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Supplemental Methods 

The definition of Robust Rank 

Di =  

 

 

 

sk(A) denotes the ith largest singular value of A. Define the minimal r as the robust 

rank of A that satisfies the constraint:      

(s1(A)2 + s2(A)2,……,  + sr(A)2)/(s1(A)2 + s2(A)2,……, + sr (A)2+……+ sn(A)2) > q    (1) 

q is the tolerant threshold was defined by the user, which is always greater than zero. 

 

Selection of the threshold 

An F-distribution for the collection of D(i, j)|j  for component j can be obtained.  

 The mean of a collection of D(i, j)|j	 is 	m = 𝟏
𝑵
∑ D(i, j)𝑵
𝒊/𝟏 |j.   (2) 

The square of a collection of D(i, j)|j	 is s1 = 𝟏
𝑵2𝟏

∑ (D(i, j) − m)1𝑵
𝒊/𝟏 |j.  (3) 

Then the F-test with degrees of freedom 1, and degrees of freedom N-1 (N is the 

number of attributes) is:  

		F(5,625)(x) =
(829):

;:
		                                           (4) 

Extreme upper tail probability is computed for an element in a collection of D(i, j)|j. 

         Attribute i 

Sample 1     0.23 

Sample 2     0.67 

Sample 3     0.78 

  …… 
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P=x > D(i, j)? < CUTOFF. The CUTOFF of P-value is user defined.  

We divided the collection of D(i, j)|j	into two groups for each component, and for one 

group, the P-value is always less than user defined cutoff. 

In summary, the final optimal threshold is obtained by iteratively splitting, in each 

iterative splitting, the threshold was determined and the upper tail probability for this 

threshold was calculated. If this p-value is small enough (less than a cutoff) then end 

this iteration. This divide strategy is not strictly sensitive to the defined P-value cutoff. 

So that a small P-value cutoff variable won’t change the result too much. In gene 

decomposition, we treated the negative and positive elements of D(i, j)|j  separately. For 

each component, we can obtain two thresholds in this way. The detail of divide strategy 

was provided in a pseudocode way as below: 

1.  For each component j (positive part and negative part) :  

2.  Sort the atrributes according the atrribute scores in this component j ( {	D(i, j)}|j).  

3. For each attribute i, the attributes group was split into two part. In one part the  

attribute score is always below D(i,j), while it is opposite for another group. 

4.  The ratio of variance between groups and population variance was caculated.  

    5.  The attribute which has the highest ratio was chosen as a threshold. The  

         collection of attribute was splited by this threshold with order of atrribute scores for  

         component j. If P-value of all elements is less than user-defined cutoff, this  

         iteration will be terminated and only the attributes which belong to this group are  

         kept and move to step 2 for the next iteration.  
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Closed association rules enumeration 

We used a node to represent a component. Each attribute is represented by a unique 

attribute ID, and an attribute ID list is assigned to each node. We constructed a prefix 

tree using this kind of nodes. In this prefix tree, the path from a node to the root node 

represents a component collection. And the attribute ID list of this node is the 

intersection of attribute ID lists for all nodes in this path. We constructed an attribute ID 

list library to store the attribute ID list of the nodes that have been searched.  

The rules of how to traveling the prefix tree are defined as below: 

The node IDs in the prefix tree are ordered. The father node ID must be greater than 

children node ID, and for children nodes from same father node, the left children nodes 

must be greater than right children nodes. More strictly this node ID is one larger than 

its left sibling node ID. If a node has no left sibling node, then it must be larger than the 

father node. And the root node is the largest node ID. Any combination of node IDs can 

be obtained by traveling this prefix tree in this way. The combination of node IDs is 

represented by the ID path from a node to the root node. 

Proposition 1 

In depth-first traveling this prefix tree, if combination A of node IDs is a part of 

combination B of node IDs, then combination B must be traveled firstly. 
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Proof  

     Case 1: 

The path of node IDs combination A is < p1, p2, …, pk >. The path of node IDs 

combination B is < b1, …, bk, p1, …, bm, …, pk…, bn >. As the node ID b1 is greater than 

node ID p1, the prefix < b1 is firstly traveled before the prefix < p1.  

Case 2: 

The path of node IDs combination A is < p1, p2, …, pm, pn, …, pk >. The path of node IDs 

combination B is < p1, p2, …, pm, bn, …, pn, …, bn >. < p1, p2, …, pm> is the maximum 

common prefix string of two node ID combinations. Because the node ID bn is greater 

than node ID pn, the prefix < p1, p2, …, pm >, bn is traveled before the prefix < p1, p2, …, 

pm, pn >.  

Proposition 2 

In a depth-first traveling prefix tree, if a node's the attribute ID list is not the same as any 

children nodes, this node is closed (maximum node IDs with this attribute ID list).  

 Proof    

 According to Proposition 1, if this node is not maximum node IDs with this attribute ID 

list, there is at least a children node’s attribute-ID list is the same as this node.   

Proposition 3 

If there are two node IDs combinations A and B. One is a part of another (A>B) and they 

have the same attribute-ID list. For any offspring node ai of node A, there is an offspring 
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node, bj, of node B, satisfying that bj is a part of ai, and they have the same attribute-ID 

list. 

Proof  

If < ib1, ib2, …, ibn> is the node ID path sequence for node B, then any offspring node of 

node B can be indicated by < ib1, ib2, …, ibn, pbn+1, pbn+2, …, pbm >. If < ia1, ia2, …, ian> is 

the node ID path sequence for node A, we will add the postfix ID sequence of bj to ID 

sequence of node A to construct an offspring node ai of node A. the ID sequence of ai is 

< ia1, ia2, …, ian , pbn+1, pbn+2,   …, pbm >. Because the node ID path sequence of B is a 

part of the node ID path sequence of A, and they have the same attribute-ID list and ai 

and bj have the same postfix ID sequence so bj is a part of ai and they have the same 

attribute-ID list. 

The procedure for enumerating all closed association rules (attribute collection and 

component collection) were described as below:  

1. For each node n in a prefix tree with the depth-first searching: 

 If the length of attribute-list for node n is less than a support threshold, then remove 

this node and its offspring nodes. 

If the attribute-list of this node n would be found in the attribute-list library, then 

remove this node and its offspring nodes (According to Proposition 3).  

2. Check the length of attribute-list for all children nodes of this node n:  
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If there are not any children node’s attribute-list has the same length with parent node n, 

then report the node ID path of node n and the attribute list of this node, the attribute-list 

of this node is recorded in the attribute-list library as well (According to Proposition 2 ). 

 
Average correlation and the average component ratio 

The 2-norm of attribute X can be expanded by a series of orthogonal normalize 

components. 

AI= 𝑤5IP1 + 𝑤1IP2 + … 𝑤KIPr …        (5) 

|| Ai ||2= L𝑤5I1  + 𝑤1I1 +…𝑤KI1 … 	
:         (6) 

The truncated 2-norm was defined as 2-norm calculated with specific components.  

   Such as || Ai ||2= L𝑤NI1  + 𝑤OI1 + 𝑤QI1	
:  denote as || Ai ||2 | n,m,l   (7) 

It means that 2-norm calculated only consider components: Pn, Pm , Pl . In the same way, 

the truncated correlation was defined as correlation calculated with specific 

components. 

  Such as cor=AU, AV? =
WXYWXZ	[W\YW\Z	[W]YW]Z	

^WXZ
:  + W\Z

: [W]Z
: 	: 	 ^WXY

:  + W\Y
: [W]Y

: 	:
		denote as cor=AU, AV?|n,m, l  (8) 

It means that the correlation between AU, AV calculated only consider components: Pn, Pm , 

Pl . For a closed associate rule we calculated the average correlation among the 

attribute collection only considering components in the component collection.   

For a closed associate rule {XYZ} {M N} 

Average correlation = ( 5
N(N25)

) ∑ Cor(AU, AV)	I,a∈{c,d,e},Ifa | M,N      (9) 
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The average correlation for each closed associate rule was calculated as criteria for 

associate rule screening. In practice, we chose 0.99~0.98 as average correlation 

threshold. Only closed associate rules with high average correlation were kept. 

The closed associate rule with high average correlation indicated a kind of attribute 

(gene) pattern, but it is still not sure whether this pattern is useful in practice. We 

thereby introduced the second measure to quantify how important of this pattern playing 

in whole components. 

The selected components contain the components in the component collection in this 

closed associate rule and the additional components which don’t have significant value 

in binary distribution matrix. As depicted in S7 Fig. For each attribute, we calculated the 

ratio of 2-normal of this attribute with selected components and 2-normal of this attribute 

with whole components. Denote as Component Ratio.  

Component Ratio of Ai = ||	A𝑖	||2|	selecteted	components	
	||	A𝑖	||2

       (10) 

Average Component Ratio = 5
m
∑ 	Component	Ratio of	AI   

(AU ∈ attribute	collection	of	a	closed	associate	rule)                  (11) 
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Supplemental Figures 

 

S1 Fig. Distribution of feature selection between malignant cells versus control cells 

from scRNA-seq data of individual melanoma patients. (A) Distribution of ratio of 

variances between malignant cells and control cells for selected features from scRNA-

seq data of melanoma patients [1]. (B) Distribution of ratio of means between malignant 

cells and control cells for all features. 

A

B

Variance

Features

Mean

Features
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S2 Fig. Survival analysis for top 12 selected COAC-inferred gene co-expression 
subnetworks from scRNA-seq data in Melanoma patients. The top selected 

subnetwork for each survival analysis was highlighted in each subfigure. The bulk RNA-seq 

data and clinical profiles for each melanoma patients were collected from TCGA website [2]. 

Survival analysis was conducted for these two groups using the R survival package [3]. 
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S3 Fig. A diagram illustrating the process of gene co-expression subnetwork 
identification by COAC. (A) Each co-expression sub-network can be treated as a 

superposition of two different gene expression state. (B) The gene co-expression 

relationship can be represented by different subnetworks. 

  

A

B

Gk

Gt …

Gk

Gt …
w1 w2+=

Gk

Gt … ››

Gk

Gt

Gk

Gt… …

Subnetwork i Subnetwork j
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S4 Fig. A diagram illustrating matrix factorization method for gene co-expression 
subnetwork identification. (A and B) The projection of each attribute distribution over 

each principal component distribution. (C) A binary matrix composed of 1 or 0 after rule 

mapping. (D and E) Associate rules were obtained from the sub-tables of binary matrix 

whose all elements are no-zero. For the domain of “-1”, we translated “–1” to “1” by 

increasing an additional column. 

  

Attrib-1 Attrib-2 Attrib-n …

P1 1 1

1

2 1

2

… 1 …

P2 1 2

1

2 2

2

… 2

n

…

… … … … … …

Pj 1 n

1

2 n

2

… j

n

…

… … … … … …

Attrib-1 Attrib-2 Attrib-n …

… … … … … …

Pj 1 0 … -1 …

… … … … … …

Attrib-1(P) Attrib-2(P) Attrib-n(P) … Attrib-1(N) Attrib-2(N) … Attrib-n(N)

… … … … … … … … … … …

Pj 1 0 … 0 … 0 0 1 …

… … … … … … … … … … …

X Y Z

… … … … …
M … 1 1 1 …
N … 1 1 1 …

… … … … …

Associate rule {X Y Z} {M N}

A

B

C

D E

The projection of each attribute (gene) in each component.

The original sparse matrix after rule mapping.

-1 is replaced by1 via increasing additional column.

j

n
The attribute n distribution projected in j component.
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S5 Fig. A diagram illustrating of the pipeline of cell type identification by COAC. 
(A) A diagram shows the pipeline from single gene to gene co-expression network 
features and the final features will be obtained from gene co-expression subnetworks in 
a supervised way. (B) A pipeline illustrating for cell type identification. 

…
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Original Features
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…
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Condition B
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……
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Single cell gene
expression matrixes
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Condition A

……
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Cell Type 3
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Differential expression analysis between different
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S6 Fig. Distribution of the ratio (F-score) of the differential variance and 
background variance. 

  



15 

 

 

 

S7 Fig. A diagram illustrating the processes of binary distribution matrix analysis 
and principle components contribution analysis. The selected components 

containing all components whose distribution is similar with the components in the 

component collection of this closed associate rule. 
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