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A.  Illustration of Method 
 

 
 
B.  ENCODE accession numbers of datasets and other resources generated for K562 
 
Dataset S1. SNVs & Indels (corrected for ploidy) identified from WGS using GATK Haplotypecaller and Table S2 (ENCFF606RIC 
VCF format) 
Dataset S2. Phased variants (SNVs, Indels, and SVs) generated from integrating linked-reads and Dataset S1 using Long Ranger 
(ENCFF241LKI VCF format) 
Dataset S3.  Large SVs (>30 kb) identified from linked-reads using Long Ranger (ENCFF657ZQS VCF format) 
Dataset S4.  Deletions (<30 kb) identified using Long Ranger identified from linked-reads using Long Ranger (ENCFF344VXT VCF 
format) 
Dataset S5. SVs identified and assembled using GROC-SVs (ENCFF872PDV VCF format, ENCFF266ZFI BAM format). PDF 
images of SVs in Supplemental Data 
Dataset S6. SVs identified from WGS using ARC-SV (ENCFF131ESS VCF format) 
Dataset S7. SVs (deletions, tandem duplications, inversions identified mate-pair sequencing using LUMPY (ENCFF823IED VCF 
format) 
Supplemental Data. Merged SV calls from Break Dancer, PINDEL, BreakSeq, ARC-SV, LUMPY, and Long Ranger (VCF format) 
Table S2.  High-resolution CN (or ploidy) of K562 chromosome segments identified from WGS using read-depth analysis. 
Table S8. non-reference LINE1 & Alu insertions identified from WGS using RetroSeq 
Table S11. Allele-specific RNA expression, two replicates of ENCODE K562 RNA-Seq data reanalyzed taking ploidy into account 
Table S13.  Phased and allele-specific DNA methylation, ENCODE K562 whole-genome bisulfite sequencing data reanalyzed 
taking ploidy and CpG phasing into account. 
Table S14. Allele-specific CRISPR targeting sites. 
Figure 2A.  Karyotyping by GTW banding 
Supplemental Data. Mega-base-scale SNV haplotypes “stitched” from Dataset S2 by leveraging the allelic imbalance in aneuploid 
regions  
Supplemental Data. NimbleGen array CGH data with comparisons to WGS read-depth signal (PDF images, array CGH data,) 
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C.  Raw sequencing read and alignment data generated for K562 
 

• Short-insert WGS 
o ENOCDE accession:  ENCLB544CFT (sequencing), ENCFF691CKS (hg19 alignment) 
o Link: https://www.encodeproject.org/experiments/ENCSR711UNY 

 
• 3kb-mate-pair sequencing 

o ENCODE accession: ENCLB531FQO (sequencing), ENCFF462TFC (hg19 alignment)  
o Link: https://www.encodeproject.org/experiments/ENCSR025GPQ/ 

 
• Linked-read sequencing 

o ENCODE accessions: ENCLB557IGA (sequencing), ENCFF287PIC (hg19 alignment) 
o Link: https://www.encodeproject.org/experiments/ENCSR053AXS/ 

 
D.  Description of Supplemental Data 
 
Comparison of CN identified from WGS read-depth analysis with NimbleGen aCGH.zip   
PDF images.  Upper panel: WGS coverage plot. X-axis genomic coordinate in kb. Y-axis: WGS coverage. Red: CN5, Purple: CN4, 
Blue: CN3, Green: CN2, Black: CN1, Gold: CN0. Lower panel: Y-axis: array probe signal intensity. X-axis: genomic coordinate.  
Array CGH data of K562 vs. female pool DNA with dye swap. 
GROC-SVs_visualizations.zip 
Visualizations of SVs in Dataset S5 identified using GROC-SVs. Each line depicts a fragment inferred from linked-read data based 
on clustering of reads with identical barcodes identified from GROC-SVs (Spies et al. 2017).  Fragments are phased locally with 
respect to surrounding SNVs and colored cyan for haplotype 1, orange for haplotype 2, and black when no informative SNVs are 
found nearby. Gray lines indicate portions of fragments that do not support the current breakpoint. Read-depth coverage is 
calculated from the short-insert WGS dataset. 
ARC-SV_visualizations.zip 
Visualizations of SVs in Dataset S6 identified from short-insert WGS using ARC-SV.   
K562_SVs_merged_vcf.zip 
K562 merged SV calls from Break Dancer, PINDEL, BreakSeq, ARC-SV (non-complex SVs), LUMPY, and Long Ranger (deletions 
<30kb).  VCF format.   
K562_Mega_Haplotypes.zip 
Haplotypes blocks of 100 or more phased SNVs from Dataset S2 “stitched” into mega-haplotypes by leveraging the haplotype 
imbalance in aneuploid regions using method described in (Bell et al., 2017).  Columns:  chromosome, position, minor SNV allele, 
major SNV allele.  Only SNVs present in both K562 and NA12878 were included in the mega-haplotype blocks (see Supplemental 
Methods).   
K562_megahaplotyping_scripts.zip 
scripts for running mega-haplotyping based on Bell et al 2017.  Step by step instructions are provided in proc_steps.pair.sh 
 
Supplemental Figure S1. Illustration of method and description of resources generated for K562 
(A) Short-insert WGS at 72x non-duplicate coverage, 3 kb-mate-pair sequencing (Korbel et al. 2007a) at 69x physical coverage, 
linked-read sequencing (Zheng et al. 2016) at 59x coverage, array CGH, and karyotyping were used to comprehensively 
characterize the genome of K562. WGS was used to obtain high-resolution CN by chromosomal segments using read-depth 
analysis (Supplemental Table S2) (Abyzov et al. 2011), SNVs and Indels using GATK Haplotypecaller (McKenna et al. 2010) with 
CN taken into account (Dataset S1), non-reference LINE-1 and Alu insertions (Supplemental Table S9), and SVs (Datasets S6, 
Supplemental Data), such as deletions, duplications, inversions, insertions, and complex SVs, using BreakDancer (Chen et al. 
2009), BreakSeq (Lam et al. 2010), Pindel (Ye et al. 2009), and ARC-SV (Arthur et al. 2017). CN of chromosome segments were 
orthogonally validated with array CGH and karyotyping (Fig. 2A, Supplemental Fig. S3, Supplemental Data). A statistical approach 
that counts unique linked-read barcodes from the major and minor alleles also confirmed aneuploid CN>2 regions (Bell et al. 2017).  
The linked-reads were used to phase SNVs and Indels as well as to identify, assemble, and phase primarily large (>30 kb) and 
complex SVs using Long Ranger (Marks et al. 2018), gemtools (Greer et al. 2017), and GROC-SVs (Spies et al. 2017) (Datasets 
S2, S3, S5, Supplemental Data, Figure 4C, D). Deletions <30 kb were also identified by Long Ranger (Dataset S4). Haplotype 
blocks from Long Ranger in Dataset S2 with ≥100 heterozygous phased SNVs in aneuploid chromosomal regions were “stitched” to 
mega-haplotypes by leveraging haplotype imbalance (Bell et al. 2017) (Table 2, Fig. 3, Supplemental Data). CN and phased SNVs 
were integrated to identify allele-specific RNA expression and allele-specific DNA methylation (Supplemental Tables S11, S13).  
The 3 kb-mate-pair dataset was used to call additional SVs (Dataset S7), mostly in the medium size-range (1 kbp-100 kb), using 
LUMPY (Layer et al. 2014) and also used to validate large and complex SVs identified from linked-read data. Small-scale complex 
SVs were identified using ARC-SV (Dataset S6, Supplemental Data).  The union of non-complex SV calls from LUMPY, Break 
Dancer, BreakSeq, Pindel, ARC-SV, and Long Ranger are listed in Supplemental Data where SVs overlapping by ≥50% 
reciprocally were merged (Supplemental Data). (B) Description and ENCODE accession numbers for Datasets S1-S7 and other 
resources generated for K562.  Datasets can be downloaded from https://www.encodeproject.org (Sloan et al. 2016).  (C) ENCODE 
accession numbers and download links for sequencing and alignment data for K562. (D) Description of Supplemental Data files 
included with this manuscript.   
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SUPPLEMENTAL DISCUSSION 

K562 Karyotype 

 It should be taken into consideration that for a widely used cell line with decades of 

history, such as K562, genome variation is expected.  In light of this, it is reassuring that the 

overall karyotype has not changed much over the years. However, researchers should still keep 

this aspect in mind when working with a version of K562 that has been separated from the main 

ENCODE K562 line used here. We expect that the vast majority of genomic variants that we 

describe here to be universal for K562, but for individual variants, it is possible that different 

lines of K562 may have slightly diverged from each other (Supplemental Table S1, 

Supplemental Table S3). When using a different K562 line and following up on findings for 

individual loci of interest, a first step should always be to experimentally validate their presence. 

When incorporating these genomic variants for global analyses, such as interrogating network 

interactions, the vast majority of them will exist, thus such global analyses are expected to yield 

substantial insights. Even though the pervasive aneuploidy in K562 renders the design and 

interpretation of K562 studies more challenging, the information we provide here enables 

researchers to continue the use of this cell line to investigate the effects of genetic variation on 

the multiple levels of functional genomics activity and regulation for which ENCODE data 

already exists or continues to be produced. Thus, analysis of K562 data should not only be 

more complex and challenging, but also potentially much more insightful and rewarding when 

taking its complex genome structure into account. 

Haplotype Phasing 

The haplotype phase of genomic sequence variants is an essential aspect of human 

genetics, but current standard WGS approaches entirely fail to resolve this aspect. We 

performed linked-read sequencing of the K562 genome and used Long Ranger to perform 

haplotype phasing (Zheng et al. 2016; Marks et al. 2018). After size-selecting for genomic DNA 

fragments >30kb, 300 genomic equivalents of HMW DNA were partitioned into more than one 



million oil droplets, uniquely barcoded within each droplet, and subjected to random priming and 

amplification. Implemented by Long Ranger (Marks et al. 2018), sequencing reads that originate 

from the same HMW DNA molecule can be identified by their respective droplet barcodes and 

linked together to produce virtual long reads. Then, by looking for virtual long reads that overlap 

a previously called set of heterozygous haplotypes (Dataset S1), the phase information of the 

heterozygous haplotypes was determined and the virtual long reads were constructed into 

phased haplotype blocks with N50 > 2.72 Mb (Dataset S2, Fig. 2D). Chromosomes 3, 9, 13, 14, 

X, and large portions of Chromosomes 2, 10, 12, 20, 22 were difficult to phase, resulting in 

comparatively shorter phased blocks (Dataset S2, Fig. 1, Supplemental Fig. S4). This is not 

surprising since these chromosomes and chromosomal regions exhibit a very high degree of 

LOH (Fig. 1 and Supplemental Table S4). Heterozygous loci in aneuploidy regions with more 

than two haplotypes were excluded from phasing linked-read analysis due to software and 

algorithmic limitations (Zheng et al. 2016). However, the phase information of these loci could 

be resolved from our linked-read data in principle, should new algorithms become available.   

We extended on the already-impressive phasing capabilities of Long Ranger and 

constructed mega-haplotypes in K562—often spanning entire chromosome arms (Fig. 3, Table 

2, Supplementary Data)—by leveraging the haplotype imbalance in aneuploid chromosomes 

using a recently developed method for which its effectiveness in cancer has already been 

demonstrated  (Bell et al. 2017).  Since gene dosage is a fundamental component of genome 

biology and for which aneuploidy contribute large effects in terms of amplification and reduction, 

the ability to haplotype across long stretches of aneuploidy is essential for understanding of the 

genetic regulations of cancer and an important component for developing genetically targeted 

cancer treatment.  

Large SVs Identified from Linked-Read Sequencing 

FHIT is frequently seen to harbor deletions in many types of human cancers, most 

commonly of epithelial origin, such as lung, stomach, cervix, head and neck, breast, and kidney 



(Lubinski et al. 1994; Ohta et al. 1996; Huebner et al. 1998; Ingvarsson 2001).  Reduction or 

absence in its protein expression occurs in nearly 50% of all cancers (Huebner et al. 1998; 

Waters et al. 2014).  While LOH and allele-specific deletions within FHIT have been previously 

reported (Wistuba et al. 1997; Li et al. 2016), to our knowledge, this is the first discovery of 

phased and allele-specific tandem duplications within FHIT and the first report of FHIT 

mutations for CML. Curiously, all previous reports of deletions within FHIT for various cancer 

types (not including CML) were all centered on and include exon 5 (Durkin et al. 2008), whereas 

exon 5 is duplicated in K562.  Deletions of all three FHIT exons 6, 7, and 8 (Fig. 4C) are less 

frequent but have been reported for lung cancer and esophageal adenocarcinoma (Sozzi et al. 

1996; Dagmar et al. 1997). 

We identified highly allele-specific RNA expression for ORC6 (p<1.58 × 10-8) and 

MYLK3 (p<1.93 × 10-17) in K562 (Supplemental Table S11), which is likely contributed by the 

allele-specific complex intra-chromosomal rearrangement residing on the non-duplicated 

haplotype of 16q11.2 (triploid) (Fig. 4D).  ORC6 codes for origin recognition protein complex 

subunit 6 and is essential for coordinating DNA replication, chromosome segregation, and 

cytokinesis (Prasanth et al. 2002). One allele of ORC6 is “deleted” by one of the inversion 

breakpoints of this rearrangement and maintains allele-specific expression on the other allele 

(Fig. 4D).  The origin recognition complex, in which Orc6 is a subunit, serves as a “landing pad” 

for bringing together components of the pre-replicative complex required for DNA replication.  

Reduction of Orc6 dosage by small interfering RNA results in decreased DNA replication, 

aberrant mitosis, and the formation of multiple nuclei and multipolar spindles in cells; a long 

period of this reduction increases cell death (Prasanth et al. 2002).  Such effects are not 

observed in K562 cells even though RNA expression from one allele of ORC6 is “depleted” by 

this rearrangement (p<1.58 × 10-8, Supplemental Table S11).  This is likely because the other 

“normal” ORC6 allele was duplicated, rendering this locus in K562 triploid and thus maintain a 

“diploid” gene dosage.  Perhaps more importantly, this insight also raises important questions 



regarding the history of mutation as well as selective pressures that occurred within K562 cells.  

It is possible that one copy of Chromosome 16 was first duplicated, freeing this locus from 

selective pressures, allowing it to acquire new mutations, since “diploid” copies are still 

maintained in the genome.  It is also conceivable that duplication of this locus is 

disadvantageous for cell proliferation, and K562 cells that acquired this rearrangement after the 

duplication of Chromosome 16 also acquired a selective advantage since they now reverted this 

locus back to “diploid” copies.  However, it is also possible, though perhaps less likely, that this 

rearrangement occurred before Chromosome 16 duplication, putting a negative selection 

pressure on K562 cells, and that this pressure is released by duplication of the other copy.  This 

rearrangement also inverts an intact copy of MYLK3 (Fig. 4D), which was identified to encode a 

novel cardiac-specific myosin light chain kinase (Seguchi et al. 2007).  Since its expression is 

expected to be normally repressed except in heart cells, the allele-specific RNA expression of 

MYLK3 (p<1.93E-17, Supplemental Table S11) from this inverted allele suggests that this 

inversion activated the ectopic expression of this gene in K562, possibly by disrupting or 

disconnecting it from its promoter or proximal enhancer elements that impose repressive 

regulatory mechanisms.  Finally, this complex rearrangement on Chromosome 16 of K562 also 

duplicates NETO2 in a tandem fashion, also on the same allele (Fig. 4D).  NETO2 codes for a 

single-pass membrane protein neuropilin and tolloid-like 2 (Stöhr et al. 2002).  Its expression is 

frequently up-regulated in many types of human cancers including lung, cervical, colon, and 

renal carcinomas and has been suggested as a potential genetic marker for cancer (Oparina et 

al. 2012).  Its up-regulation also correlates with the progression and poor prognosis of colorectal 

carcinoma (Hu et al. 2015).  It is conceivable that the increase in NETO2 gene dosage due to 

duplication in K562 cells contributes to their efficient proliferation in culture and that, at least in 

some cancers, the frequent up-regulations observed for NETO2 are also contributed by this 

similar mechanism of allele-specific tandem duplication.     



The hallmark of CML is the Philadelphia rearrangement t(9; 22)(q34; q11) which results 

in the fusion of ABL1 and BCR (Heisterkamp et al. 1985; de Klein et al. 1982; Groffen et al. 

1984). This gene fusion is known to be extensively amplified in the K562 genome by tandem 

duplication (Wu et al. 1995). FISH analysis showed that fluorescent signals from the BCR/ABL1 

gene fusion almost always concentrate on a single marker chromosome (Tkachuk et al. 1990; 

Wu et al. 1995; Gribble et al. 2000). This is also consistent with our data as the linked-reads that 

support the BCR/ABL1 gene fusion do not share overlapping barcodes with linked-reads that 

align elsewhere in the genome, and the BCR and ABL1 gene regions where the fusion occurs 

show a >2.8× increase in sequencing coverage relative to average sequencing coverage 

across the genome.  

Complex Gene Regulation at the HOXB7 and HLX Loci in K562 

 Hox genes are known to have important roles in hematopoiesis and oncogenesis 

(Argiropoulos and Humphries 2007; Shah and Sukumar 2010; Eklund 2011).  The HOXB7 

transcription factor mediates lymphoid development, hematopoietic differentiation and 

leukemogenesis (Giampaolo et al. 1995; Carè et al. 1999). HOXB7 overexpression has been 

reported in leukemia (Raval et al. 2007) as well as in many other cancers (Caré et al. 1996; Wu 

et al. 2006; Yamashita et al. 2006; Shiraishi et al. 2007; Chen et al. 2008; Storti et al. 2011). It is 

directly upstream of HOXB8, which is the first Hox gene found to be an oncogene in leukemia 

(Blatt et al. 1988). HLX has also been suggested to play oncogenic roles in leukemia (Deguchi 

et al. 1992; Deguchi and Kehrl 1993; Jawad et al. 2006; Fröhling 2012). By integrating the 

genomic context of HOXB7 and HLX in K562 with RNA-seq and WGBS data, we see that the 

RNA of both genes are expressed from haplotypes that exhibit aneuploidy and in an allele-

specific manner (Fig. 6A, B, D). The allele-specific methylation of the CGIs near these two 

genes is associated with active transcription in the case of HLX and silencing of transcription in 

the case of HOXB7 (Fig. 6A-C). Such insights into potential oncogene regulation cannot be 



obtained by analyzing functional genomics and epigenomics data alone without genome 

structural information i.e. correct genomic context. 

Combining Linked-Reads with Short-Insert WGS Reads for CN Analysis 

 While it is reasonable to assume that combining linked-read data with short-insert WGS 

reads should yield higher resolution for read-depth-based CN analysis, we combined our K562 

linked-reads and short-insert WGS reads (total combined sequencing coverage >131×) for 

analysis of CN changes across the K562 genome.  While doing so, we found that the genome 

coverage from linked-reads is more biased than that of WGS.  This is not entirely surprising 

since the linked-read library preparation has a proprietary isothermal amplification step where 

the input is only 1 nanogram of DNA in addition to PCR.  After performing this analysis, we 

found that higher-resolution is not achieved by including linked-reads data.  Thus, we used only 

our deep-coverage short-insert WGS (~72x non-duplicate coverage) for high-resolution read-

depth analysis of CN or ploidy changes across chromosome segments (Table S2).   

Comparison of SV-Calling with Linked-Reads Vs. with Standard Paired-End WGS 

 By comparing the SVs called from using 10x-Genomics linked-read sequencing (e.g. 

produces Illumina reads, but considered as “third generation technology”) with those identified 

from standard Illumina paired-end (short-insert or mate-pair), we see that 1,263 out of 3,360 

SVs or 38% are not ascertainable by standard Illumina paired-end sequencing methods.  We 

also would like to point out that this can also be interpreted as the majority (62%) of SVs 

identified using 10x-Genomics linked-read sequencing can also be identified by standard 

Illumina paired-end sequencing.  However, this interpretation is not accurate since the vast 

majority of SVs detected by only linked-read sequencing (the ones not ascertainable by 

standard Illumina paired-end sequencing) are large SVs (>30 kb) and may contain multiple 

breakpoints.  We see that 2,097 out of the total 4,831 SVs (43%) identified using only standard 

Illumina paired-end sequencing (excluding complex SVs identified from ARC-SV) were also 

identified using linked-read sequencing.  Linked-reads, if sequenced to the same coverage 



depths, already possess most of the information obtained from standard short-insert Illumina 

paired-end sequencing, and thus can also be analyzed as such by not taking into account the 

high-molecular weight DNA barcodes that ‘link’ these reads together.  Therefore, the more 

accurate interpretation is that 43% of the SVs -- identified by combining standard short-insert 

and mate-pair Illumina sequencing -- can already be identified by using 10x-Genomics linked-

read sequencing alone in the K562 cancer genome.   

 In addition, we see that 170 out of 220 (77%) of the large or complex SVs identified from 

linked-read sequencing using GROC-SVs have at least some supporting evidence (i.e. one or 

more supporting paired-end reads) from standard Illumina mate-pair sequencing; 142 of these 

were also identified as SVs using standard Illumina mate-pair sequencing. However, for 162 out 

of these 170 SVs (>95%) with supporting mate-pair evidence, the breakpoints were either more 

precisely defined, haplotype-resolved, or sequence assembled from the linked-read data which 

cannot be done so from the standard Illumina mate-pair data.    
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SUPPLEMENTAL METHODS 

Analysis Overview 

We combined multiple experimental and analysis methods (Supplementary Fig. S1A), including 

karyotyping, array CGH, deep (72× non-duplicate coverage ) short-insert whole-genome 

sequencing (WGS), 3 kb-mate-pair sequencing (Korbel et al. 2007) and 10x Genomics linked-

reads sequencing (Zheng et al. 2016; Marks et al. 2018), to comprehensively characterize the 

genome of the primary ENCODE cell line K562 (Fig. 1). The WGS dataset was used to identify 

CN i.e. ploidy by chromosome segments, SNVs, Indels, non-reference LINE1 and Alu insertions 

(Lupski 2010; Sudmant et al. 2015), and SVs such as deletions, duplications, inversions, 

insertions, and small-scale complex SVs.  These SVs were identified using an integrated 

approach that includes BreakDancer (Chen et al. 2009), Pindel (Ye et al. 2009), BreakSeq (Lam 

et al. 2010) and ARC-SV (Arthur et al. 2017). The allele frequencies of heterozygous SNVs and 

Indels were determined by taking ploidy into account. The linked-reads were used to phase 

SNVs and Indels as well as to identify, phase, reconstruct, and assemble primarily large (>30 

kb) and complex SVs (Greer et al. 2017; Spies et al. 2017; Marks et al. 2018), though additional 

small-scale deletions were also identified and phased (Zheng et al. 2016). SVs and REIs were 

experimentally validated with PCR and Sanger sequencing. Phased SNV haplotype blocks in 

aneuploid regions were “stitched” to mega-haplotypes by leveraging haplotype imbalance (Bell 

et al. 2017).  The 3 kb-mate-pair data was used to identify additional SVs and was also used to 

validate large and complex SVs identified from linked-reads. Functional genomics and 

epigenomics datasets from ENCODE were integrated with CN and phasing information to 

identify allele-specific RNA expression and allele-specific DNA methylation.  Phased variants 

were also used to identify allele-specific CRISPR targets in the K562 genome.   

Array CGH analysis 

Array hybridization was performed using the HD2 080131_HG18_WG_CGH_v2DCR_HX1 array 

CGH platform from Roche NimbleGen, Inc. (Madison, WI, USA) (Urban et al. 2006; Korbel et al. 
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2007, 2009). This array contains 2.1 million probes tilting hg18 with a median probe spacing of 

1169bp and probe length of 60bp. We followed the protocol in “NimbleGen Array User’s Guide – 

CGH Analysis” from the manufacturer. Briefly, genomic DNA from K562 cells was labeled with 

cy3 dye and genomic DNA from a pool of 7 females (Promega) was labeled with cy5 dye. DNA 

was not sonicated as recommended by NimbleGen Technical Support. Equal amounts of the 

labeled K562 and pooled-control DNA were hybridized to the arrays for 72 hours. A dye swap 

was also performed. Arrays were washed and scanned (PMT gain:  532nm, 635nm) with using 

the Axon 4200A scanner from Genepix (San Jose, CA, USA).  The images were analyzed using 

the SegMNT algorithm in the NimbleScan 2.5 software suite (Roche NimbleGen, Inc) with 

default settings.  Genomic coordinates were then converted from hg18 to hg19 using the UCSC 

LiftOver tool (Hinrichs et al. 2006).  

Illumina short-insert WGS  

K562 genomic DNA was sent to Macrogen (Rockville, MD, USA) for standard Illumina short-

insert library preparation and WGS. Two independent libraries were prepared and sequenced 

(2x151 bp) on two lanes of the Illumina HiSeq X to achieve >70x genomic coverage. Reads 

were aligned to the hg19 using BWA-MEM version 0.7.5  (Li and Durbin 2009) followed by 

marking of duplicates using Picard tools (version 1.129) (http://broadinstitute.github.io/picard/) 

Local Indel realignment and base quality recalibration using Genome Analysis Tool Kit (GATK) 

(McKenna et al. 2010; DePristo et al. 2011).  

Determining CN by chromosome segments and allele frequencies of SNVs and Indels 

WGS sequencing coverage was calculated in 10 kb bins across the genome and plotted against 

the % GC content of each bin to verify the existence of discrete clusters corresponding to 

discrete CNs (Supplementary Fig. S2).  CN was assigned to a cluster based on the ratio of its 

mean coverage to that of the lowest cluster.  For an example, the cluster with the lowest mean 

coverage was assigned CN1, and the cluster with twice as much mean coverage was assigned 

CN2 and so forth. The ratios for the five discrete clusters observed corresponded almost 
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perfectly to CN1, CN2, CN3, CN4, and CN5. WGS coverage across the genome and across 

each chromosome was examined visually to assign CN for different chromosome segments or 

entire chromosomes based on the cluster analysis where adjacent chromosomal segments with 

different CNs could be identified by the clearly visible sharp and steep changes in sequencing 

coverage (Supplementary Fig. S3, Supplemental Data).  For each chromosome segment, SNVs 

and Indels were called using by GATK Haplotypecaller (version 3.7) (McKenna et al. 2010) by 

specifying the CN or ploidy of that chromosome segment (stand_emit_conf=0.1, 

variant_index_type=LINEAR, variant_index_parameter=128000, ploidy={CN}). The resulting 

Haplotypecaller outputs from all chromosome segments were then concatenated, and variant 

quality scores were recalibrated using GATK VQSR with training datasets (dbSNP 138, 

HapMap 3.3, Omni 2.5 genotypes, 1000 Genomes Phase 1) as recommended by GATK Best 

Practices (Van der Auwera et al. 2013; DePristo et al. 2011) and filtered with the setting tranche 

= 99.0. SNVs and Indels were annotated using dbSNP138 (Sherry et al. 2001) followed by 

SnpEff (version 4.3; canonical transcripts) (Cingolani et al. 2012a) and then filtered for protein 

altering variants using SnpSift (version 4.3; ‘HIGH’ and ‘MODERATE’ putative impact) 

(Cingolani et al. 2012b). Protein-altering variants were intersected with the variants from the 

1000 Genomes Project (The 1000 Genomes Project Consortium et al. 2015) and the Exome 

Sequencing Project (http://evs.gs.washington.edu/EVS/) where overlapping variants were 

removed using Bedtools (version 2.26) (Quinlan and Hall 2010). The resulting PPA variant calls 

were overlapped against the Catalogue of Somatic Mutations in Cancer (Forbes et al. 2015) and 

Sanger Cancer Gene Census (Futreal et al. 2004).  

Identification of regions exhibiting LOH 

A Hidden Markov Model (HMM) was used to identify genomic regions exhibiting LOH.  The 

HMM is designed with two states: LOH present, and LOH absent. We used SNVs that were (1) 

recalibrated and “PASS”-filtered from GATK VQSR and (2) overlapped 1000 Genomes Project 

variants (Sudmant et al. 2015). The genome was split into 40 kb bins; heterozygous and 
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homozygous SNVs were tallied for each bin, and bins with <12 SNVs were removed. A bin was 

classified as heterozygous if ≥50% of the SNVs within the bin are heterozygous, otherwise it 

was classified as homozygous. This classification was used as the HMM emission sequence. 

The HMM was initialized with the same initiation and transition probabilities (Prob=10E-8) (Adey 

et al., 2013), and the Viterbi algorithm was used to estimate a best path. Adjacent LOH intervals 

were merged. 

10x Genomics linked-read library and sequencing 

K562 genomic DNA sample (~35 kb-80 kb) was size selected on the BluePippin instrument 

(Sage Science, Beverly, MA, USA) using the manufacturer’s U1 Maker 30 kb High Pass 

protocol and then diluted to 1 ng/µl and used as input for the Chromium reagent delivery system 

(Zheng et al. 2016; Marks et al. 2018) from 10x Genomics (Pleasanton, CA, USA) where HMW 

DNA fragments are partitioned into >1 million droplets, uniquely barcoded (16 bp) within each 

droplet, and subjected to random priming and isothermal amplification following standard 

manufacturer’s protocol.  Afterwards, the emulsion was broken, and the barcoded DNA 

molecules were released and converted to a Chromium linked-read library in which each library 

molecule retains its “HMW fragment barcode”. Read-pairs generated in this manner, i.e. linked-

reads, that come from the same HMW DNA fragment, can be identified by their “HMW fragment 

barcode” and can be used to construct a virtual long-read that is representative of the sequence 

of the original HMW genomic DNA fragment. Reads that cover heterozygous SNVs and Indels 

can be phased by their “HMW fragment barcode”. The final library (8 cycles of PCR 

amplification) was diluted to 5 nM and sent to Macrogen (Rockville, MD, USA) for sequencing 

(2x151 bp) on two lanes of the Illumina HiSeq X to achieve ~60x genomic coverage.  We 

estimate the actual physical coverage (CF) to be 191×. The overall sequencing coverage is C = 

CR x CF = 59×. The length of sequence coverage per 2 × 151 bp paired-ended read minus 16 

bp of “HWM fragment barcode” is 286 bp, thus coverage (CR) of the average input HMW 

genomic DNA (59 kb) is 18,304 bp (286 bp x 64 linked-reads) or 31.0% of 50 kb. 
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Haplotype phasing and variant calling using 10x Genomics linked-reads 

Paired-end linked-reads (median insert size 385 bp, duplication rate 6.19%, Q30 Read1 88.7%, 

Q30 Read2 63.8%) were aligned to hg19 (alignment rate 90.1%, mean coverage 59.0x, zero 

coverage 1.14%) and analyzed using the Long Ranger Software (version 2.1.5) from 10x 

Genomics (Zheng et al. 2016; Marks et al. 2018) (Pleasanton, CA, USA). Segmental 

duplications, reference gaps, unplaced contigs, regions with assembly issues, and highly 

polymorphic sites (http://cf.10xgenomics.com/supp/genome/hg19/sv_blacklist.bed, 

http://cf.10xgenomics.com/supp/genome/hg19/segdups.bedpe) were excluded from the 

analysis. ENSEMBL annotations 

(http://cf.10xgenomics.com/supp/genome/gene_annotations.gtf.gz) were used for genes and 

exons. Phasing was performed by specifying the set of pre-called and filtered K562 

heterozygous SNVs and Indels from GATK (see above) and formatted using mkvcf from Long 

Ranger (version 2.1.5). Heterozygous SNVs and Indels with more than two types of alleles in 

ploidy>2 regions were excluded from analysis. Large (>30 kb) SVs and large-scale  complex 

rearrangements were identified using both the Long Ranger wgs module with the “--somatic” 

option, GROC-SVs (default settings with breakpoint assembly) (Spies et al. 2017), and 

gemtools (Greer et al. 2017). The “--somatic” option increases the sensitivity of the large-scale 

SV caller for somatic SVs by allowing the detection of sub-haplotype events and does not affect 

small-scale variant calling. Variants from Long Ranger analysis indicated as “PASS” were 

retained. SV breakpoints identified using GROC-SVs were also analyzed for supporting 

evidence from mate-pair reads (see below).   

Mega-haplotype analysis 

Haplotype-blocks from Long Ranger were “stitched” to mega-haplotype blocks by 

leveraging the haplotype imbalance in aneuploid regions using the methods described in (Bell et 

al. 2017).  Briefly, we counted the number of linked-read barcodes for each phased 

heterozygous SNVs assigned to haplotype blocks that contain ≥100 phased SNVs (Dataset S2).  
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Since each barcode is specific to a given HMW DNA molecule, the total number of unique 

barcodes is directly associated with the number of individual HMW DNA molecules sequenced.  

In other words, the counting of unique barcode associated with a particular sequence gives the 

fractional representation of that sequence (or genomic locus).  Thus, for each phased haplotype 

in aneuploid regions with CN>2, major and minor haplotypes can be assigned according to the 

number of barcodes associated with each haplotype (Fig. 3), where the major haplotype simply 

has more associated unique barcodes than the minor.  In diploid regions, the two haplotypes 

are expected to have similar barcode counts.  A matched normal control genome is required in 

order to confidently discriminate between the major and minor haplotypes in a case genome 

(Bell et al. 2017).  Because K562 has no matching normal sample, we used a female genome of 

the same ethnicity (NA12878) for which linked-read data is publicly available 

(https://support.10xgenomics.com/genome-exome/datasets/2.2.1/NA12878_WGS_v2).  Only 

SNVs present in both K562 and NA12878 were included in the mega-haplotype blocks 

(Supplemental Data, Table 2).  After verifying aneuploidy (or haplotype imbalance) by barcode 

counting and performing the normalization procedures and statistical tests as described in (Bell 

et al. 2017), we then “stitched” together contiguous phased haplotype blocks based on the 

imbalance between the major and minor haplotypes.   

Allele-specific RNA expression 

Two replicates of K562 poly(A) mRNA RNA-seq (bam files ENCFF412EYU & 

ENCFF037AFT from experiment ENCSR000AEM) were downloaded from the ENCODE portal 

(Sloan et al. 2016). Replicates were analyzed separately.  Samtools mpileup (version 0.1.19) (Li 

et al. 2009) and BCFtools (version 0.1.19) (Narasimhan et al. 2016) were used to count the 

number of reads mapped to each allele of heterozygous SNVs; SNVs with coverage <10 in 

RNA-seq data were filtered out. The binomial test was used to determine if the fraction of RNA-

seq reads that mapped each allele of a particular SNV significantly (p < 0.05) deviated from the 
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expected value of 0.5 for diploid regions or the expected values in aneuploid regions (e.g. 0.33, 

0.67 in triploid regions) for each heterozygous SNV.  

Allele-specific DNA methylation 

 One replicate of K562 WGBS data (library ENCLB542OXH from experiment 

ENCSR765JPC) was downloaded from the ENCODE portal.  Bisulfite reads were aligned to the 

human reference genome (hg19) using Bismark (version 0.16.3; --dovetail, --bowtie2, -I 100, -X 

500, --unmapped, --ambiguous) (Krueger and Andrews 2011) resulting in 28.6x non-duplicate 

coverage. Paired-end reads that contain cytosines (with 10-200x sequencing coverage) in a 

CpG dinucleotide were selected if they also overlapped with phased heterozygous SNVs 

(Dataset S2). The haplotypes in which cytosines (methylated or unmethylated) belonged were 

then assigned based on phased heterozygous SNVs on that same read. CpG containing reads 

that overlap SNVs on different haplotypes within the same read (<1% of cases) were filtered 

out.  CpGs were then grouped into CGIs.  The phased reads overlapping each CGI were then 

grouped by haplotype, and the number of reads containing methylated or unmethylated 

cytosines were normalized by the CN of their corresponding haplotypes.  Fisher’s exact test was 

applied at each CGI to determine if the fraction of methylated to unmethylated reads was 

significantly different between the alleles. The p-values of each CGI from the Fisher’s exact 

tests were used as input for the q-value package (https://github.com/StoreyLab/qvalue) in R 

(https://www.R-project.org) to see which Fisher’s exact tests were significant given a target false 

discovery rate (FDR) of 10%.  Since each CGI is overlapped by a different set of reads, we 

expect that each Fisher’s exact test performed is independent of the others, thus satisfying the 

assumptions required for conservative control of the FDR (Storey and Tibshirani 2003).  

Allele-specific CRISPR targets 

To identify allele-specific CRISPR targets, we started by extracting variants that satisfy the 

following properties from Dataset S2 (phased variants): 

1. They passed quality control (VCF field ‘Filter’ is equal to “PASS”) 
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2. They are phased (VCF field ‘GT’ uses “|” as separator rather than “/”) 

3. The alleles are heterozygous (e.g. “0|1” or “1|0”, but not “1|1”) 

4. The difference between the alleles is > 1 bp (This is required to ensure target specificity.  

If there were target sites with two or more SNVs difference between the alleles, then 

these target sites were included.) 

For the 272,027 variants that satisfy these four properties, we extracted the two haplotype 

sequences (maximum length: 572). We only worked with the sequences that were present in 

the phased genotype.  Extracted sequences were tagged them according to their haplotype, for 

instance:  

• If the sequence in the ‘Ref’ field was “GTA”, the ‘Alt’ field sequence was “TA”, and 

phasing was “0|1” i.e. Haplotype_1|Haplotype_2”, the sequence containing “GTA” was 

tagged “1” for Haplotype 1 and the sequence containing “TA” was tagged “2” for 

Haplotype 2. 

• If the ‘Ref’ field was sequence “GTA”, the ‘Alt’ field was “TA,GCTA”, phasing was “1|2”, 

the sequence containing “TA” is tagged “1”, the sequence containing “GCTA” was 

tagged “2” (and the sequence containing “GTA” was not used) 

A regular expression was used to extract all potential CRISPR targets from these sequences 

(i.e. all sequences that matched a [G, C, or A]N20GG pattern and those for which the reverse-

complement matched this pattern). This yielded 532,013 candidates, which were then filtered to 

retain only high-quality targets. The process is adapted from a selection method previously 

described and validated (Sunagawa et al. 2016) and has already been used for more than 20 

genes (Tatsuki et al. 2016). A high-quality candidate gRNA needs to target a unique site. All the 

candidates that have multiple exact matches in hg19 (irrespective of location) were identified 

using Bowtie2 (Langmead and Salzberg 2012) and removed. We also removed targets with 

extreme GC content (>80% or <20%), and targets that contain TTTT, which tends to break the 

gRNA’s secondary structure. We also used the Vienna RNA-fold package (Lorenz et al. 2011) 
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to compute the gRNA’s secondary structure. We eliminated all candidates for which the stem 

loop structure cannot fold correctly for Cas9 recognition (Nishimasu et al. 2014), except if the 

folding energy was above -18 (indicating that the “incorrectly-folded” structure is very unstable). 

Finally, we evaluated the off-target risk score using our own implementation of the Zhang tool 

(Ran et al. 2013). To ensure that all targets are as reliable and specific as possible, we used a 

very strict threshold and rejected candidates with an off-target risk score <75. Candidates that 

satisfy all these requirements are considered high quality.  For each candidate, we report the 

location of the variant (chromosome and position), the haplotype ( “1” or “2” from the “Phased 

Genotype“ column i.e. “Haplotype_1 | Haplotype_2”), the gRNA target sequence, its position 

relative to the start of the variant, its orientation, its off-target score, and the genomic element 

targeted (gene or enhancer). Note that the position relative to the start of the variant is for the 5'-

most end of the target respective to the genome: if the target is 5'-3', it is its 5' end; if a target 

was extracted on the reverse complement, it is its 3' end. List of protein-coding and RNA genes 

and enhancers were obtained from GENCODE (“comprehensive gene annotation”, 

https://www.gencodegenes.org/releases/19.html) and VISTA Enhancer Browser 

(https://enhancer.lbl.gov) (Visel et al. 2007). 

SV identification from deep-coverage short-insert WGS  

 SVs from deep-coverage short-insert WGS were identified using BreakDancer (version 

1.4.5) (Chen et al. 2009), Pindel (version 0.2.4t) (Ye et al. 2009), BreakSeq (version 2.0) (Lam 

et al. 2010), and ARC-SV (Arthur et al, 2017) with default settings to obtain pre-filtered calls. All 

SV calls were required to be >50bp. We filtered out BreakDancer calls with <2 supporting 

paired-end reads and confidence scores <90. Pindel calls were filtered for quality scores >400. 

No further filtering was performed for BreakSeq calls.  For ARC-SV calls, SVs with breakpoints 

in simple repeats, low complexity regions and satellite repeats (repeatmasker.org) as well as 

segmental duplications (hg19) downloaded from the UCSC Genome Browser (Kent et al. 2002; 

Karolchik et al. 2004) were filtered out. Insertion calls and complex SV calls containing 
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insertions were also filtered out as these calls are not reliable. The BP_UNCERTAINTY filter 

was added due to current technical limitations of the software package and masks just a few 

putative tandem duplications (Arthur et al. 2017). Specialized filtering was performed on tandem 

duplications and complex SVs. For tandem duplications, we required either 95% of reads 

overlapping the duplicated sequence to have mapq ≥20 or -or- ≥2 supporting split-reads (SR tag 

in VCF INFO column). For complex SVs, we required that each breakpoint is supported by a 

split-read or has >95% of overlapping reads with mapq ≥20. When part of a complex SV fails 

one of these filters, nearby breakpoints that were part of the same ARC-SV call i.e. those that 

were genotyped simultaneously with the complex SV (EVENT filter) were also removed.  

Mate-pair library construction and sequencing 

K562 mate-pair library (3 kb insert) was constructed using 2.5 µg of high molecular 

weight genomic DNA (mean >30 kb) as input for the Nextera Mate Pair Library Prep Kit (FC-

132-1001) from Illumina (San Diego, CA, USA) following the manufacturer’s protocol with 10 

cycles of PCR. Insert-size selection (2.7 kb to 3.3 kb) was carried out on the BluePippin 

instrument from Sage Science (Beverly, MA, USA) using the S1 selection marker. Sequencing 

(2x151 bp) was performed twice on the Illumina NextSeq 500 using the NextSeq Mid-Output Kit 

(Illumina catalogue # FC-404-2003). Data from the two sequencing runs were combined for 

analysis. Illumina external read adapters and the reverse complement sequence of the Nextera 

circularized single junction adapter sequence (AGATGTGTATAAGAGACAG) were trimmed 

from the 3’ end of reads followed by another trimming of the Nextera circularized single junction 

adapter (CTGTCTCTTATACACATCT) using the FASTQ Toolkit (version 1.0) application on 

Illumina Basespace (basespace.illumina.com). Trimmed reads were aligned to hg19 using 

BWA-MEM (version 0.7.12-r1039) with the “-M” option (Li and Durbin 2009). Duplicates were 

marked and removed using Samtools (version 1.2) (Li et al. 2009) followed by Picard tools 

version 1.52 (http://broadinstitute.github.io/picard/). Indels were then locally realigned against 

the Mills & 1000 Genomes Gold Standard Indels (Mills et al. 2011; The 1000 Genomes Project 
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Consortium et al. 2012) and base scores were recalibrated using GATK following the standard 

Best Practices workflow (Van der Auwera et al. 2013; DePristo et al. 2011).  

SV calling from mate-pair sequencing 

SV calls were made using LUMPY (version 0.2.11) (Layer et al. 2014). Split-reads and 

discordantly-mapped reads were first extracted and sorted from the processed alignment file as 

described in github.com/arq5x/lumpy-sv (Layer et al. 2014). The lumpyexpress command was 

issued to obtain pre-filtered SV calls. Segmental duplications and reference gaps (hg19) 

downloaded from the UCSC Genome Browser (Kent et al. 2002; Karolchik et al. 2004) were 

excluded from the analysis through the “-x” option. SV calls <50 bp were filtered out. To select 

for high-confidence calls, only SVs that have ≥5 supporting reads as well as both discordant and 

split-read support were retained.  

Non-Reference Retrotransposon Insertions (REI) 

We adapted the RetroSeq package (Keane et al. 2013) to call non-reference LINE1 and 

Alu insertions. The calling depends on (a) split-reads where part of the read maps to uniquely 

hg19 sequence not normally adjacent to a retrotransposon sequence and the remainder maps 

to a catalogue of active LINE1 and Alu consensus sequences from Repbase (Bao et al. 2015) 

and/or (b) paired-end reads where one read maps to unique sequence and the paired read 

maps to LINE1 or Alu consensus sequences and not to unique hg19 sequence. The mapping 

quality was required to be >85% identity as set in RetroSeq (Keane et al. 2013). We also 

required ≥6 supporting reads (split or paired-end) in order to filter out low-confidence calls. The 

boundaries for the transposon insertions (Supplementary Table S9) are conservative estimates 

for the insertion junctions. The “left boundary” is the left-most coordinate of the upstream 

supporting reads, or 1 kb upstream to the downstream supporting reads if “left boundary” is <1 

kb away from the “right boundary”. The “right boundary” is the right-most coordinate of the 

downstream supporting reads or 1 kb downstream to the upstream supporting reads if the “right 

boundary” is <1 kb away from the “left boundary”. 
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K562 POLR2A ChIP-seq and RNA-seq analysis 

Four replicates of K562 poly(A) mRNA RNA-seq transcript quantification data (ENCFF381QQP 

& ENCFF705JDM from experiment ENCSR000AEM; ENCFF928EIW from experiment 

ENCSR000AEO; ENCFF225LEY from experiment ENCSR545DKY) and K562 POLR2A ChIP-

seq alignments (ENCFF000YWP & ENCFF000YWR) were downloaded from the ENCODE 

portal (Sloan et al. 2016). Values were binned in 1 Mbp windows. K562 POLR2A ChIP-Seq 

signals from the two replicates were summed for Pearson correlation analysis.  
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