Atg7-dependent canonical autophagy regulates the degradation of aquaporin 2 in prolonged hypokalemia

Wan-Young Kim¹, Sun Ah Nam¹, Arum Choi¹, Yu-Mi Kim¹, Sang Hee Park², Hong Lim Kim³, Hyang Kim⁴, Ki-Hwan Han⁵, Chul Woo Yang⁶, Myung-Shik Lee⁷, Yong Kyun Kim^{1,6} & Jin Kim¹

¹Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea. ²Institute of Clinical Medicine Research of Bucheon St. Mary's Hospital, Bucheon, Korea. ³Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, Korea. ⁴Division of Nephrology, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea. ⁵Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea. ⁶Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea. ⁷Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea.

Correspondence: Jin Kim, M.D., Ph.D.

Address: Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea, 222 Banpo-Daero, Seocho-Ku, Seoul, 06591, Korea

Telephone: 82-2-2258-7258

Fax: 82-2-536-3110

E mail: jinkim@catholic.ac.kr

Correspondence: Yong Kyun Kim, M.D., Ph.D.

Address: Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine,

The Catholic University of Korea, 327 Sosa-ro, Bucheon, Gyeonggi-do, 14647 Korea

Telephone: 82-32-340-7019

Fax: 82-32-340-2667

E mail: drkimyk@catholic.ac.kr

Supplementary Information

Supplementary Table S1. Effect of AQP2-specific deficiency of Atg7 on kidney weight and biochemical parameters.

		Atg 7 ^{iff}		$Atg7 a^{PC}$	
		Control	K ⁺ -depleted	Control	K ⁺ -depleted
Weight	Body weight (g)	22.5 ± 0.5	19.5 ± 1.26**	24.5 ± 1.63**	$23.3 \pm 1.31^{+}$
	Kidney weight (g)	0.16 ± 0.01	0.15 ± 0.02	0.17 ± 0.02	$0.19\pm 0.02^{**/_{++}}$
	KW/BW (%)	100 ± 8.43	$115.15 \pm 10.10^{*}$	108.65 ± 1.38	$123.88 \pm 8.05^{*/\#}$
Blood	Plasma Na ⁺ (mmol/L)	150.2 ± 1.8	147.4 ± 2.1	150.2 ± 2.0	$153.2 \pm 2.1^{*/+/#}$
	Plasma K ⁺ (mmol/L)	3.89 ± 0.32	2.97± 0.26**	4.27 ± 0.30	$2.28 \pm 0.25^{**/++/\#\#}$
	Plasma Cl ⁻ (mmol/L)	112.8 ± 2.4	113.3 ± 1.5	114.2 ± 3.8	$119.5 \pm 4.1^{*/+/#}$
	BUN (mg/dL)	27.2 ± 5.9	30.8 ± 4.49	27.0 ± 2.65	$47.00\pm7.79^{*/\text{+/}\text{\#}}$
Urine	Urine volume (ml)	0.56 ± 0.37	2.48 ± 1.36**	$2.37 \pm 0.67^{**}$	$3.02\pm 0.81^{**/+/\#}$
	Osmolality (mosmol/kgH2O)	2244.1 ± 421	$1168.1 \pm 418^{**}$	$1525.7 \pm 401^{**}$	$974 \pm 185^{**/+/\#}$
	Urine Na ⁺ (mmol/L)	70.7 ± 18.0	$38.1\pm16.8^{\ast}$	$52.1 \pm 20.0^{*}$	$26.9 \pm 6.2^{*/+/\#}$
	Urine K ⁺ (mmol/L)	137.6 ± 16.3	$13.7 \pm 6.0^{**}$	105.2 ± 32.2**	15.3 ± 3.7**/##
	Urine Cl ⁻ (mmol/L)	132.1 ± 31.1	$61.3 \pm 24.9^{*}$	$95.9\pm33.2^*$	$67.9 \pm 18.0^{*/\text{+/}\text{\#}}$
t-test vs. A	$tg7^{ff}$ Control * $P < 0.05$, *	** <i>P</i> < 0.001			

t-test vs. $Atg7^{\text{ff}}$ K⁺-depleted + P < 0.05, ++ P < 0.001

t-test vs. $Atg7 \triangle PC$ Control # P < 0.05, ## P < 0.001

All values are the means \pm SEM.

Figure S1. Light micrographs of the inner medulla of control (Cont) and K⁺-depleted (K⁺-Dep) $Atg7^{f/f}$ and $Atg7^{\Delta pc}$ mouse kidneys illustrating immunolabeling of LC3 (**a1'-a4'**), SQSTM1 (**b1'-b4'**) and RAB9 (**b1'''-b4'''**). Inner medullary collecting ducts (IMCDs) (stars) were identified by immunolabeling on the basolateral plasma membrane for AQP4 using consecutive sections (**a1''-a4''**) and (**b1''-b4''**). (**a**) In the images, it can be observed that the intense immunoreactivity for LC3 in K⁺-Dep $Atg7^{f/f}$ mice is markedly and restrictively decreased in the AQP4-positive IMCD cells in K⁺-Dep $Atg7^{\Delta pc}$ mice. (**b**) Strong immunoreactivity for SQSTM1 is observed restrictively in the AQP4-positive IMCD cells of $Atg7^{\Delta pc}$ mice. Note the prominent increase of RAB9 in K⁺-Dep $Atg7^{\Delta pc}$ mice. Boxes in (**a**, **b**) are higher magnification of the areas indicated by the rectangles in upper or lower panels.

Figure S2. Confocal micrographs of the cortex, outer and inner medulla of control (Cont) and

K⁺-depleted (K⁺-Dep) GFP-LC3 transgenic mice illustrating double labeling with GFP-LC3 (red) and total-AQP2 (green). After potassium depletion for 2 weeks, GFP-LC3-positive dots are markedly accumulated in the inner medullary collecting duct (IMCD) cells, but a few in both cortical and outer medullary collecting duct cells. Note that total-AQP2 is colocalized with these GFP-LC3-positive puncta in the IMCD cells. Stars indicate the lumen of collecting ducts.

Figure S3. Transmission electron micrographs of the inner medulla of $Atg\mathcal{T}^{t/f}$ mouse kidneys. (a). On normal diet (Cont), no autophagic vacuoles are observed in the cytoplasm of interstitial cell (IC), descending thin limb (DTL), or descending vasa recta (DVR). (**b-f**) After K⁺- depletion (K⁺-Dep), the accumulation of numerous autophagic vacuoles containing multilamellar bodies or degradation materials can be observed in the IC, DTL, ascending thin limb (ATL), DVR, and ascending vasa recta (AVR). (**f**) Higher magnifications of the areas outlined in (**d**). A single membrane (arrows) can be observed surrounding various autophagic vacuoles.

Figure S4. Transmission electron micrographs of inner medullary collecting duct (IMCD) cells. (**a-c**) In $Atg7^{t/f}$ mice, polysomes (arrows) are markedly increased throughout the cytoplasm in IMCD cells, as are autophagic vacuoles (Av) after K⁺-depletion (K⁺-Dep). (**d-f**) In $Atg7^{\triangle pc}$ mice, in contrast, Golgi complexes (circles) and small tubuloalveolar shaped vesicles (double arrows) are markedly increased in both control (Cont) and K⁺-Dep groups.

Figure S5. Immunoelectron micrographs of the middle (IMm). (**a**, **b**) and the terminal (IMt). (**c**, **d**) parts of the inner medulla of K⁺ depleted (K⁺-Dep) $Atg7^{f/f}$. (**a**, **c**) and $Atg7^{\Delta pc}$ (**b**, **d**) mice illustrating immunostaining for pS256-AQP2. The inserts are light micrographs of 1 m-thick semi-thin sections of the same group. No immunoreactivity of pS256-AQP2 is observed in either the canonical autophagic vacuoles in K⁺-Dep $Atg7^{f/f}$ mice **a**, **c** or the non-canonical autophagic vacuoles in K⁺-Dep $Atg7^{\Delta pc}$ mice (**b**, **d**). Stars indicate the lumen of inner medullary collecting ducts (**a-d**).

depletion in both $Atg7^{f/f}$ mice and $Atg7^{\Delta pc}$ mice compare to those of control mice.