Supplementary Information

Novel *in situ* visualisation of rat intestinal absorption of polyphenols via matrix-assisted laser desorption/ionisation mass spectrometry imaging

Huu-Nghi Nguyen^{1#}, Mitsuru Tanaka^{1#}, Baorui Li¹, Tomoya Ueno², Hideki Matsuda² and Toshiro Matsui^{1*}

¹ Division of Bioscience and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan ²Division of Research and Development, Yaizu Suisankagaku Ind. Co. Ltd., 5-8-13 Kogawashinmachi, Yaizu, Shizuoka, 425-8570, Japan

E-mail: tmatsui@agr.kyushu-u.ac.jp

Fax: +81-92-802-4752

^{*}These authors contributed equally.

^{*}Correspondence to: Toshiro Matsui, Division of Bioscience and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

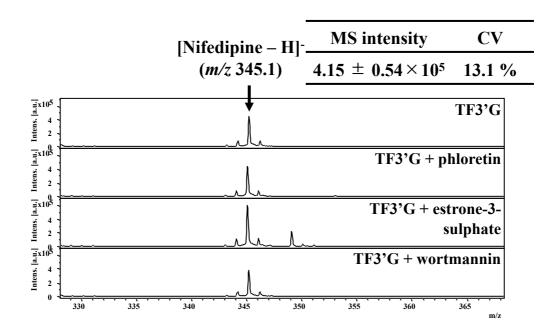


Figure S1. MALDI-MS spectra of nifedipine ([M-H]⁻ m/z 345.1) on jejunum membrane sections from 60-min transport experiments of TF3'G. The detail experimental conditions were described in Method section. The phytic acid-aided homogenous matrix crystal sprayed by an ImagePrep showed constant MS intensity of nifedipine (intensity: $4.15 \pm 0.51 \times 10^5$, CV: 13%) between different tissue sections.