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1 - Small scale resource selection analysis 

 

Table S1.1 - GLMM beta estimates for small-scale resource selection by male ibex observed from 
2010 to 2011 in the Gran Paradiso National Park, Italy. Beta coefficients were plugged in the 
exponential resource selection function RSF after dropping the intercept, resulting in the resource 
selection patterns depicted in Figs. S1.1-4.  
 

Variable β SE z p 
daily max temperature -0.07441 0.02632 -2.83 0.005 
daily max temperature2 0.03951 0.01798 2.20 0.028 
NDVI 0.10311 0.02686 3.84 < 0.001 
NDVI2 -0.18128 0.01842 -9.84 < 0.001 
slope -0.09189 0.03255 -2.82 0.005 
slope2 -0.21831 0.02273 -9.60 < 0.001 
cos-aspect -0.04103 0.01991 -2.06 0.039 
cos-aspect2 -0.08840 0.02731 -3.24 0.001 
log-distance to hiking trail -0.66192 0.03023 -21.89 < 0.001 
log-distance to hiking trail2 -0.10188 0.01112 -9.16 < 0.001 
distance to safe areas 0.30727 0.03588 8.56 < 0.001 
distance to safe areas2 -0.24174 0.02575 -9.39 < 0.001 
group size 0.11259 0.03429 3.28 0.001 
group size2 -0.04395 0.01676 -2.62 0.009 
cos-wind direction -0.00963 0.02001 -0.48 0.630 
cos-wind direction2 0.00868 0.02715 0.32 0.749 
wind speed 0.07274 0.03065 2.37 0.018 
wind speed2 -0.03178 0.01169 -2.72 0.007 
Julian day 0.07186 0.02617 2.75 0.006 
Julian day2 -0.01173 0.02881 -0.41 0.684 
log-distance to hiking trail × group size -0.07108 0.01828 -3.89 < 0.001 
distance to safe areas × group size -0.23745 0.02395 -9.91 < 0.001 
daily max temperature × NDVI -0.20654 0.02367 -8.73 < 0.001 
cos-aspect × cos-wind direction 0.04682 0.01984 2.36 0.018 
cos-aspect × wind speed -0.05592 0.02104 -2.66 0.008 
cos-wind direction × wind speed -0.01615 0.01955 -0.83 0.409 
NDVI × Julian day -0.18990 0.02511 -7.56 < 0.001 
slope × Julian day 0.13668 0.02778 4.92 < 0.001 
cos-aspect × Julian day -0.06687 0.01965 -3.40 < 0.001 
log-distance to hiking trail × Julian day -0.06134 0.01936 -3.17 0.002 
distance to safe areas × Julian day -0.26940 0.02714 -9.93 < 0.001 
cos-aspect × cos-wind direction × wind speed -0.05626 0.01892 -2.97 0.003 
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Figure S1.1 - Relative probability of selection for NDVI interacted with daily max air temperature as 
predicted by the small-scale resource selection function, which was built using male ibex observations 
collected from May to October (2010-2011) in the Gran Paradiso National Park, Italy. 
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Figure S1.2 - Relative probability of selection as predicted by the small-scale resource selection 
function, which was built using male ibex observations collected from May to October (2010-2011) in 
the Gran Paradiso National Park, Italy. Plots depict the effect of the interaction between Julian day 
with a) NDVI, b) distance to safe areas, c) distance to hiking trails, d) aspect (cos-transformed), and e) 
slope. 
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Figure S1.3 - Relative probability of selection for the distance to safe areas (a) and the distance to hiking trails (b), both interacted with ibex group 
size, as predicted by the small-scale resource selection function, which was built using male ibex observations collected from May to October 
(2010-2011) in the Gran Paradiso National Park, Italy 
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Figure S1.4 - Relative probability of selection for aspect (cos-transformed, x-axes) interacted with wind direction (different colours 
represent different scenarios for wind direction) and wind speed (the two plots represent two different scenarios) as predicted by the small-
scale resource selection function, which was built using male ibex observations collected from May to October (2010-2011) in the Gran 
Paradiso National Park, Italy. 
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2 – Resource Selection Function k-fold validation 

 
Figure S2.1 - Large-scale resource selection function (RSF) evaluation: area-adjusted frequency of 
categories (bins) of RSF scores. The evaluation implied calculating the correlation between RSF ranks 
and area-adjusted frequencies for a withheld sub-sample of data, e.g. 1/5 of the data in a 5-fold cross-
validation scheme. We investigated the pattern of predicted RSF scores for partitioned testing data 
(presence-only) against categories of RSF scores (10 bins). A Spearman rank correlation between 
area-adjusted frequency of cross-validation points within individual bins and the bin rank was 
calculated for each cross-validated model. A model with good predictive performance would be 
expected to be one with a strong positive correlation, as more use locations (area-adjusted) would 
progressively fall into higher RSF bins. In this case, the 5-fold cross-validation showed that the large-
scale resource selection model (Table 1 of the main manuscript) with daily maximum temperature as 
predictor had outstanding predictive ability on withheld data (Spearman correlation coefficients: ρfold1 
= 0.988, ρfold2 = 0.988, ρfold3 = 0.976, ρfold4 =0.976, ρfold5 = 0.988). 
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Figure S2.2 - Small-scale resource selection function (RSF) evaluation: area-adjusted frequency of 
categories (bins) of RSF scores. The evaluation implied calculating the correlation between RSF ranks 
and area-adjusted frequencies for a withheld sub-sample of data, e.g. 1/5 of the data in a 5-fold cross-
validation scheme. We investigated the pattern of predicted RSF scores for partitioned testing data 
(presence-only) against categories of RSF scores (10 bins). A Spearman rank correlation between 
area-adjusted frequency of cross-validation points within individual bins and the bin rank was 
calculated for each cross-validated model. A model with good predictive performance would be 
expected to be one with a strong positive correlation, as more use locations (area-adjusted) would 
progressively fall into higher RSF bins. Compared to the large-scale resource selection model (Fig. 
S2.1), the small scale RSF had a weaker - but still very good - predictive ability on withheld data (ρfold1 
=0.881, ρfold2 =0.912, ρfold3 = 0.952, ρfold4 =0.967, ρfold5 =0.939).  
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3 - Large scale resource selection analysis: additional results 

 
 
Figure S3.1 - Relative probability of selection for the distance to safe areas (a) and the distance to hiking trails (b), both interacted with ibex group size, as 
predicted by the large-scale resource selection function, which was built using male ibex observations collected from May to October (2010-2011) in the Gran 
Paradiso National Park, Italy. 
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4 – Resource Selection Function projections for RCP 4.5 

 
Figure S4.1 - Male ibex resource selection predicted in the Levionaz Valley, Gran Paradiso National 
Park, Italy, in 2011 (a, when this study was carried out) compared to years 2040, 2070, and 2100.  
Future scenarios are based on temperature projections forecasted by the RCP 4.5 climate models. 
Large plots depict the average RSF scores across RCP 4.5 simulations (b, e, h), whereas small plots 
represent upper (c, f, i) and lower standard deviation bounds (d, g, j), respectively. Maps were 
generated in ArcGIS 10.3 (ESRI 2011). Aerial imagery courtesy Gran Paradiso National Park, Italy. 
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5 – Additional maps and plots on data collection 

 

 

 
 

Figure S5.1 - Spatial distribution of the 10 hiking trails (colour-coded) used to 
locate male ibex from May to October (2010-2011) in the Levionaz valley, Gran 
Paradiso National Park, Italy. The map was generated in ArcGIS 10.3 (ESRI 2011). 
Aerial imagery courtesy Gran Paradiso National Park, Italy. 
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Figure S5.2 - Population-level Minimum Convex Polygon (MCP 100%) estimated by 
using relocations of individually-recognizable male ibex observed in 2010 and 2011 in 
the Levionaz valley, Gran Paradiso National Park, Italy. Because of the presence of 
outliers in the ibex spatial distribution, we did not add a buffer to the population-level 
home range, which otherwise is usual practice when depicting population-level home 
range in presence-availability studies. The map was generated in ArcGIS 10.3 (ESRI 
2011). Aerial imagery courtesy Gran Paradiso National Park, Italy. 
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Figure S5.3 - Ibex observations carried out in the Levionaz valley (Gran Paradiso National Park, Italy) colour-coded by year (2010, 2011) and month of study 
(May through October), and group size (inclusive of solitary individuals). X and Y correspond to easting and northing, respectively, and the area depicted in each 
plot corresponds exactly to that depicted in Figs S5.1 and S5.2. 
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Figure S5.4 - Frequency of ibex observations as a function of time of the day (a) and observed variation in ibex group size (b). Direct observations were carried 
out from May through October (2010-2011) in the Levionaz valley, Gran Paradiso National Park, Italy. 

a) b) 
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Figure S5.5 - Monthly frequency of ibex observations - as a function of time of the day - carried out from 2010 to 2011 in the Levionaz valley, Gran Paradiso 
National Park, Italy. Vertical dotted lines represent the time of sunset and sunrise as well as of the civil twilight start and end (see colour legend in the top-central 
plot) 
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6 - Temperature interpolation models 
 

Background 
 We collected high-resolution temperature data in our study site and built interpolation models 

to predict fine-scale temperature variation over space and time during the monitoring period. We 

combined weather data collected at the nearest local weather station with temperature logger data 

(iButton DS1922L, Maxim Integrated) that we located throughout the study site over the study period. 

We had two different expectations about the effect of temperatures on ibex habitat selection: we 

hypothesised that ibex either select habitat based on the actual temperature (i.e., hourly temperature) - 

meaning that they are more likely to be located where the conditions are optimal in that moment - or 

based on the overall daily temperature (i.e., daily maximum temperature) - meaning that they are 

located at the elevation where the conditions will be optimal when the maximum temperature will be 

recorded. As a consequence, we built two temperature interpolation models predicting hourly 

temperature and daily maximum temperature, respectively. 

 

Methods 

Temperature loggers 

We randomly distributed the temperature loggers (n = 15 in 2010, n = 17 in 2011; Fig. S6.1) 

in the meadows of the study site after stratifying by hydro-geographic sector (Fig. S6.2) and elevation 

(1 logger every 200 meters a.s.l.). Each logger was in the centre of a white cylindrical box at 1 m 

height from the ground, being the side facing the ground open. We programmed the loggers to collect 

air temperature every hour. We described below the two steps that were necessary to build the 

temperature interpolation models. 
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Figure S6.1 - Spatial distribution of the temperature loggers (iButton 
DS1922L, Maxim Integrated) in the Levionaz valley, Gran Paradiso 
National Park, Italy. The map was generated in ArcGIS 10.3 (ESRI 
2011). Aerial imagery courtesy Gran Paradiso National Park, Italy. 

 

 
Figure S6.2 - Location of the hydro-geographic sectors - which differ 
in their micro-climate conditions - in the Levionaz valley, Gran 
Paradiso National Park, Italy. The map was generated in ArcGIS 10.3 
(ESRI 2011). Aerial imagery courtesy Gran Paradiso National Park, 
Italy. 
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Step 1: filling in missing data in the dataset of the temperature loggers  

Some of the loggers stopped recording temperature data, providing measurements for about 

70-80% of the study period. For each data logger with missing data, we fitted linear models with air 

temperature as a response variable and the following covariates as predictors: time of the day 

(including quadratic and cubic term to account for nonlinearity), Julian day (including a quadratic 

term), year of study, their interactions (Julian date × time of the day, Julian date × year of study), and 

the air temperature recorded by the Pont weather station or by any other temperature logger. 

Regarding the latter predictor, we selected the temperature series that had the strongest correlation 

with the air temperature data collected by the target logger for which we wanted to replace missing 

data. Because of difference in altitude between the weather station or temperature loggers and the 

target logger, in some linear models we temporally shifted (1-3 hours) the response variable 

(temperature of the target logger) and the predictor (temperature recorded by the weather station or 

another logger selected based on the strength of the correlation) in order to achieve the best predictive 

model.  

Once we built the starting linear model structure for each target logger, we then ran a forward 

and backward stepwise algorithm (step function of the stats package in R) and selected the best model 

structure with the lowest AIC values. We reported the adjusted R2 as a measure of the predictive 

ability of each model, which we used to predict missing data and complete hourly temperature series 

of iButton loggers. After filling in all gaps, we calculated the daily maximum air temperatures. 

 

Step 2: predicting hourly temperature and daily maximum temperature over space and time 

(interpolation models) 

We used the logger temperature datasets to build spatial and temporal interpolation models 

and predict hourly temperatures for any 10 x 10 m pixel of the study site. We built a generalized 

additive model (GAM with Gaussian distribution of errors, gam function of the mgcv package) with 

hourly temperature as response variable and the following predictors: the Julian day (continuous 

variable fitted with smooth function), the time of the day (continuous variable fitted with smooth 

function), the year (categorical variable), the hydro-geographic sectors (categorical variable), the 

elevation where the temperature was recorded (continuous variable, 10 x 10 m spatial resolution, see 

below for the details), and the interaction between the time of the day and the Julian day, and between 

the Julian day and the year of study. After screening the data, we decided to fit two alternative model 

structures to make sure taking into account the effect of the elevation properly: one model with 

elevation fitted with the smoothing function of the GAM, the other one with elevation without 

smoothing function but rather included as simple linear and quadratic term.  

We repeated the same procedure and built two alternative GAMs to model daily maximum 

temperatures. We used the same set of predictors as for the hourly temperature models, this time 
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removing the time of the day and its interactions because meaningless when modelling the daily 

maximum temperature. 

We random-cross-validated our alternative models to verify their ability to predict on new 

data. We trained the best model on 80% of the data, predicted on the remaining 20%, and computed 

the R2 of the relationship between predicted and observed temperature data. We extracted the average 

R2 after repeating the procedure 50 times.  

 

Results 

Step 1: filling in missing data in the dataset of the temperature loggers 

Best linear models used to fill in missing data of temperature loggers were reported in Table S6.1. We 

used the related model equations to predict air temperatures and replace missing data in the logger 

temperature time series.  

 

Table S6.1 - Structures and performances of models used to fill in missing values in the temperature 
logger (iButton) datasets deployed in the Levionaz study area,Gran Paradiso National Park, Italy. 
 

I-button 
ID 

 Model predictors 

adj. R² time shift, if 
needed 

Temp recorded 
by the weather 

station or 
another logger 

(ID) 

year Julian 
day 

Julian 
day2 

Time 
of the 
day 

Time of 
the day2 

Time of 
the day3 

Julian 
day × 

time of 
the day 

Julian 
day × 
year 

1 no ibutton (2) yes yes yes yes yes yes yes yes 0.945 
2 3 hours weather station yes yes yes yes yes yes yes yes 0.935 
3 3 hours weather station yes yes yes yes yes yes no yes 0.933 
4 3 hours weather station yes yes yes yes yes yes yes yes 0.922 
5 no ibutton (8) no yes yes yes yes yes yes no 0.922 
6 2 hours weather station yes yes yes yes yes yes no no 0.937 
7 2 hours ibutton (6) yes yes no yes yes yes yes yes 0.820 
8 2 hours weather station yes yes yes yes yes yes yes yes 0.910 
9 no ibutton (8) yes yes yes no yes yes no yes 0.947 

10 no ibutton (12) no yes yes yes yes yes yes no 0.946 
11 2 hours ibutton (6) yes yes yes yes yes yes yes yes 0.950 
12 2 hours weather station yes yes yes yes yes no yes no 0.900 
13 no ibutton (12) yes yes yes yes yes yes yes yes 0.912 
14 no ibutton (12) yes yes yes yes yes yes yes yes 0.911 
15 no ibutton (8) yes yes yes yes yes yes no yes 0.951 
16 no ibutton (6) no yes yes yes yes yes no no 0.778 
17 1 hour ibutton (4) no yes no yes yes yes no no 0.929 
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Step 2: predicting hourly temperature and daily maximum temperature over space and time 

(interpolation models) 

We reported the two alternative models explaining the variability of hourly temperatures in 

Table S6.2. The model with elevation fitted as smooth term in the GAM outperformed the alternative 

model (with elevation fitted as linear and quadratic term) and was used to predict hourly temperature 

over space and time during the study period.  

 

Table S6.2 - Alternative Generalized Additive Models (GAMs) built to interpolate hourly 
temperatures over space and time in the Levionaz Valley, Gran Paradiso National Park [βi  refers to 
parameters estimated for predictors fit as a linear model, whereas si refers to smoothing functions of 
the generalized additive component of the model; ∆ AIC= difference in Akaike Information Criterion 
between the best and the alternative model; µR² = mean of R² values calculated by cross validation - 
see text for more details). The model selected for final interpolations included elevation fitted as 
smoothing spline.  

 
 

Likewise, we reported the two alternative models explaining the variability in daily maximum 

temperatures in Table S6.3. Also in this case, the model with elevation fitted as smooth term in the 

GAM outperformed the alternative model (with elevation fitted as linear and quadratic term) and was 

used to predict daily maximum temperature over space and time during the study period.  

 

Table S6.3 - Alternative Generalized Additive Models GAMs built to interpolate daily maximum 
temperatures over space and time in the Levionaz Valley, Gran Paradiso National Park [βi  refers to 
parameters estimated for predictors fit as a linear model, whereas si refers to smoothing functions of 
the generalized additive component of the model; ∆ AIC= difference in Akaike Information Criterion 
between the best and the alternative model; µR² = mean of R² values calculated by cross validation - 
see text for more details). The model selected for final interpolations included elevation fitted as 
smoothing spline.  
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7 - Calculation of buffer sizes needed to depict random availability in small-scale 

resource selection analysis. 
 

To define the buffer size for small-scale resource selection analysis (i.e., the area around each 

ibex presence location where to depict random availability), we made use of satellite telemetry data. 

We screened telemetry data available for male ibex in the Levionaz valley (year 2013), and we 

estimated ibex monthly mobility. Such movement behaviour can give us a clue on how far an ibex can 

move monthly, and thus define where to set the limit for sampling available resources in small-scale 

resource selection analysis. Because we used telemetry data collected in 2013 to define small-scale 

availability for ibex observed in 2010 and 2011, we decided to keep a more conservative approach and 

use a monthly temporal scale rather than depicting buffer sizes daily. The latter approach might have 

been biased by different environmental conditions occurring in the two different study periods. 

Telemetry data were available for 10 male ibex fitted with Vectronic GPS collars (GPS PRO 

Light collar, Vectronic Aerospace GmbH) with 7-h relocation schedule. See Table S7.1 for details on 

sampling. 

 

Table S7.1 - Sample size of satellite telemetry relocations recorded for n = 10 collared male ibex from 
early May to late October 2013 in the Levionaz valley,Gran Paradiso National Park.  

 

GPS-collar ID Age of the  
Male (y.o.) 

Total number of satellite relocations 
May Jun Jul Aug Sep Oct 

12227 8  141 54    
12228 9 94 111 95 96 100 96 
12229 13 99 90 91 86 90  
12230 9  27 154 4   
12231 9 95 114 87    
12232 9 110 96 50    
12233 11  26 294 95 96 78 
12234 9 131 93 95 4   
12235 8  134 96 98 99 95 
12236 11 133 95 101 98 100 99 
Sample size 
Average 
Total 

- 
9.6 
- 

6 
110.3 
662 

10 
92.7 
927 

10 
111.7 
1117 

7 
68.7 
481 

5 
97.0 
485 

4 
92.0 
368 

 

 

We computed for each individual ibex the distances between successive locations covered monthly 

and extracted the 75% quantile. We used the 75%-quantile rather than the maximum distance to avoid 

bias from relocation outliers (sensu Duchesne et al.1). We averaged monthly the quantiles extracted for 

all ibex (Table S7.2), thus defining the maximum distance that an ibex may cover every month. These 

distances were used as radiuses for buffers that were eventually used to identify the circular area 
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around each ibex relocation where to draw the random availability for small-scale resource selection 

analysis. 

Table S7.2 - Radius of the buffers (in meters) defining monthly availability around each ibex 
observations to be used in small-scale resource selection analysis. 
May June July August September October 
400.2 1358.1 1363.8 785.7 1179.5 1016.2 
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8 - Sensitivity analysis aimed at defining the minimum number of random available 

points to be associated with ibex presence data in resource selection analyses. 
 

Aim of this supplementary information is to run a sensitivity analysis and define the minimum number 

of available points that need to be associated to ibex presence data in resource selection functions. 

Methods 

 Following recommendations by Ciuti et al.3 and Roberts et al.4 (see box 2 therein), we fit a 

generalized linear mixed-effect model with Bernoulli distribution of errors, presence (1) and 

availability (0) as response variable, and air temperature predicted by interpolation models as 

predictor. We used air temperature because it was the environmental covariate collected at the finest 

spatial resolution (10 x 10 m). We fitted the stratum-ID (identifying each pair of used location with its 

associated random available locations) nested within the individual-ID (identifying the individually 

recognizable ibex) as random intercept in the model; we also fitted the group-ID (identifying the 

identity of the group where the marked ibex was observed) as (crossed) random intercept.  

We started the sensitivity analysis with an available:used location ratio 1:1 by running the 

GLMM 10 times, each time drawing a new random spatial sample of available locations. We repeated 

this procedure several times, stepwise increasing the number of random available points associated 

with each used point (i.e., available:used 2:1, 3:1, …, 50:1), and extracted the estimated model 

parameters (beta estimates). We thus screened the variation of beta estimates as a function of the 

number of random available locations, and fit a generalized additive model (response: beta estimates; 

predictor: number of random available locations per used location) to describe the relationship and 

detect model parameter stabilisation. Based on the visual inspection of GAMs, we selected the 

thresholds for the minimum number of random points needed to get stable parameter estimates.  

 

Results 

Results of the sensitivity analyses for large-scale and small-scale analyses are reported in Figs. S8.1-4. 

We selected 15 random points per used point in the large-scale resource selection analysis, whereas 

we selected 13 random points per used point in the small-scale analysis.  
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Figure S8.1 - General Additive Model (GAM) depicting the 
trend of the parameter estimates for air temperature in GLMM 
(large-scale analysis) with varying sample size of random 
available points per used location. The vertical dashed line 
indicates the turning point when beta estimates get stable. 

 

Figure S8.2 - General Additive Model (GAM) depicting the 
trend of the parameter estimates for air temperature in GLMM 
(small-scale analysis) with varying sample size of random 
available points per used location. The vertical dashed line 
indicates the turning point when beta estimates get stable. 
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Figure S8.3 - Variation of the parameter estimates for air temperature 
in GLMM (large scale analysis) as a function of the varying sample 
size of random available points per used location.  

 

Figure S8.4 - Variation of the parameter estimates for air temperature 
in GLMM (small-scale analysis) as a function of the varying sample 
size of random available points per used location.   
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9 - Environmental covariates used in the ibex resource selection analyses 
 
Table S9.1 - List of the covariates expected to drive ibex resource selection, which were included in 
the full model structure for both large- scale and small-scale resource selection by male ibex observed 
from 2010 to 2011 in the Gran Paradiso National Park, Italy. Variables included in the best models of 
both spatial scales are indicated in bold. 

Type Name Description 
Biological 
factors 

IDENTITY Identity of each marked male observed 
AGE Age of each marked male observed 
GROUP SIZE Size of the group where the ibex was observed 

Temporal 
parameters 

JULIAN DATE Day of the year when the ibex were observed 
MONTH Month of the year when the ibex were observed 
16-DAY PERIOD 16-days period (corresponding to the NDVI sampling 

rate) 
TIME OF THE DAY Time of the day when the ibex were observed 
PART OF THE DAY Part of the day when the ibex were observed, at three 

level: DAWN, DAY, DUSK 
Weather  AIR TEMPERATURE 

(HOURLY AND DAILY 
MAXIMUM) 

Data from temperature loggers were combined with 
those collected by the weather station and used to build 
interpolation models predicting hourly and maximum 
daily temperature (°C) for each 10 x 10 m pixel of the 
study area at any given day within the study period 

 RADIATION Solar radiation (W/m2) recorded at the weather station 

 WIND_SPEED Speed of the wind (m/s) recorded at the weather 
station.  

 WIND_DIRECTION Direction of the wind recorded at the weather station, 
cosine-transformed to range between -1 with wind 
blowing from the South and +1 with wind blowing 
from the North. 

Terrain DEM (ELEVATION) Digital Elevation Model (m) 
 ASPECT Terrain aspect, cosine-transformed (N-S) 

 SLOPE Degrees rise of the terrain 

 TRI Terrain Ruggedness Index (m) calculated based on the 
DOCELL code developed by Riley et al. (1999) 

Forage quality 
 

NDVI 
 

Normalized Difference Vegetation Index 
(16-days-composite at 250 x 250 m pixel size) 

Land cover MEADOWS AND GRASSLAND Meadows, meadows/pasture, grassland  

 WOODS AND BUSHES 
 

Larch and Swiss stone pine woods, pioneer woods, 
invasive bushes, bushes  

 SCREES AND ROCKS Rocks, screes, river banks 

 OTHERS Abandoned crop fields, urban areas/infrastructure 
Predation risk DIST_SAFE_AREAS_45 Distance to safe areas defined by a slope > 45 (m) 

DIST_SAFE_AREAS_30 Distance to safe areas defined by a slope > 30 (m) 

DIST_HIKING_TRAILS Distance to hiking trails (m), log-transformed.  
NUMBER_HIKERS Estimate of the average number of hikers using the 

trails (GPNP, official data). 
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10 - Additional information on climate models. 
 

Table S10.1 - Full details on the CMIP5 models used in this study, ordered by meridional resolution. 
The RCP column indicates whether data for the RCP 4.5 (4) or for the RCP 8.5 (8) scenario were 
available. Thirty and 38 scenarios were eventually available for RCP 8.5 and RCP 4.5, respectively.  

Model ID Institution ID Resolution lon × lat[°] - Levels  RCP Key references 

CMCC-CM CMCC 0.75 × 0.75L31 (T159) 4,8  Scoccimarro et al. 20114 

CCSM4 NCAR 1.25 × 0.9L27 (T63) 4,8 Meehl et al. 20125 

CESM1-BGC NSF-DOE-NCAR 1.25 × 0.9L27 4,8 Hurrell et al. 20136 

CESM1-CAM5 NSF-DOE-NCAR 1.25 × 0.9L27 4,8 Hurrell et al. 20136 

bcc-csm1-1-m BCC 1.125 × 1.125L26 (T106) 4 Wu et al. 20137 

EC-EARTH EC-EARTH 1.125 × 1.125L62 (T159) 4,8 Hazeleger et al. 20128 

MRI-CGCM3 MRI 1.125 × 1.125L48 (T159) 4,8 Yukimoto et al. 20129 

CNRM-CM5 CNRM-CERFACS 1.40625 × 1.40625L31 (T127) 4,8 Voldoire et al. 201310 

MIROC5 MIROC 1.40625 × 1.40625L40 (T85) 4,8 Watanabe et al. 201011 

ACCESS1-0 CSIRO-BOM 1.875 × 1.25L38 (N96) 4,8 Bi et al. 201312 

ACCESS1-3 CSIRO-BOM 1.875 × 1.25L38 (N96) 4,8 Bi et al. 201312 

HadGEM2-AO MOHC 1.875 × 1.24L60 (N96) 4,8 Martin et al. 201113 

HadGEM2-CC MOHC 1.875 × 1.24L60 (N96) 4,8 Martin et al. 201113 

HadGEM2-ES MOHC 1.875 × 1.24L60 (N96) 4,8 Martin et al. 201113 

MPI-ESM-LR MPI 1.875 × 1.875L47 (T63) 4,8 Giorgetta et al. 201314 

MPI-ESM-MR MPI 1.875 × 1.875L95 (T63) 4,8 Giorgetta et al. 201314 

IPSL-CM5A-MR IPSL 2.5 × 1.2587L39  4,8 Hourdin et al. 201315 

INM-CM4 INM 2 × 1.5L21 4 Volodin et al. 201016 

CSIRO-Mk3-6-0 CSIRO-QCCCE 1.875 × 1.875L18 (T63) 4,8 Rotstayn et al. 201217 

NorESM1-M NCC 2.5 × 1.9L26 (F19) 4,8 Bentsen et al. 201318 

GFDL-CM3 GFDL 2.5 × 2L48 (C48) 4,8 Delworth et al. 200619 

GFDL-ESM2G GFDL 2.5 × 2L24 (M45) 4,8 Delworth et al. 200619 

GFDL-ESM2M GFDL 2.5 × 2L24 (M45) 4,8 Delworth et al. 200619 

GISS-E2-H NASA/GISS 2.5 × 2L24 4 Schmidt et al. 200620 

GISS-E2-R NASA/GISS 2.5 × 2L24 4 Schmidt et al. 200620 

GISS-E2-H-CC NASA/GISS 2.5 × 2L24 4 Schmidt et al. 200620 

GISS-E2-R-CC NASA/GISS 2.5 × 2L24 4 Schmidt et al. 200620 

IPSL-CM5A-LR IPSL 3.75 × 1.89L39 4,8 Hourdin et al. 201315 

IPSL-CM5B-LR IPSL 3.75 × 1.9L39 4,8 Hourdin et al. 201315 

HADCM3 MOHC 3.75 × 2.5L19 (N48) 4 Collins et al. 201121 

FIO-ESM FIO 2.8125 × 2.8125L80 (T42) 4 Qiao et al. 201322 

MIROC-ESM-CHEM MIROC 2.8125 × 2.8125L80 (T42) 4,8 Watanabe et al. 201111 

MIROC-ESM MIROC 2.8125 × 2.8125L80 (T42) 4,8 Watanabe et al. 201111 

bcc-csm1-1 BCC 2.8125 × 2.8125L26 (T42) 4,8 Wu et al. 20137 

BNU-ESM GCESS-BNU 2.8125 × 2.8125L26 (T42) 4,8 Ji et al. 201423 

CanESM2 CCCMA 2.8125 × 2.8125L35 (T63) 4,8 Arora et al. 201124 

FGOALS-g2 LASG-CESS 2.8125 × 2.8125L26 4,8 Li et al. 201325 

CMCC-CMS CMCC 3.75 × 3.75L95 (T63) 4,8 Scoccimarro et al. 20114 
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Figure S10.1 - Difference in RSF scores between those predicted for years 2040, 2070, and 2100 and 
those recorded for year 2011 (left panel, RCP 8.5 climate change scenario; right panel, RCP 4.5).  
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