Appendix for Ikeuchi et al.

Table of Contents

Appendix Figures

Appendix Figure S1.

Appendix Figure S2.

Appendix Figure S3.

Appendix Figure S4.

Appendix Figure S5.

Appendix Figure S6.

Appendix Figure S7.

Appendix Figure S8.

Appendix Tables

Appendix Table S1.

Appendix Table S2.

Appendix Figure S1. The anisomycin sensitivity of the Hel2 mutants.

Spot assay of the Hel2 mutants with or without anisomycin. Yeast *hel2*∆ cells harboring plasmids expressing N-terminally HA-tagged Hel2 mutant series (used in Main Figure 1 B-D) were cultured in liquid SDC -Leu media at 30°C for 1 day. The cells were diluted to OD600 = 0.3 as basal spots, and 10-fold serial dilutions were prepared. The serial dilutions were grown on SDC -Leu media with or without 10 µg/mL of anisomycin at 30ºC for 2 days.

Appendix Figure S2. Ubiquitination of uS3 at K212 is does not is not necessary to induce endonucleolytic cleavage caused by the $R(CGN)_{12}$ sequence.

(A) The *GFP-R(CGN)12-HIS3* mRNA (FL) and 5' NGD-intermediate (5'NGD-IM) were detected by Northern blot analysis in the *ski2*Δ*uS3*Δ strains expressing the indicated plasmid-derived uS3 mutant proteins with the DIG-labelled *GFP* probe. *SCR1* was used as a loading control. ∆C is a uS3 mutant lacking C-terminal tail (212-240 residues). **(B)** Western blot analysis showing that lysine(K)212 of uS3 is a solely responsible for the uS3 ubiquitination. The ubiquitinated forms of uS3 in the indicated strains expressing wild type or mutant uS3-3HA were detected using an anti-HA antibody. **(C)** Western blot analysis showing that the expression level of Hel2 was not decreased in a strain expressing a K63R mutant (ub-K63R) of ubiquitin. **(D**) Western blot analysis of *in vitro* ubiquitination assay with the indicated purified proteins and ribosomes containing HAtagged uS10 or the indicated uS10 mutants showing Hel2-mediated polyubiquitination of uS10 at K6 and K8 residues. Poly-ubiquitinated uS10-3HA was detected with anti-HA antibody.

Appendix Figure S3. Characterization of the CGA-CCG reporter mRNA and purification of the (CGA-CCG)-dicodon stalled RNCs.

(A) Top: Schematic drawing of *His-HA-uL4-(CGA-CCG)*, reporter. Bottom: *His-HA-uL4-(CGA-* CCG), mRNA was added to a yeast *in vitro* translation extract obtained from a $ski2\Delta$ strain. After the translation reaction, the extract was added to Dynabeads^{M} (Invitrogen) for affinity purification of His-tagged ribosome nascent chain complexes. The beads were washed three times and eluted using imidazole. 1/100 of each sample was taken for Western blot analysis using an anti-HA antibody. **(B)** The eluate was loaded on a 10-50 % sucrose gradient and fractionated. Peaks for 80S monosomes and disomes were collected and ribosomes were pelleted through a sucrose cushion. Resuspended pellets were used for cryo-EM.

Appendix Figure S4. 3D classification scheme for the disome reconstruction (first part).

The disome dataset was initially processed like 80S monosomes (see methods). The first refined map was 3D classified into 6 classes. Class1 showed rotated state ribosomes with hybrid tRNAs and class4 showed a programmed ribosome in the non-rotated POST state occupied with P/P and E/E site tRNAs. Class 6 contained mainly P-site tRNA and rRNA expansion segment ES27 in a position facing the L1-stalk (L1 position). In class 1 and 4 extra density was observed either close to the mRNA exit site (class 4) or the mRNA entry site (class 1) whereas class 6 contained no extra densities at the mRNA entry and exit sites. Classes 2, 3 and 5 were either low populated or noisy and were not further processed. Classes 1, 4 and 6 were further sub-classified (red, blue and yellow fields). Class 1 was sub-sorted into 6 classes, one of which (class 3) showed a defined extra density for a second ribosome. Class 4 was sub-sorted into 3 classes, one of which (class 3) showed a defined extra density for a second ribosome, hybrid A/P and P/E tRNAs and rearranged ES6c. Another class (class 4) showed a rotated monosome (not involved in disome formation). Class 6 from the first classification was sub-sorted into 4 classes, of which one class (class 1) showed ES27 in the L1 position. All maps displayed in big size were further refined (Appendix Fig S6).

Appendix Figure S5. Reconstruction of the disome and 3D classification of the CGA-CCG stalled monosome dataset.

(A) The 3D reconstruction of the P/P and E/E tRNAs containing ribosome contained extra density for a second ribosome. To obtain the disome, the respective particles were re-extracted and refined using larger box sizes and mask diameters, revealing first features of a 40S subunit adjacent to the mRNA exit and, after a second re-extraction entire disome. Notably the second ribosome

showed up in the rotated state with A/P and P/E tRNAs. The disome map was used as a new template for particle picking in GAUTOMATCH. Particles were extracted and rescaled for 2D classification. This yielded in several classes clearly showing the shape of a stably formed disome and 107872 particles were selected, initially refined and 3D classified into 5 classes. One class (class 4) showed a defined arrangement of the disome, whereas the other four classes showed less clear features in the interface (class 2 and 3) and/or one ribosome poorly resolved (class 1 and 5) and particles representing stable disomes (27719 particles) were further refined. **(B)** A small dataset was collected for the CGA-CCG stalled monosome (the leading ribosome only) resulting in approx. 100000 particles after 2D classification. The particles were classified into 8 classes, of which four (86,2 %) contained tRNAs in the P/P and E/E sites (empty A site) and only one class with tRNAs in the hybrid sites. Thus, the majority of particles is in the conformation of the leading ribosome of disome.

Appendix Figure S6. Local resolution and FSC curves for the disome and sub-sorted monosome populations.

Resolution and local resolution was calculated in RELION-2.0. 3D maps are colored according to local resolution and FSC curves are shown for the individually refined leading **(A)** and colliding **(B)** ribosomes as well as for two monosomes not involved in disome formation. One is in the same state as the leading ribosome (POST state with P/P tRNA; **(C)**) and one in the same state as the colliding ribosome (rotated state with A/P and P/E tRNAs; **(D)**). Ribosomes differ in conformations of ES27L and ES6c. The overall resolution for monosome reconstructions ranged

from 3.6 to 3.9 Å according to the "gold standard" criterion and the overall resolution of the disome. **(E)** was 5.3 Å with local resolution ranging from below 4 Å in the ribosomal cores until above 10 Å for flexible elements. In the interface, local resolution was between 5 and 10 Å allowing to rigid-body fit molecular models for the ribosomal RNA and proteins.

Appendix Figure S7. Hel2 ubiquitinates eS7A in a Not4-dependent manner.

(A) Western blot analysis showing that overexpression of Hel2 increased the polyubiquitinated form of ribosomal proteins eS7, uS10 and uS3. All indicated ribosomal proteins were HA-tagged and the levels of (poly)-ubiquitinated ribosomal-proteins were detected using an anti-HA antibody **(B)** SDS-PAGE and CBB-staining after affinity purification of tagged Not4 showing that additional components of the Ccr4-NOT complex are co-purified. This preparation was used in *in vitro* ubiquitination assays. **(C)** Western blotting of an *in vitro* ubiquitination assay showing that Not4 is required and sufficient for mono-ubiquitination of both eS7A and eS7B. The reaction was performed using the indicated purified proteins and ribosomes containing HA-tagged eS7A or eS7B.

Appendix Figure S8. Ski2-E445Q mutant exhibits dominant negative effect in exosomemediated 3' to 5' mRNA decay.

(A) Northern blot analysis showing that overexpression of ski2-E445Q in wild-type cells inhibited the exosome-mediated decay of 5'NGD intermediates. 5'NGD intermediates (5'NGD-IM) are detectable in *ski2*∆ cells and wild-type cells with ski2-E445Q overexpression, but not in wild-type cells harboring empty vector nor with Ski2 wild-type overexpression. **(B)** Spot assay showing that ski2-E445Q overexpression caused synthetic sick of *xrn1*∆ cells. Yeast wild-type and *xrn1*∆ cells harboring empty vector or plasmids expressing Ski2 wild-type or E445Q mutant by *GAL1* promoter, were cultured in liquid SC 2% Raffinose -Ura media at 30ºC for 1 day. The cells were diluted to $OD600 = 0.3$ as basal spots, and 10-fold serial dilutions were prepared. The serial dilutions were grown on SDC -Ura or SC 2% galactose -Ura media at 30ºC for 2 days. **(C)** Spot assay showing that ski2-E445Q expression did not rescue *xrn1*∆*ski2*∆ cells. Yeast *xrn1*∆*ski2*∆ cells harboring p416*GPDp-SKI2* were transformed with p415*GPD* empty vector, p415*GPDp-SKI2* wild-type or *E445Q*, were cultured in liquid SDC -Leu media at 30ºC for 1 day. The cells were diluted to $OD600 = 0.3$ as basal spots, and 10-fold serial dilutions were prepared. The serial dilutions were grown on SDC -Leu -Ura or SDC -Leu with 0.5 mg/ml 5-fluoroorotic acid (5-FOA) media at 30ºC for 2 days. **(D)** Northern blot analysis showing that Hel2 1-315 mutant expression failed to induce mRNA cleavages in *hel2*∆*not4*∆ mutant cells. 5'NGD intermediates (5'NGD-IM) are detected in ski2-E445Q overexpression condition.

Appendix Table S1

Yeast strains used in study

Appendix Table S2

Plasmids used in study

