Supplementary Figures and Tables

Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes

Jiří Král^{1*}, Martin Forman¹, Tereza Kořínková¹, Azucena C. Reyes Lerma¹, Charles R.
Haddad², Jana Musilová^{1,3}, Milan Řezáč³, Ivalú M. Ávila Herrera¹, Shefali Thakur¹, Ansie S.
Dippenaar-Schoeman⁴, František Marec⁵, Lucie Horová⁶, Petr Bureš⁶
¹Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná
5, 128 44 Prague 2, Czech Republic
²Department of Zoology and Entomology, University of the Free State, P.O. Box 339,
Bloemfontein 9300, South Africa
³Crop Research Institute, Drnovská 73, 161 06 Prague 6 - Ruzyně, Czech Republic
⁴Department of Zoology and Centre for Invasion Biology, University of Venda,
Thohoyandou, 0950, South Africa
⁵Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31,
370 05 České Budějovice, Czech Republic
⁶Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2,
611 37 Brno, Czech Republic

Supplementary Figure 1. Phylogeny of spiders and related arachnid orders. A compilation of hypotheses from two published studies^{19,56}.

Supplementary Figure 2. Mitosis and meiosis in holokinetic haplogyne spiders of the families Oonopidae and Dysderidae. Preparations were stained with Giemsa except **b** and **c** stained with DAPI. Unless otherwise specified, based on male preparations. Abbreviations and symbols: * (bivalent with two chiasmata), N (interkinesis nucleus), X (X chromosome). (a) Oonops ebenecus, Oonopidae (2n = 7, X0), diplotene consisting of three bivalents and an X chromosome, which is positively heteropycnotic; (**b**, **c**) *O*. *pulcher*. (**b**) Mitotic metaphase (2n = 7, X0), X chromosome is slightly longer than the other chromosomes; (c) Diplotene, note three bivalents and the positively heteropycnotic X chromosome; (d) Ischnothyreus sp., Oonopidae, late metaphase I (2n = 7, X0) after disintegration of chiasmata, consisting of three bivalents and a positively heteropycnotic X chromosome; (e, f) Kaemis sp., Dysderidae (Rhodinae). (e) Diakinesis (2n = 7, X0) consisting of three bivalents and an X chromosome exhibiting a low condensation; (f) two sister metaphases II, n = 4 (left) and n = 3 (right), separated by a dashed line. The X chromosome differs from the other chromosomes by tighter attachment of the chromatids and slightly positive heteropycnosis; (g) Dasumia crassitibialis, Dysderidae (Harpacteinae), spermatogonial metaphase (2n = 7, X0). The X chromosome exhibits a slightly precocious separation of the chromatids; (h) Harpactea hentschi, Dysderidae (Harpacteinae), female, oogonial metaphase (2n = 8); (i) H. hombergi, metaphase I (2n = 7, X0). Note three bivalents and an X chromosome univalent; (j) *H. lepida*, metaphase I (2n = 25, X0) consisting of 12 bivalents and a large X chromosome, which is positively heteropycnotic; (k) H. rubicunda, metaphase II plate (n = 4) and adjacent interkinesis nucleus containing a positively heteropycnotic X chromosome on the periphery. The X chromosome of the metaphase II plate is formed by a single chromatid only as a result of inverted meiosis of the sex chromosome; (1) Dysderocrates sp.n., Dysderidae (Dysderinae), spermatogonial metaphase (2n = 9, X0); the sex chromosome is considerably longer than the other chromosomes.

Supplementary Figure 3. Mitotic chromosomes of Caponiidae (Nopinae), females. Red dotted lines indicate chromosome contacts, green dotted lines overlapping of chromosomes. (**a**) *Nopsides ceralbonus*, oogonial mitosis (2n = 64). Below the same mitosis with indicated chromosome contacts and overlaps; (**b**) *Nops* sp., oogonial mitosis (2n = 60-62). Below the same mitosis with indicated chromosome contacts and overlaps.

Supplementary Figure 4. Female karyotype of *Caponia capensis* (Caponiidae), based on mitotic metaphase (2n = 136). The karyotype consists of 14 metacentric (nos 1-3, 5, 8-10, 13, 24, 45, 53, 55, 63, 68), 12 submetacentric (nos 4, 7, 12, 17, 18, 20, 21, 23, 28, 31, 46, 60), 16 subtelocentric (nos. 6, 11, 14-16, 19, 22, 25, 27, 30, 35-37, 41, 47, 51), and 26 acrocentric pairs (nos. 26, 29, 32-34, 38-40, 42-44, 48-50, 52, 54, 56-59, 61, 62, 64-67). The karyotype of this specimen also contains two tiny uneven chromosome fragments (F).

K	\sum_{2}	1	\mathcal{F}_{4}	<u>م</u> ر	6	\sum_{i}) ∩ 8	າເ	1 7
11	n 12	9 13) 14	1 5	¥ 16	? 17)r 18) 19	1 20
10 21) 22	23	24	25	26	27	16 28	11 29	17 30
) 31) 32	3 3) (34) (35) 36	37	3 8	1 39	4 0
) 41	42	1 43) (44	1 2 45	4 6	88 47	1 // 48	49	5 0
)(51	5 2	16 53	\$\$ 54	11 55	11 56	6 57	# 8 58	98 59	6 0
61	6 2	b e 63	6 4	6 5	6 6	67	6 8	F	Г 10µт

Supplementary Figure 5. Chromosomes of monocentric haplogyne spiders used for the analysis of genome size. Unless otherwise specified, based on male preparations. Abbreviations: P (precocious separation of homologous chromosomes of a bivalent), S (sex chromosome trivalent), X (sex chromosome X), Y (sex chromosome Y), S (sex chromosome trivalent). (a) Sahastata nigra, Filistatidae, female, oogonial metaphase (2n = 28); (b) Andorahano ansieae, Filistatidae $(2n = 25, X_1X_2Y)$, spermatogonial metaphase containing a tiny Y chromosome. Inset: sex chromosome trivalent in metaphase I. Two large X chromosomes pair achiasmatically by their ends with a Y microchromosome (see schematic drawing); (c, d) *Paculla* sp., Pacullidae $(2n = 33, X_1X_2Y)$. (c) Spermatogonial metaphase without any microchromosome, which implies a relatively large size of the Y chromosome; (d) Metaphase I comprising 15 bivalents and a sex chromosome trivalent formed by two X chromosomes and a Y chromosome. In contrast to the previous species, the sex chromosome trivalent is highly condensed. Schematic drawing shows supposed pairing of sex chromosomes in the trivalent; (e) *Scytodes* sp. 1, spermatogonial metaphase (2n = 19, X0) containing a large metacentric X chromosome.

Supplementary Table 1. Collection data of specimens used.

Taxon	Locality	GPS		
Taxa with holokinetic chromosomes				
Dysderidae (Dysderinae)				
Dysdera erythrina	Břežanské údolí valley, Prague-Zbraslav, Czech Republic	49°58'06.3"N 14°24'17.0"E		
Dysderocrates storkani	Ivine Vodice, Velebit Mts., Croatia	44°20'11.6"N 15°32'11.8"E		
Dysderocrates sp.	forest along the road from Pentalofos to Eptachori, Macedonia, Greece	40°12'42.4"N 21°03'48.3"E		
Harpactocrates sp.	breeding (Spain)	-		
Dysderidae (Harpacteinae)				
Dasumia crassitibialis	Nahal Kziv valley, Upper Galilee, Israel	33°02'29.4"N 35°10'54.4"E		
Harpactea cecconii	Agios Georgios near Akamas peninsula, Cyprus	34°54'29.5"N 32°19'59.5"E		
H. hentschi	gorge along the road from Olympiada to Kryovrysi, Olympos Mts., Thessaly, Greece	39°59'32.6"N 22°17'11.7"E		
H. hombergi	Břežanské údolí valley, Prague-Zbraslav, Czech	49°58'06.3"N 14°24'17.0"E		
H. lepida	Republic Kamenné, Trojačka Mt., Beskydy Mts., Czech Republic	49°30'20.5"N 18°00'20.2"E		
H. rubicunda	Břežanské údolí valley, Prague-Zbraslav, Czech Republic	49°58'06.3"N 14°24'17.0"E		
Dysderidae (Rhodinae)				
<i>Kaemis</i> sp.	Camping Can Cervera near Montseny town, Montseny Mts., Spain	41°46'12.5"N 2°24'15.1"E		
Oonopidae				
Gamasomorpha lutzi	Luquillo, Puerto Rico, USA	18°19'23.0"N 65°44'18.7"W		
Ischnothyreus sp.	Luquillo, Puerto Rico, USA	18°19'23.0"N 65°44'18.7"W		
Oonops ebenecus	Luquillo, Puerto Rico, USA	18°19'23.0"N 65°44'18.7"W		
O. pulcher	Antwerpen, Belgium	51°11'59.9"N 4°28'05.1"E		
	Turnhout, Belgium	51°19'02.6"N 4°56'54.6"E		
Orsolobidae				
Afrilobus sp.	<i>Eucalyptus</i> , 15 km ENE of Louwsberg on R69 road, KwaZulu-Natal, Republic of South Africa	31°08'01.0"S 25°38'06.0"E		
Azanialobus sp.	Hogsback, Eastern Cape, Republic of South Africa	32°36'12.9"S 26°56'20.3"E		
Segestriidae				
Ariadna sp.	near Okahandja (on B1 road), Namibia	22°05'38.6"S 16°57'10.0"E		

Segestria bavarica	cliffs, Šárka valley, Prague, Czech Republic	50°05'43.2"N 14°19'15.1"E
S. senoculata	road from Hodslavice to Valašské Meziříčí (forest between the road and Hostašovice railway station), Czech Republic	49°31'14.8"N 18°00'51.0"E
Taxa with monokinetic chromosomes		
Caponiidae (Caponiinae)		
Caponia capensis	Benfontein Nature Reserve, Free State, Republic of South Africa	28°49'11.6"S 24°50'10.6"E
	De Hoop Nature Reserve, Western Cape, Republic of South Africa	34°27'12.2"S 20°24'15.7"E
C. hastifera	Erfenis Dam Nature Reserve, Free State, Republic of South Africa	28°30'27.8"S 26°48'24.3"E
	Hopefield farm, Bloemfontein district, Free State, Republic of South Africa	28°51'47.5"S 26°09'45.0"E
C. natalensis	Ndumo Game Reserve, KwaZulu-Natal, Republic of South Africa	26°54'23.9"S 32°19'11.1"E
Caponiidae (Nopinae)		
Nops aff. variabilis	Neiva, Colombia	2°55'05.8"N 75°17'45.0"W
Nops sp.	coffee-banana plantation with montane rainforest remains, Villa Las Neblinas, Constanza, Cordillera Central, La Vega Province, Dominican Republic	19°00'22.7"N 70°32'18.6"W
Nopsides ceralbonus	San Dionisio canyon, Sierra de la Laguna Mts., Baja California Sur State, Mexico	23°32'56.5"N 109°49'49.7"W
Tarsonops sp.	along river, La Purísima, Baja California Sur State, Mexico	26°11'16.7"N 112°06'23.4"W
Diguetidae		
Diguetia albolineata	breeding stock, Spiderpharm Ltd., Yarnell, AZ, USA	
Filistatidae (Filistatinae)		
Filistata insidiatrix	acropolis of Rhodes town, Rhodes, Greece	36°26'23.0"N 28°12'41.0"E
Kukulcania aff. hibernalis	La Purísima, Baja California Sur State, Mexico	26°11'16.7"N 112°06'23.4"W
Sahastata nigra	Jahel, Arava valley, Israel	30°04'53.3"N 35°07'55.6"E
Filistatidae (Prithinae)		
Andoharano ansieae	Sachsenheim Guest Farm, westward from Etosha, Namibia	18°44'53.5"S 17°15'22.9"E
Pacullidae <i>Paculla</i> sp.	Kuala Belalong Field Studies Centre, Temburong National Park, Brunei	4°32'38.9"N 115°09'40.5"E
Pholcidae		
Pholcus phalangioides	Prague, Czech Republic	50°04'17.8"N 14°25'26.2"E

Scytodidae		
Scytodes sp. 1	Adullam Nature Reserve, Nehusha, Israel	31°37'49.6"N 34°57'03.0"E
Scytodes sp. 2	Essaouira, Morocco	31°31'42.1"N 9°44'28.9"W
Sicariidae		
Hexophthalma sp.	approx. 20 km NE from Hentiesbaai (on B2 road), Namibia	21°56'14.5"S 14°24'28.7"E
Loxosceles rufescens	Midreshet Ben-Gurion, Israel	30°50'59.3"N 34°47'11.7"E

Supplementary Table 2. Caponiidae, karyotype data of *Caponia capensis* and *Tarsonops* sp. Abbreviations: a - acrocentric chromosomes (light blue background), CI - centromeric index, m - metacentric chromosomes (brown background), morphology - chromosome morphology, n - number of plates evaluated, pair - number of pair, RCL - relative chromosome length, SD - standard deviation, sm - submetacentric chromosomes (reddish background), st - subtelocentric chromosomes (dark blue background).

	Caponia capensis (n = 2)						Tarsonops sp. $(n = 1)$				
Pair	CI±SD	RCL±SD	Morphology	Pair	CI±SD	RCL±SD	Morphology	Pair	CI	RCL	Morphology
1	1.27±0.45	3.81±0.20	m	40	9.76±0.36	1.08±0.25	а	1	1.10	3.31	m
2	1.34±0.32	3.49±0.53	m	41	3.68±0.34	1.05±0.38	st	2	1.23	3.06	m
3	1.14±0.28	3.21±0.36	m	42	9.68±0.25	1.01±0.26	а	3	1.39	2.91	m
4	2.36±0.19	3.04±0.25	sm	43	8.71±0.42	1.02±0.33	а	4	1.27	2.90	m
5	1.41±0.37	2.86±0.29	m	44	8.10±0.31	1.02 ± 0.22	а	5	1.32	2.83	m
6	3.51±0.24	2.84±0.38	st	45	1.43±0.19	0.96 ± 0.30	m	6	2.13	2.42	sm
7	2.04±0.54	2.77±0.53	sm	46	2.65±0.28	0.98±0.19	sm	7	3.49	2.30	st
8	1.37 ± 0.40	2.76 ± 0.27	m	47	3.47 ± 0.46	0,94±0.57	st	8	1.07	2.27	m
9	1.62±0.33	2.73±0.45	m	48	8.60±0.35	0.93±0.41	a	9	1.37	2.22	m
10	1.35±0.10	2.56 ± 0.63	m	49	8.19±0.16	0.93±0.52	a	10	1.25	1.96	m
11	3.53±0.63	2.37 ± 0.47	st	50	9.06±0.44	0.91 ± 0.27	а	11	1.09	1.70	m
12	1.85±0.22	2.35 ± 0.34	sm	51	3.57 ± 0.20	0.89±0.12	st	12	1.15	1.66	m
13	1.41 ± 0.41	2.21±0.41	m	52	9.89±0.52	0.86 ± 0.44	а	13	1.27	1.59	m
14	3.22±0.63	$2.20{\pm}0.28$	st	53	1.35 ± 0.36	$0.82{\pm}0.64$	m	14	2.18	1.51	sm
15	3.32±0.67	2.04 ± 0.35	st	54	9.10±0.12	0.82 ± 0.37	а	15	2.70	1.47	sm
16	3.30±0.54	$2.00{\pm}0.18$	st	55	1.25 ± 0.27	0.78 ± 0.28	m	16	2.90	1.46	sm
17	2.59±0.38	1.99±0.22	sm	56	8.78 ± 0.42	0.78 ± 0.44	а	17	3.15	1.40	st
18	1.97±0.21	$1.89{\pm}0.32$	sm	57	9.60 ± 0.49	0.76 ± 0.36	а	18	2.11	1.36	sm
19	4.59±0.37	1.83 ± 0.27	st	58	8.18±0.33	0.75 ± 0.27	а	19	1.46	1.31	m
20	2.41±0.24	1.75±0.34	sm	59	8.36±0.26	0.73±0.35	а	20	1.13	1.27	m
21	2.34±0.19	1.64±0.53	sm	60	2.64±0.45	0.67 ± 0.42	sm	21	1.57	1.25	m
22	3.49±0.30	1.60±0.39	st	61	9.82±0.39	0.66±0.19	а	22	1.26	1.19	m
23	2.61±0.27	1.58±0.24	sm	62	8.60±0.18	0.64±0.26	а	23	5.43	1.04	st
24	1.42 ± 0.34	1.53±0.31	m	63	1.26±0.50	0.63±0.35	m	24	1.28	0.94	m
25	3.38±0.43	1.51±0.16	st	64	9.30±0.42	0.60 ± 0.40	а	25	1.22	0.89	m
26	8.36±0.27	1.47 ± 0.44	a	65	8.16±0.21	0.58±0.31	a	26	2.25	0.85	sm
27	4.19±0.11	1.47±0.37	st	66	8.87±0.36	0.47 ± 0.28	a	27	2.54	0.84	sm
28	2.33±0.39	1.46±0.22	sm	67	9.63±0.48	0.43±0.39	а	28	4.95	0.81	st
29	9.10±0.21	1.40 ± 0.30	a	68	1.12±0.19	0.37 ± 0.22	m	29	2.54	0.66	sm
30	3.40±0.44	1.36±0.41	st					30	3.25	0.64	st
31	2.10±0.40	1.29±0.26	sm								
32	8.57±0.35	1.27±0.29	a								
33	8.63±0.52	1.25±0.44	a								
34	9.32±0-37	1.23±0.58	a								
35	3.64±0.54	1.21±0.15	st								
36	3.78±0.28	1.19±0.22	st								
37	3.55±0.33	1.15±0.42	st								
38	8.78±0.47	1.15±0.39	а								
39	8.63±0.39	1.09 ± 0.17	a								

Supplementary Table 3. Summary of karyotype and genome data used for the preparation of Figure 4. Abbreviations: structure - chromosome structure (H - holokinetic; M - monocentric), 2C - DNA content of diploid chromosome complements in Mbp, 2C/2n - average chromosome size (i.e., genome size/chromosome number, Mbp/chromatid), GC - GC proportion (%).

Species	Morphology	Clade	Clade number	2n	2C	GC	2C/2n
Filistata insidiatrix	M	Filistatidae	1	34♀	8521.09	36.342	250.62
Kukulcania aff. hibernalis	М	Filistatidae	1	26 ₽	10259.4	32.257	394.591
Sahastata nigra	М	Filistatidae	1	28 ♀	11849.2	33.679	423.186
Andorahano ansieae	М	Filistatidae	1	24♀	5111.78	35.899	212.991
Hexopthalma sp.	М	Scytodidae + Sicariidae	2	20 ♀	2587.14	36.096	129.357
Loxosceles rufescens	М	Scytodidae + Sicariidae	2	22♀	10182.8	39.807	462.854
Scytodes sp. 1	М	Scytodidae + Sicariidae	2	20 ♀	4551.01	42.579	227.55
Scytodes sp. 2	М	Scytodidae + Sicariidae	2		3057.96	39.826	
Diguetia albolineata	М	Diguetidae + Pacullidae	3	20 ♀	2954.35	43.542	147.717
Paculla sp.	М	 Pholeidae Diguetidae Pholeidae 	3	34♀	7658.65	40.583	225.255
Pholcus phalangioides	М	 Pholeidae Diguetidae Pholeidae 	3	26 ♀	1754.41	34.555	67.4774
Caponia natalensis	М	Caponiidae	4	158 ♀			
Caponia capensis	М	Caponiidae	4	136♀	38927.5		286.232
Caponia hastifera	М	Caponiidae	4	136♀	47428.6	43.183	348.739
Nops aff. variabilis	М	Caponiidae	4	55♂	31121.4	42.246	565.844
Nops sp.	М	Caponiidae	4	6 2♀	32830	43.525	529.517
Nopsides ceralbonus	М	Caponiidae	4	6 4♀			
Tarsonops sp.	М	Caponiidae	4	60 ♀			
Ariadna sp.	Н	Segestriidae	5	8 ₽	16890.7	39.351	2111.33
Segestria bavarica	Н	Segestriidae	5	16 ₽	6251.37	38.488	390.711
Segestria senoculata	Н	Segestriidae	5	16 ₽	8043.74	38.94	502.734
Gamasomorpha lutzi	Н	Oonopidae	6	8 ♀			
Ischnothyreus sp.	Н	Oonopidae	6	8 ♀			
Oonops ebenecus	Н	Oonopidae	6	8♀			
Oonops pulcher	Н	Oonopidae	6	8♀	6920.37	36.693	865.046
Afrilobus sp.	Н	Orsolobidae	7	60			

			Clade				
Species	Morphology	Clade	number	2n	2C	GC	2C/2n
Azanialobus sp.	Н	Orsolobidae	7		3581.92		
Dasumia crassitibialis	Н	Harpacteinae	8	8♀	5824.28	37.088	728.036
Harpactea cecconii	Н	Harpacteinae	8	8♀			
Harpactea hentschi	Н	Harpacteinae	8	8♀	9567	39.335	1195.87
Harpactea hombergi	Н	Harpacteinae	8	8♀			
Harpactea lepida	Н	Harpacteinae	8	26♀	8223.23	39.106	316.278
Harpactea rubicunda	Н	Harpacteinae	8	8♀	6243.5	39.369	780.438
Dysdera erythrina	Н	Dysderinae	9	20 ♀	7644.37	39.25	382.218
Dysderocrates storkani	Н	Dysderinae	9	22♀			
Dysderocrates sp.	Н	Dysderinae	9	10 ♀	3137.16	36.458	313.716
Harpactocrates sp.	Н	Dysderinae	9	10 ♀			