs whose

products are annotated as binding directly (Szklarczyk et al., 2015). This resulted in an adjacency list of all extracellular proteins

whose encoding genes are significantly enriched in each cell type, and their significantly enriched receptors on each cell type.

Protein staining for BSCL2, TSPAN8, GCG, INS, pan-cytokeratin, Nkx6.1, active beta-catenin, phospho-SMAD5
All immunofluorescence analysis was performed on human pancreatic tissue fixed in neutral buffered formalin and embedded in

paraffin. Sections were deparaffinized and blocked according to standard protocols. When staining for TSPAN8, pan-cytokeratin,

active beta-catenin, and phospho-SMAD5, deparaffinization was followed with antigen retrieval in citrate buffer (in a pressure cooker

for one minute). Samples were then blocked with PBS (with 1mM CaCl2 and 1mM MgCl2), 20% donkey serum, and 0.3% Triton

X-100, washed in PBS, and incubated with primary antibody overnight at 4�C (Insulin 1:200, glucagon 1:100, pSMAD5 1:100, active

beta-catenin 1:30, pan-cytokeratin (eFluor 660) 1:100, BSCL2 1:100, TSPAN8 1:100). Samples were thenwashed in PBS three times,

followed by incubation with secondary antibody. Note that in the case of staining for active beta-catenin, the pan-cytokeratin anti-

body was added after the secondary antibody to anti-beta-catenin. All antibodies used were as noted in Key Resources Table. All

antibodies were diluted in PBS (with 1mM CaCl2 and 1mMMgCl2), 1% donkey serum, and 0.3% Triton X-100. Slides were mounted

in aquamount (ThermoFisher Scientific) containing Hoechst 33342 1:2000 dilution (Invitrogen). When needed, 3% H2O2 was used to

quench autofluorescence from the vasculature. Images for TSPAN8 and BSCL2 were obtained on a Zeiss 700 microscope

(Carl Zeiss, Germany). All other images were obtained on a Zeiss 880 microscope (Carl Zeiss, Germany).

To stain for pSMAD5 and Nkx6.1, we conjugated each antibody using Mix-n-StainTM CFTM 555 and Mix-n-StainTM CFTM 488A,

respectively. Slides were baked at 60�C for 2 hr, deparaffinized, and citrate boiled for 40 minutes. Slides were blocked for 1 hr at

room temperature. Slides were then stained overnight at 4�C using the conjugated Nkx6.1 antibody (1:75). Slides were washed

3x in PBS and stained with donkey anti-rabbit Rhodamine-Red-X (1:100) for 1 hr at room temperature. Slides were then blocked

with 20% rabbit serum in PBS for 1hr at room temperature. Slides were then washed with PBS 3x and stained with the directly con-

jugated pSMAD5:A488 (1:50) antibody and insulin (1:50) for 2 hr at room temperature. Slides were washed 3x in PBS, then stained

with secondary against the insulin antibody conjugated to A647 (1:100), washed again, then mounted as before. Slides were imaged

using the Zeiss 880 instrument and quantified using the multi-cell scoring algorithm by MetaMorph.

RaceID comparison
The PyMINEr pipeline and RaceID protocols for identifying cell types were used iteratively; internal consistency was tested using

different random number seeds. For each dataset (full transcriptome, overdispersed genes, and cell type marker genes), tests for

increased variance were performed on the number of groups estimated by each method for 10 iterations. Differences in variance

were assessed in R using the var.test function.
Cell Reports 26, 1951–1964.e1–e8, February 12, 2019 e5



To test the purity of cell type clustering for each algorithm, we first used the algorithm to determine how many cell types were pre-

sent for each given dataset. We then assessed purity between all iterations for each method and dataset, as previously described

(Manning et al., 2008). To isolate the effect of clustering consistency while controlling for differing estimates of k between iterations,

we repeated this processwhilemanually setting the number of groups to 8 for each algorithm.We again performed 10 iterations using

different random number generator seeds, on the full transcriptome, overdispersed genes, and the cell type marker genes.

Overdispersed genes
Overdispersed genes were defined as those whose squared coefficient of variance (CV2) was greater than expected based on the

mean. Because of the non-linear relationship between CV2 and mean expression, we chose to determine the expected CV2 with a

locally weighted regression via the loess.smooth function in R.

K-means, k-means++, and gap statistic
K-means++ was performed in R using the kmeanspp function from the ‘LICORS’ package. The k-means clustering based on

PyMINEr centroid selection was performed using SciPy’s kmeans2 function. Both the k-means++ and the kmeans2 functions

were run for 10 iterations. The gap statistic employed here was from the R package ‘cluster’. The number of groups chosen for

the maximum gap statistic was that which maximized the returned ‘gap’ vector.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistics for the expression of pSMAD5 and active beta-catenin protein
Antibodies used for staining were used as indicated in Key Resources Table. All images pertaining to pSMAD5 and active beta-cat-

enin were obtained on the Zeiss 880 (Carl Zeiss, Germany) at 40x, with 16 slices, and 3 tiles in both x and y directions. Maximum

intensity projections were generated in FIJI version 1.51w, and quantification of cell types and staining intensity were performed

in MetaMorph version 7.8.0.0. To account for potential technical or processing artifacts, we also included a ‘‘no primary’’ negative

control in the analysis. Due to the spatial heterogeneity of disease in the CF pancreata, several samples had no visible ducts; in this

case, the ductal compartment was not included in quantification. Statistics were performed on the log2(average nuclear intensity+1)

of pSMAD5 and active beta-catenin. For figure display panels, intensity levels were adjusted equally across all images within the

same staining experiment. All statistics were performed using R version 3.4.4. Quantification of pSMAD5 and active beta-catenin

used the aov function followed by TukeyHSD post-hocs.

ChIPseq dataset analysis: CTCF, RAD21, and SMC3 ChIP
To classify CTCF, RAD21, and SMC3 binding sites into insulator sites, we first obtained the publicly available ENCODE datasets, and

subset them for these three factors (ENCODEProject Consortium, 2012). Next, the binding sitesweremapped from theHg18 toHg19

human genome build using the UCSC liftover tool (Hinrichs et al., 2006). After liftover, each binding site for the three factors was

assessed for the absolute value of the distance (in bases) to the nearest binding site for the other two factors. These data are rep-

resented in Figure 4C. For each factor that contained a binding site for one of the other factors within 150 bases, these binding sites

were considered double- or triple-positive loci. Loci were considered insulating if they were associated with ChIP signal for all three

factors or at least CTCF and RAD21.

To assess concordance of the scRNaseq transcription graph with the structure of the genome (as it relates to these insulator sites),

we generated several forms of graph networks, using the organization of genes between insulator elements as defined above. An

initial graph network was generated to represent the insulator structure of the genome; this graphwasmade by connecting the nodes

(representing Ensembl genes) with an edge if the genes are contained between the same two insulating loci. This graph represents

the gene structure network in which genes are interspersed by zero insulating elements. A similar approach was taken to create a

graph representing variable numbers of intervening insulation sites (increasing from zero up to four).

To compare the conservation of the human islet scRNaseq transcriptional expression graph (p % 1e-6; Rho R 0.35) and the one

representing genome structure described above, we performed chi-square and Fisher exact tests on a values in a contingency table

representing the conservation of node-node connections in SciPy using the scipy.stats.chi2_contingency and scipy.stats.fisher_

exact functions.

Analysis of an independent human pancreatic scRNaseq dataset
Using the human pancreatic scRNaseq dataset of Segerstolpe et al. (2016), we first removed any cells for which < 150,000 read-

counts had been mapped. We then used their annotations for multiple cells, or cell health metric, to eliminate any cells not marked

as ‘okay’ to include. This left a total of 1,800 cells that passed quality control. Genes were then mapped from gene symbols as re-

ported by Segerstolpe et al. (2016) to the Ensembl IDs used here to make the two datasets comparable. Ensembl gene IDs and sym-

bols were obtained from Ensembl’s BioMart version 85 for this gene mapping. Due to several instances of multiple entries for a single

Ensembl gene entry, we collated expression to the gene level by summing the expression of a gene across all its entries in the dataset

for each cell. Notable batch effects were observed whenwe attempted to normalize to the RNAspike, indicating that multiple batches
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of RNAspikewere likely used; we therefore removedRNAspike-ins from this dataset. Genes not detectably expressed in > 1%of cells

were also removed. Finally, expression levels were log2 transformed.

After the above-described data processing was complete, we proceeded with a PyMINEr run, using the same Spearman Rho cut-

off used in analyzing our data (Rho R 0.35). For comparing the adjacency lists and shortest paths between the networks generated

from both datasets, we first filtered the adjacency lists to include only those genes that were detectably expressed in both. Then the

shortest paths were calculated using the SciPy function scipy.sparse.csgraph.shortest_path. Given that the output matrix is a sym-

metric distance matrix, we removed the duplicate entries and all infinite distances. Then all the shortest paths between all remaining

gene-gene pairs from the two networks were compared to each other. To simply examine conservation of the adjacency list gener-

ated by our dataset (Table S2F) and the adjacency list from the Segerstolpe et al. (2016) dataset (Table S3C), we performed a

chi-square test of independence, comparing the two adjacency lists (after removing genes not expressed in both datasets) via

the scipy.stats.chi2_contingency function. Note that the adjacency lists in Table S2F and Table S3C represent the results from

the entire datasets.

Reprocessing of other pancreatic datasets
For PMID:26691212, expression values less than one were converted to 0 due to negative values in the dataset. Then each sample

was normalized to the column sums/1e6 to normalize for read depth, then log2 transformed. For PMID:27364731/GEO: GSE83139,

expression values less than one were converted to 0, then cells were filtered for total counts between 6e6 and 7.5e5. The columns

were normalized to the (column sums/1e6) to account for variable read depth; finally, the dataset was log2 transformed. For

PMID:27667665/GEO: GSE81608, were filtered to contain between 4e5 to 7e5 total reads, then cells were normalized to their

sums/5e5, then log2 transformed. For PMID:27693023/GEO: GSE81076, cells kept contained between 3200 to 30000 read counts,

then cells were normalized to the read sums/1000, then log2 transformed. For PMID:27693023/GEO:GSE85241, cells were filtered to

keep only those with 3200 to 75000 reads, then normalized to their column sums/1e3, and lastly log2 transformed.

Correlation analysis
A faster version of the SciPy function stats.spearmanr was written which does not return p values. This is used for constructing the

expression graph. Because of the bootstrap shuffled negative control, an empirical p value is used rather than traditionally calculated

p values. The bootstrap shuffling selects a random set of expressed genes, then shuffles their x-y pairing, and performs the spearman

correlation analysis on this randomized sample. This produces a null distribution of Spearman rho values from which an empirical

false positive rate is calculated.

Z-score enrichment
After samples were segregated into the appropriate k groups, group level enrichment was calculated by Z-scores as well.

Zk =
xk � m

s=
ffiffiffiffiffi
nk

p

Where:

d Z is the Z-score

d k is the current group

d x is the mean for the current group

d m is the global mean for that variable

d s is the global standard deviation

d n is the number of samples in the current group

Simulated datasets for comparing PyMINEr to competing techniques
We used simulated datasets for comparing the gap statistic to PyMINEr k selection, as well as comparing PyMINEr to k-means and

kmeans++ clustering purity, entropy, and mutual information. We generated datasets to contain a known number of true clusters.

Each dataset contained 300 samples that were clustered based on 100 features. We first generated 1 master point for each group,

ranging from 1 to 20 master points per dataset, to simulate different numbers of groups. These master points were generated by

creating a vector of 100 random numbers from a uniform distribution between 0 and 100. Subsequent points were assigned to amas-

ter point, indicating their group by the nearest integer from a random uniform distribution (runif function in R), or a skewed distribution

(rbeta function in R) for comparing groups of equal size or skewed group sizes. Gaussian noise was added to all non-master points by

adding a random Gaussian vector to the master point. This Gaussian vector was generated by the rnorm function in R, with varying

standard deviations, including 5, 10, 20, and 40 for testing the effect of increasing noise on clustering. This simulation process was

repeated 20 times for each skewness, noise level, and true group number combination. To compare the clustering accuracy of

PyMINEr against k-means and k-means++ clustering, we performed 4-way ANOVAs using, the clustering method, group size skew-

ness, noise around themaster point, and the true number of groups as factors to explain either mutual information, purity, or entropy.

ANOVA statistics were computed using the aov function in R.
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Comparison of PyMINEr and gap statistic for estimating group numbers
Using the simulated datasets described above (Figures S2A and S2B), we compared the accuracy of PyMINEr to the maximum gap

statistic. Overall PyMINEr was more accurate than the gap statistic (p = 3.29e-149) and determines this estimate faster than the

maximum gap statistic (p < 2e-16). However, once a level of noise is reached at which clusters become nearly indistinguishable,

this accuracy advantage diminishes (3-way ANOVA method*noise, p < 2e-16). This was true for group skewness as well (3-way

ANOVA method*skewness, p = 8.70e-06) (Figures S3G–S3I).

Statistics for k-means, k-means++, and gap statistic comparisons
All statistics comparing PyMINEr to k-means, k-means++, or the gap statistic were performed using R v 3.0.2. Relative empirical en-

tropy and empirical information were calculated by creating a contingency table of the true clusters and the algorithm assigned clus-

ters; entropy and mutual information were calculated by the functions entropy.empirical and mi.empirical in R from the ‘entropy’

package. Purity was determined by calculating the percentage of points correctly assigned to the cluster that holds the plurality

of its points for each true cluster.

The wine (Forina et al., 1988) and E. coli (Horton and Nakai, 1996) datasets were downloaded from the UCI machine learning re-

pository (Dua and Karra Taniskidou, 2017). Variables in each dataset were linear normalized between 0 and 1 prior to clustering to

give equal weight to all variables. We then performed PyMINEr clustering, k-means, and k-means++ as described above.

Comparison of PyMINEr to RaceID
PyMINEr-based clustering was found to be more self-consistent than RaceID with respect to estimating the number of cell types

when using the full transcriptome, overdispersed genes, and cell type markers as separate datasets (p < 0.001 for each dataset;

Figures S3J and S3K). We also found improved self-consistency in PyMINEr compared to RaceID with respect to the identification

of cell type by clustering; this is evident from the greater purity of PyMINEr results compared to RaceID. This was true both when each

method was used to determine the number of groups (p = 3.4e-31; Figure S3L) and when the number of groups wasmanually set to 8

rather (p = 7.8e-38; Figure S3M).

DATA AND SOFTWARE AVAILABILITY

The PyMINEr installation package, code, and tutorials can be found at the PyMINEr website: https://www.sciencescott.com/

pyminer. The normalized data from scRNaseq performed here are available in Table S1A. The accession number for the single

cell RNAseq data reported in this paper is GEO: GSE116753. Re-analyses of all other datasets are available at https://www.

sciencescott.com/pancreatic-scrnaseq.
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Figure S1. 

PyMINEr centroid seeding algorithm applied to a synthetic dataset 

Related to Figure 1 

(A) A 2-dimensional synthetic dataset comprised of eight groups with Gaussian noise was used to illustrate the 

comparative effectiveness of the centroid seeding algorithm used in PyMINEr to traditional, random centroid seeding. 

Group identity is shown by color. (B-C) The initialization locations for each centroid seeded by (B) randomly, or (C) 
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by PyMINEr initializations. The progression of centroid initialization is indicated by arrows moving from the first to 

the second and subsequent centroids. (D) Random centroid seeding can often result in clusters that are either merged 

or split, and thus performance is poor. (E) Performance with PyMINEr centroid seeding was better, as evident from a 

lack of cluster mergers and splitting. In (B-E), the location of initialized centroids are denoted by a red ring, and in 

(B,C), arrows indicate the progression of centroid selection, with the first centroid denoted by a larger black ring.  
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Figure S2. 

PyMINEr clustering is more accurate than competing techniques 

Related to Figure 1 

(A) Heatmaps of synthetic datasets consisting of 300 data points being clustered (rows), with 100 measurements per 

sample (columns). The number of clusters present in simulated datasets varied over a range between 1 through 20 
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clusters; here we only show examples from every fifth group for illustrative purposes. (B) Points were assigned to a 

group either uniformly random (leading to a Gaussian distribution in group sizes), or in a skewed manner (generation 

of several larger, and some very small, groups). These variables were tested across all group numbers, although we 

display only example datasets where k=15. (C-E) Effectiveness of clustering via PyMINEr vs. k-means and k-

means++, using synthetic datasets (Figure S2A-B) with clusters over a range of sample group numbers, skewness in 

cluster size, and noise. (C) Purity of clustering, with higher purity indicative of fewer cluster splitting events. (D) 

Relative entropy, with low entropy indicative of fewer cluster splitting events. (E) Relative mutual information, with 

higher levels indicative of fewer cluster mergers. Bar graphs show means with s.d. error bars. (F-G) Accuracy of 

PyMINEr clustering for real-world datasets. (F) Ability to discriminate types of wines based on their characteristics. 

(G) Subcellular localization of proteins in E. coli. The first two principal components of each dataset are shown, along 

with the location to which the centroids were initialized by each method, noted with purple rings. Groups were each 

assigned a color, and all the points belonging to that group were plotted using the designated color. Also noted for 

each clustering method is the percentage of cluster purity.  
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Figure S3. 

PyMINEr k selection algorithm and clustering outperforms the maximum gap statistic in most scenarios and 

PyMINEr clustering algorithms show greater internal consistency compared to RaceID 

Related to Figure 1 

(A) A heatmap of synthetic simulated dataset with 15 groups containing Gaussian noise was used to demonstrate the 

process of k selection and clustering results (points being clustered in columns of the heatmap, whereas rows indicate 

features). (B-C) Initial PyMINEr clustering to determine the number of groups in the dataset (k), logged as the f(k) 

results for 10 iterations, which are shown by different colored lines. (B) The minimum f(k) result for each iteration, 

shown as blue rings. The y-axis scale in (C) was adjusted to see the small change in (B). (D) The 90th percentile 

estimate from the minimum f(k) results, indicated by a red line, is the correct result of k = 15. (E-F) Once the results 

from (D) were obtained, giving the final estimate of k, 10 iterations of clustering were performed by PyMINEr for 

this estimate of k. Each iteration (noted in different colored lines) logs the f(k) value at the final estimate of k, in this 

case where k=15 (noted in blue rings). The iteration of clustering with the lowest f(k) value was then used for final 

group assignments (denoted by a red ring). The y-axis scale in (F) was adjusted to see the small change in (E). (G) 

For determining the number of groups within a dataset, we used the synthetic datasets exemplified in Figure S2A-B, 
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with each combination of group size, skewness, and noise simulated 5 times each.  In total, 800 simulations were 

performed for each method, including 20 conditions for group size (k=1-20), 2 conditions for skewness (skewed or 

Gaussian), and 4 levels of within-group noise. The average and standard deviation of the absolute distance of the 

estimated number of groups, and the true number of groups simulated. (H) The amount of time (in seconds) taken by 

each algorithm to determine the number of groups present. (I) Boxplots for multiple replicates in estimating the 

number of groups in a dataset. Black-lined white boxes are estimates of the number of groups (k) as determined by 

the maximum gap statistic, while red-lined black boxes are estimates of the group number determined by PyMINEr. 

The blue line indicates perfect prediction, where the number of groups estimated is equal to the true number of groups 

in the synthetic dataset, indicated along the x-axis (n=5 for each box). (J) The number of cell types as estimated by 

either RaceID or PyMINEr with three subsets of genes from the human scRNAseq dataset. The full transcriptome 

boxes represent the number of cell types estimated when the entire transcriptome was used. Cell type markers or 

overdispersed genes (which show higher than expected variance in expression) are sometimes used in scRNAseq to 

select genes which may contribute to cell identity. We therefore also show the results of cell type estimates for all 

three of these datasets (n=10 iterations for each algorithm and dataset). (K) To compare internal consistency, each 

dataset from (J) was centered around its median, then an F-test for equal variance was performed comparing each 

algorithm’s performance on each of the three given datasets. PyMINEr results were more self-consistent than those 

obtained using RaceID as indicated by lower internal variance in cell type number estimates (n=10 iterations; F-test; 

***: P<0.001). (L) Self-consistency as assessed by purity for clustering results between iterations. Clustering by 

PyMINEr was more internally consistent with respect to cell type labeling, both when the number of cell types was 

automatically determined using each algorithm (2-Way ANOVA, Factor1 = clustering method, Factor2 = input 

dataset; Factor1 P-value = 3.4e-31). (M) PyMINEr also showed greater cluster purity when the number cell types was 

manually set to 8, rather than automatically determined by each method (2-Way ANOVA, Factor1 = clustering 

method, Factor2 = input dataset; Factor1 P-value = 7.8e-38). Boxplots for PyMINEr results are shaded red. 
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Figure S4. 

Related to Figure 3 

(A) Graph networks from PyMINEr are shown for our original dataset (rho=0.35), and networks constructed based on 

scImpute or SAVER with, rho=0.35 or 0.625 to adjust for power gains after imputation). Overall, graph structure from 

our scRNAseq dataset (Table 1) was notably altered by imputation, where the structure from scImpute was largely 

dependent on the manually set hyperparameter K. When K was set to 8 (i.e., 8 predicted cell types present), the graph 

structure shared little similarity to the original structure; interestingly, however, with k set to 2, graph structure 

appeared to be relatively conserved. These results indicate that constructing network graphs from imputed datasets 

using scImpute are highly dependent on the selection of the hyperparameter K. SAVER on the other hand condensed 

all nodes into a single hub of co-regulated genes. The SAVER algorithm has an optional correction for this over-

correlation and this procedure indeed appears somewhat efficacious, but still blurs modules together as shown below. 

(B) Imputing synthetic and random or synthetic and structured datasets by SAVER decrease variance globally, 

collapsing many expression values to a non-variant single value after one iteration. However after additional iterations, 

most of the transcriptome has converged to single values. (C) A matrix of simulated Gaussian random data with the 

lower 50% converted to zero (to coarsely simulate dropout) was imputed using scImpute with variable K (i.e.: the user 

selecting the number of cell types). scImpute artificially creates clusters that perfectly mirrors the manually input K – 

all from purely random data.  (D) A plot depicting the number of samples used in a synthetic dataset (n=50-7,500, x-

axis) and the time taken to find the Spearman correlation matrix by either PyMINEr (orange) or EGAD (blue) (Ballouz 

et al., 2017). We found that PyMINEr’s Spearman correlation graph building function to be substantially faster than 

EGAD’s (P=2.7e-36). (E) A plot of the fold speed-up for using PyMINEr as a function of the number of samples in a 

dataset. With small datasets, PyMINEr performs ~50 fold faster than EGAD in finding the full Spearman correlation 

matrix, however, this advantage drops to ~20 fold faster with larger datasets. 
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Figure S5. 

The relationship between median active transcription and detectable correlations (degree) 

Related to Figure 4 

(A) The relationship between a gene’s expression level, number of network-connections, and the percentage of cells 

expressing the gene was investigated here. We calculated the median log2 expression for each gene, after removing 
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cells that did not express a given transcript (i.e., median log2 non-zero expression). We expected to find that genes 

with greater expression would show a greater level of connectivity because the effects of noise and stochasticity at the 

cellular level would be minimized. Most genes follow the expected pattern of correlation between the median non-

zero expression level, and its network-connectivity (i.e., degree) (Spearman correlation P<1e-18 in all gene subsets, 

loess smoothed regression shown as a red line). Here point color indicates relative density (grey: low density, yellow: 

high density); however, several discrete populations are apparent at various thresholds for percent cells expressing 

each gene (segregated by green lines). (B) Shown is a colorized 3D-scatter plot demonstrating the relationships 

between the percent of cells expressing a gene, the gene’s connectivity [log2(degree+1)), and the expression level 

(median log2(non-zero expression)]. Each gene’s location within the 3 dimensions is also color-coded in RGB, where 

red is expression level, green is connectivity, and blue is the percent of cells expressing the transcript. Note that due 

to the overall correlation between connectivity and expression, there is no red only population of cells (i.e., genes with 

high expression and low connectivity). Additionally, the low expression and high connectivity population of genes do 

not fit the more common correlative pattern between connectivity (i.e., degree) and median non-zero expression. This 

population is shown in green and noted with a red ellipse. 46% of the genes in this population were significantly 

enriched in at least one cell type (χ2 = 3143.7; P<2.22e-16). The three panels show distributions for (left) all genes, 

(middle) genes that were not significantly enriched for expression in at least one cell type, and (right) only genes that 

were significantly enriched in at least one cell type. The light blue population of genes denote high expression and 

high degree; green points correspond to highly connected low level expressing genes found in a subset of cells. (C) 

To more clearly denote the populations of genes, we segregated genes into three groups with low non-zero expression 

and low connectivity (red), low non-zero expression and high connectivity (green), and high expression and high 

connectivity (blue). (D) Addition of a z-axis to (C) corresponding to the percent of cells expressing the given gene. 

(E) Addition of a black ring around the genes in (D) that are significantly enriched in at least one cell type. Overall, 

these results indicate that this form of network analysis can overcome the inherent noise of cell type-specific genes 

with weak transcription when cells are sequenced with sufficient depth. (F) Genes with low-level expression and low 

connectivity are shown in red, and those with low-level expression and high connectivity are shown in green; genes 

with high-level expression and high network connectivity are shown in blue. (G) Alternative representation of the 

graph network in (F) showing the subset of genes that are significantly enriched in at least one cell type (labeled in 

cyan), with all other genes in the network shown in yellow. 46% of the low expression high degree genes (green) from 

(F) are also contained in the cell type-specific cyan population of (G). 
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Figure S6. 

Novel KL-divergence based pathway ranking metrics 

Related to Figure 6 

(A) A metric for combining pathway analyses of different cell types or groups that prioritizes based on entropy and 

overall significance. Pathway analysis frequently yields highly significant p-values for several groups being compared. 

While using the appropriate background gene set diminishes this, it can still be problematic. For example, observing 

high significance in a single pathway for all cell types, does not provide any useful information in how these gene sets 

are different for each other. More informative pathways will be those that are highly significant in some cell types, 

and non-significant in other cell types. We therefore devised a metric to identify pathways with high information/low 

entropy across groups – or in the case of scRNAseq, cell types. The uninformative pathways typically share a Gaussian 

distribution of -log10(p-values), while informative pathways show a bimodal, high information distribution. We 

therefore calculate the sum KL-divergence from the uninformative null Gaussian distribution. To renormalize for high 

levels of significance, we additionally multiply by the range of significance across groups (i.e., range within rows). 

After normalizing again, we obtain the final Normalized Global Pathway Importance. (B) A metric for ranking 

pathway importance within a cell type or group. It is often desirable to have a sorted list of informative pathways for 

each group being compared. To create this metric, we use the Normalized Global Pathway Importance, multiplied by 

the normalized -log10(p-values) within each group; in this way, the two metrics are scaled equally. This resulting 

metric is then scaled within groups (columns), and the range-KL-divergence calculation is performed again and re-

normalized yielding the Normalized Individual Pathway Importance and the Normalized Individual Group Importance 

metrics. 
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