Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

On the structural stability of crystalline ceria phases in undoped and

acceptor-doped ceria materials under in situ reduction conditions

Maged F. Bekheet,[‡] Matthias Grünbacher,[†] Lukas Schlicker,[‡] Albert Gili[‡], Andrew Doran[#], Jan Dirk Epping,[†] Aleksander Gurlo,[‡] Bernhard Klötzer,[†] Simon Penner^{*,†}

[‡] Fachgebiet Keramische Werkstoffe/ Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany

 [†] Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck
[#] Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley, California 94720, USA

¹ Fakultät II : Mathematik & Naturwissenschaften, Institut für Chemie, Technische Universität Berlin, Hardenbergstr. 40, 10623 Berlin, Germany

Keywords: *in situ*, rhombohedral Ce₇O₁₂, triclinic Ce₁₁O₂₀, X-ray diffraction, hydrogen reduction, bixbyite

*Corresponding author: Simon Penner, <u>simon.penner@uibk.ac.at</u>, Tel: +43 512 507 58003

Figure S1: X-ray diffraction patterns of the initial ceria materials, corroborating the presence of fluorite-type CeO₂.

Figure S2: Temperature-dependent *in situ* X-ray diffractograms of pure and Sm-doped CeO₂ collected during calcination in oxygen up to 1023 K.

Figure S3: Structure refinement of X-ray powder diffraction data collected at 1273 K (A), 1000 K (B), 900 K (C), 600 K (D) and 300 K (E) for pure CeO₂ sample during cooling from 1273 K in H₂ atmosphere showing the observed (red circle) and calculated (black solid line) intensities, the calculated Bragg reflections (tick marks), and the difference (gray solid line).

Figure S4: Structure refinement of X-ray powder diffraction data collected at 1273 K (A), 1000 K (B), 900 K (C), 600 K (D) and 300 K (E) for SDC15 sample during cooling from 1273 K in H₂ atmosphere showing the observed (red circle) and calculated (black solid line) intensities, the calculated Bragg reflections (tick marks), and the difference (gray solid line).

Figure S5: Structure refinement of X-ray powder diffraction data collected at 300 K (A), 345 K (B), 375 K (C) and 400 K (D) for pure CeO₂ sample during re-oxidation in flowing O₂ atmosphere showing the observed (red circle) and calculated (black solid line) intensities, the calculated Bragg reflections (tick marks), and the difference (gray solid line).

Figure S6: Structure refinement of X-ray powder diffraction data collected at 300 K (A), 330 K (B), 345 K (C) and 400 K (D) for SDC15 sample during re-oxidation in flowing O_2 atmosphere showing the observed (red circle) and calculated (black solid line) intensities, the calculated Bragg reflections (tick marks), and the difference (gray solid line).

Table S1: A summary of information extracted from XRD patterns by Rietveld refinement of CeO₂ sample after reduction and during cooling in the flowing H₂ atmosphere showing weight fraction wt. [%], lattice parameters a, b, c [Å], the unit cell volume V [Å³], lattice angles α , β , γ [°], oxygen vacancy parameter δ and mole fraction y of Ce³⁺. The values of oxygen vacancy parameter δ and mole fraction y of Ce³⁺. The values of oxygen vacancy parameter δ and mole fraction y of Ce³⁺ are calculated according to the relationship between the amount of oxygen (i.e. 2- δ) in CeO_{2- δ} and the pseudo-cubic lattice parameters a, as well as using equation 2 (i.e. are given in square brackets).

Tamm (IZ)	Cubic fluorite	Cubic bixbyite	rh-Ce7O12	tri-Ce ₁₁ O ₂₀
1 emp. (K)	$(Fm\overline{3}m, Z=4)$	$(I\overline{3}a, Z = 16)$	$(R\bar{3}, Z = 3)$	$(P\bar{1}, Z = 1)$
1273	wt.% = 100 a = 5.60423(1) V = 176.02(1) $\delta = 0.29 [0.23]$ y = 0.58 [0.46]	-	-	-
1000	-	wt.% = 100 a = 11.1659(4) V = 1392.14(1) $\delta = 0.29$ y = 0.58	-	-
900	-	wt.% = 96.4(8) a = 11.1503(7) V = 1386.31(1) $\delta = 0.29$ y = 0.58	wt.% = $3.6(7)$ a = 10.4121(7) c = 9.6789(8) V = 908.73(9) $\delta = 0.29$ y = 0.58	-
600	-	wt.% = 11.4(7) a = 11.1348(3) V = 1380.55(6) $\delta = 0.31$ y = 0.62	wt.% = 66.0(9) a = 10.3738(1) c = 9.6820(1) V = 902.34(2) $\delta = 0.30$ y = 0.60	wt.% = 22.6(4) a = 6.8432(4) b = 10.3075(4) c = 6.7486(3) a = 89.75(4) $\beta = 99.83(3)$ $\gamma = 96.23(5)$ V = 466.21(4) $\delta = 0.24$ $\gamma = 0.48$
300	-	wt.% = 12.1(7) a = 11.1088(3) V = 1370.78(8) $\delta = 0.33$ y = 0.66	wt.% = 62.4(8) a = 10.3410(1) c = 9.6493(1) V = 893.62(2) $\delta = 0.30$ y = 0.60	wt.% = $25.5(6)$ a = 6.8057(4) b = 10.2830(5) c = 6.7314(3) a = 89.74(4) $\beta = 99.82(3)$ $\gamma = 96.21(5)$ V = 461.41(4) $\delta = 0.24$ y = 0.48

Table S2: A summary of information extracted from XRD patterns by Rietveld refinement of SDC15 sample after reduction and during cooling in the flowing H₂ atmosphere showing weight fraction wt. [%], lattice parameters a, b, c [Å], the unit cell volume V [Å³], lattice angles α, β, γ [°], oxygen vacancy parameter δ and mole fraction y of Ce³⁺. The values of oxygen vacancy parameter δ and mole fraction y of Ce³⁺. The values of the relationship between the amount of oxygen (*i.e.* 2- δ) in CeO_{2- δ} and the pseudo-cubic lattice parameters a, as well as using equation 2 (i.e. are given in square brackets).

	Cubic fluorite	Cubic bixbyite	tri-Ceu020	
Temp. (K)	$(Em\overline{3}m, 7=4)$	$(\overline{I3}a, \overline{7} = 16)$	$(P\overline{1}, \overline{7} = 1)$	
	$(1^{m}3m, 2^{-4})$	(150, Z - 10)	$(I \ 1, Z - 1)$	
	W1.% = 100			
1070	a = 5.58182(2)			
12/3	V = 173.91(1)	-	-	
	$\delta = 0.27 [0.23]$			
	y = 0.39 [0.31]			
		wt.% = 100		
	-	a = 11.11621(2)	-	
1000		V = 1373.63(1)		
		$\delta = 0.27$		
		<i>y</i> = 0.39		
		83.5(8)%		
	-	a = 11.08875(3)		
900		V = 1363.48(1)	-	
		$\delta = 0.29$		
		y = 0.43		
			wt.% = 16.5(4)	
			a = 6.77(2)	
	-	+0/-11/4(7)	b = 10.2629(3)	
		wt.% = $11.4(7)$ a = 11.1348(3)	c = 6.7698(3)	
(00			$\alpha = 90.06(4)$	
000		V = 1380.55(6)	$\beta = 99.66(3)$	
		$\delta = 0.31$	y = 96.01(5)	
		y = 0.47	V = 461.65(3)	
			$\delta = 0.23$	
			y = 0.31	
			wt.% = 21.2(6)	
	-	wt.% = 78.8(7) a = 11.05818(3) V = 1352.23(6) $\delta = 0.31$	a = 6.7573(2)	
			b = 10.2264(2)	
			c = 6.7466(2)	
			a = 90.09(2)	
300			$\beta = 99.64(3)$	
			y = 95.92(2)	
		y = 0.47	V = 457.09(2)	
			$\delta = 0.23$	
			v = 0.23	
			y 0.51	