Binary distribution matrix

Attribute Name	RMND1	ANKRD54	MC2R
Component ID			
2015	1	1	1
641	1	1	1
281	Х	Х	Х
609	Х	Х	Х
899	Х	Х	Х
1414	Х	Х	Х

Principle components contribution in each attributes

Attribute Name 2R RMND1 ANKRD54 MC2R Component ID 2015 -4.012 -4.903 -1.069 641 3.949 4.436 0.872 Х 281 1.093 1.369 0.273 Х 609 1.261 1.342 0.286 Х 899 -1.577 -1.688 -0.396

-1.115

-0.269

. . .

The original components in this closed associate rule which have significant value in binary distribution matrix.

The components which have similar pattern with original components.

X means it is 1/0, not always 1

S7 Fig. A diagram illustrating the processes of binary distribution matrix analysis and principle components contribution analysis. The selected components containing all components whose distribution is similar with the components in the component collection of this closed associate rule.

-1.238

...

1414

References

1. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016; 352(6282):189-96.

2. Bewick V, Cheek L, Ball J. Statistics review 12: survival analysis. Crit. Care. 2004; 8(5):389.

Therneau T, Lumley T. Survival: Survival analysis, including penalised likelihood.
R package version 2.35-7. R foundation for Statistical Computing 2011.