Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

Title Cell-templated Supported Lipid Bilayers for T Cell Activation

Brynn R. Olden, Caleb R. Perez, Ashley L. Wilson, Ian I. Cardle, Yu-Shen Lin, Bryan Kaehr, Joshua A. Gustafson, Michael C. Jensen, Suzie H. Pun*

Supporting Tables

Table S1. Molar composition of lipid bilayers

Molar %	Liquid Crystalline	Ordered Gel
	(Fluid)	(Stationary)
77.5	DOPC ($T_m = -17^\circ C$)	DSPC ($T_m = 55^{\circ}$ C)
20	Cholesterol	Cholesterol
0.02-2	DSPE-PEG-Biotin	DSPE-PEG-Biotin
0.5-2.48	18:1 PEG-2000 PE	18:0 PEG-2000 PE

Table S2. Size and polydispersity of liposomes

Formulation	Z-average	PDI
	diameter (nm)	
DOPC 2%	86.91	0.251
DOPC 0.2%	104.7	0.361
DOPC 0.02%	87.61	0.337
DSPC 2%	81.13	0.172
DSPC 0.2%	81.22	0.161
DSPC 0.02%	93.74	0.213

Table S3. Antibody clones and vendors for intracellular cytokine staining (ICCS) panel

Panel: ICCS	Clone	Dye	Vendor
Live/Dead	N/A	BD Horizon Fixable	BD Biosciences
		Viability Stain 520	
CD4	SK3	APC	Biolegend
CD8	SK1	PacBlue	Biolegend
4-1BB	4B4-1	PE	Biolegend
TNFa	MAb11	BUV395	BD Biosciences
IFNg	4S.B3	BV786	BD Biosciences
IL-2	MQ1-17H12	PE-Cy7	Biolegend

Table S4. Antibody clones and vendors for outgrowth panel

Hittoody clones and vendors for outgrowth panel				
Panel:	Clone	Dye	Vendor	

Outgrowth			
Live/Dead	N/A	Zombie NIR Fixable	Biolegend
		Viability Stain	
CD3	HIT3a	PE	Biolegend
CD4	RPA-T4	APC	Biolegend
CD8	RPA-T8	FITC	Biolegend

Table S5. Antibody clones and vendors for differentiation panel

Panel:	Clone	Dye	Vendor
Differentiation			
Live/Dead	N/A	BD Horizon Fixable	BD Biosciences
		Viability Stain 520	
CD4	OKT4	PE-Dazzle594	Biolegend
CD8	SK1	PacBlue	Biolegend
CD45RA	HI100	BV785	Biolegend
CD62L	DREG-56	PE	Biolegend
PD-1	EH12.2H7	BV711	Biolegend
CCR7	150503	BUV395	BD Biosciences

Table S6. Summary of statistical analysis on aAPC design parameters and T cell response

	Antibody		
	Density	Lipid	Shape
	p<0.0001,		
	positive linear	p<0.0001,	
Outgrowth	trend	DOPC>DSPC	p=0.34
		p=0.0035,	p<0.0001,
CD4/CD8 Ratio	p=0.21	DOPC>DSPC	HeLa>RBC>uSphere
	p=0.0016,		
CD4 ⁺ Differentiation	positive linear		p=0.0013,
$(CD45RA^{+}/CD62L^{+})$	trend	p=0.15	RBC>uSphere
CD8⁺ Differentiation	p=0.011, positive linear	p=0.037,	p<0.0001,
$(CD45RA^{+}/CD62L^{+})$	trend	DSPC>DOPC	RBC≈HeLa>uSphere
			p<0.001.
PD-1 ⁺ , CD4 ⁺	p=0.13	p=0.49	uSphere>HeLa≈RBC
PD-1 ⁺ , CD8 ⁺	p=0.14	p=0.004, DSPC>DOPC	p=0.32

Figure S1. Gating strategy for ICCS flow analysis

Figure S2. Gating strategy for outgrowth flow analysis

Figure S3. Gating strategy for differentiation flow analysis

Figure S4. 72-hour microsphere particle activation. (a) Basal cytokine production and (b) 4-1BB expression in $CD4^+$ and $CD8^+$ T cells co-cultured with microsphere activation particles (n = 1).

Figure S5. Ratio of CD4⁺ to CD8⁺ T cells after 9-day outgrowth. Data represented as mean \pm SD (n = 4 biological replicates; paired one-way ANOVA with Dunnett's multiple comparisons test, *P < 0.05).

Figure S6. $CD4^+$ T cell differentiation at day 12 post-stimulation. Data are shown as mean of 3 independent experiments with cells from 3 donors (error bars omitted for legibility, paired two-way ANOVA with Bonferroni's multiple comparisons test, ns = not significant).

Figure S7. $CD8^+$ T cell PD-1 expression at day 12 post-stimulation. Data are shown as mean of 3 independent experiments with cells from 3 donors (Paired one-way ANOVA with Tukey's multiple comparisons test, ns = not significant, P = 0.33).

Figure S8. $CD4^+$ T cell PD-1 expression at day 12 post-stimulation. Data are shown as mean of 3 independent experiments with cells from 3 donors (Paired one-way ANOVA with Tukey's multiple comparisons test, ns = not significant, P = 0.40).

Figure S9. (a) Fluorescence-minus-one (FMO) gating and (b) DynaBeads control gating of CCR7⁺ cells in live cell, CD4⁺, and CD8⁺ T cell populations of three independent donors.

Figure S10. Percent of population that is $CCR7^+$ of (a) live cells, (b) $CD8^+$ T cells, and (c) $CD4^+$ T cells. Data represented as mean and individual data points of three independent donors with each symbol representing a different donor.