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Relation between phase shift and phase sensitivity 

Here we first derive the equation for phase shift Df Eq. (6) in the main text by the phase 
reduction method following (1). Then, we describe the adjoint method to numerically 

compute phase sensitivity Z. 

 

In general, dynamical system with state variables x modeling the circadian clock can be 

described as 

,          (S1) 

where F(x) specifies the time evolution of x. In our case, F(x) describes biochemical 

reactions in a negative feedback loop in the absence of light signals (i.e. constant dark 

condition). We assume that the dynamical system Eq. (S1) has a stable limit cycle xLC(t) 

in the state space. We then denote dynamics in the presence of perturbation p(t, x) as  

.         (S2) 

In the present study, p represents the perturbation in biochemical reactions induced by 

light signals.  

 

We define a phase j (0 £ j < 2p) based on the limit cycle of the unperturbed system Eq. 

(S1) such that j increases at a constant speed (1): 

,          (S3) 

where w = 2p/Tp and Tp is the period of oscillation. We also denote the limit cycle xLC(t) 

as a function of j, c(j) = xLC(j(t)). Subsequently, we assign the phase to the state space. 

If a trajectory x(t; x0) of Eq. (S1) which started at x0, converges to a point on the limit 

cycle xLC(j0/w+t) for t®¥, we assign the phase j0 to x0. With this definition, we may 

denote the phase of x(t) as j(x(t)). 

 

Then, in the presence of weak perturbation (|p| << 1), the time evolution of phase can be 

described in the first order approximation (1):  

,         (S4) 
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where Z!(φ) ≡∂φ$χ(φ)% ∂x⁄  and G(t, j) º p(t, c(j)).  

 

After integrating Eq. (S4), the phase difference Df measured in time between perturbed 

and unperturbed systems with gl(t) in Eq. (4) in the main text can be approximated as  

.       (S5) 

 

We obtain the phase sensitivity by numerically solving the 

following differential equation: 

,        (S6a) 

with the normalization condition: 

,         (S6b) 

where L(xLC(t)) is the Jacobian around the limit cycle xLC(t) of Eq. (S1), L(xLC(t)) = 

¶F/¶x|x=xLC(t), and T in Eq. (S6a) indicates transpose of a matrix. We used the Euler 
method to solve Eq. (S6). Note that Eq. (S6) should be solved backward to obtain Z, 

otherwise it diverges because –L has positive eigenvalues for a stable limit cycle. 

 

Dependence of the dead zone length and amplitude of phase sensitivity on reaction 

parameters in the degradation response 

Here, we describe the dependence of the dead zone length Ld and amplitude of phase 

sensitivity Zz on each reaction parameter in Eqs. (1-3) for the degradation response (S4 

Fig.). In general, the dead zone length Ld depends on a reaction parameter 

nonmonotonically. There is a peak value of Ld in the oscillatory parameter range between 

the upper and lower Hopf bifurcation points. The peak of Ld is located near the lower 

Hopf bifurcation point for the translation rate g1 and nuclear transport rate g2 (S4A, B 
Fig.), suggesting that smaller values of these parameters extend the dead zone length. In 

contrast, for the maximum degradation rate g3, the peak of Ld is located near the upper 

Hopf bifurcation point (S4C Fig.). This result suggests that the faster degradation of 

nuclear protein favors a longer dead zone. For the threshold for transcriptional repression 

K1, Ld peaks near the lower Hopf bifurcation point (S4D Fig.). The condition for the dead 

Δφ ≈
εTp
2π

!Z ϕ t '( )( ) ⋅G t ',ϕ t '( )( )dt 'tl

tl+Td∫

Z(t) ≡ (Tp / 2π ) !Z(ϕ(t))

dZ(t)
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= −L xLC (t)( )
T
Z(t)

Z(t) ⋅F xLC (t)( ) =1
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zone zmin/K1 << 1 is more likely to be satisfied for a larger value of K1. However, zmin also 

increases for the larger K1 (S4D Fig.) and it takes more time for z(t) to return to its original 

value after light-induced degradation. This slow recovery of z(t) tends to cause prolonged 

transcription and results in phase delay. Thus, a smaller value of K1 is more favorable for 

a longer dead zone.  

 

The amplitude of phase sensitivity –Zz becomes large near a Hopf bifurcation point (the 

fourth column of S4 Fig.). At the vicinity of a Hopf bifurcation point, the amplitudes of 

state variables x, y and z become smaller. It has been reported that the phase of circadian 

clocks with a smaller amplitude is more sensitive to perturbation, such as light and 

temperature pulses, than the clocks with a larger amplitude (2, 3). The observation that 

the magnitude of phase sensitivity is larger near a Hopf bifurcation point is thus consistent 

with these previous reports. 

 

The time interval where light signals cause phase advances (–Zz > 0) extends for larger 

values of translation rate g1 and/or smaller values of maximum degradation rate of nuclear 

protein g3 (S4A, C Fig.). This is because the decreasing phase of mRNA becomes longer 

due to higher levels of nuclear protein as g1 becomes larger and/or g3 becomes smaller. 

Light-induced degradation of nuclear protein at decreasing phase of mRNA relieves 

transcriptional repression earlier, resulting in phase advance. 

 
Dead zone formation for the degradation response in other oscillator models 

To show the generality of the proposed mechanism for dead zone formation for the 

degradation response, here we analyze another Drosophila circadian clock model and a 

synthetic oscillator model. 

 

As an alternative model for the Drosophila clock, we use the one proposed by Ueda et al. 

2001 (4). The model includes interlocked feedback loops of PER/TIM and 

CLOCK/CYCLE (Fig. 2 in (4)). The PER/TIM complex represses their transcription, 

whereas activates the transcription of Clock. The CLOCK/CYCLE complex induces the 

transcription of Per and Tim, whereas represses their own transcription. We introduce a 

light-induced degradation of cytoplasmic TIM protein, Timc: 
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dTimc

dt 	=	S4Timm	–	V1PercTimc	+	V2PTc	–	 (D4	+	γl(t))
Timc

L4	+	Timc
	–	D0Timc	, 															(S7) 

where Timm is the levels of Tim mRNA, Perc is the levels of cytoplasmic PER protein, 

and PTc is the levels of the cytoplasmic PER/TIM complex. The first term represents the 

translation of TIM. The second term represents the PER/TIM complex formation, 

whereas the third term is for dissociation of the complex. The fourth term represents the 

nonlinear degradation of TIM protein and the fifth term is its linear degradation. gl(t) 
represents the light induced degradation as defined by Eq. (4) in the main text. Dynamics 

of the other variables are described as in Ueda et al. 2001 (4). Also, we use the same 

parameter values as in Ueda et al. 2001. 

 

We confirm that the saturation of TIM degradation lengthens the dead zone by decreasing 

the values of L4 in Eq. (S7) (S5A, B Fig.). The minimum value of Timc decreases as L4 

becomes smaller (S5A Fig.). To observe how light-induced degradation changes the 

transcription of Tim, we compute the transcription rate determined by PER/TIM, 

1/(1+(PTn/R2)r) where PTn is the levels of nuclear PER/TIM, R2 and r are the threshold 

and Hill coefficient for repression, respectively, as in Ueda et al. 2001. A dead zone is 

generated when the transcription rate is saturated and a light signal does not further 

increase it (S5C, D Fig.). Thus, the results derived with the simpler model Eqs. (1-3) in 

the main text hold for the more complex model of the Drosophila clock. 

 

Next, we consider a repressilator model. Although the repressilator was originally 

proposed as a synthetic oscillator in bacteria (5), the relevance of its regulatory structure 

to the circadian clock was recently proposed (6). We consider three transcriptional 

regulators X, Y, and Z. X represses Y, Y represses Z and Z represses X. We denote mRNA 

levels of X and protein levels of X, Y, and Z as mx, x, y, and z, respectively. We describe 

the time evolution of these variables as: 

1
τ

dmx(t)
dt  = 

1
1 + (z(t) K1⁄ )n  – mx(t),                                                                           (S8a) 

1
τ

dx(t)
dt 	=	γ1mx(t)	–	γ2x(t), 																																																																																																						(S8b) 

1
τ

dy(t)
dt 	=	γ3

1
1	+	(x(t) K2⁄ )n 	–	γ4y(t), 																																																																																				(S8c) 
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1
τ

dz(t)
dt 	=	γ5

1
1	+	(y(t) K3⁄ )n 	–	 (γ6+	γl(t))

z(t)
K4	+	z(t)

,																																																								 (S8d) 

Note that we consider the mRNA of x because we use the same model for the induction 

response later (see the section "Dead zone formation for the induction response in other 

oscillator models"). For simplicity, we assume linear degradation of x and y, whereas a 

saturated degradation of z. gl in Eq. (S8d) represents the degradation of z induced by 

external signals as in the degradation response for the circadian clock. gl is defined by Eq. 

(4) in the main text. We set parameter values as follows: g1 = 0.013, g2 = 0.059, g3 = 39.49, 

g4 = 3.88, g5 = 29.16, g6 = 0.282, K1 = 0.08, K2 = 0.05, K3 = 0.034, K4 = 0.017, n = 4 and 

t = 0.354. 
 

The model Eq. (S8) generates a stable limit cycle (S5E Fig.) and a dead zone in a PRC 

when the levels of z are lower (S5F Fig.). When the dead zone is formed, the transcription 

rate of x, 1/(1+(z/K1)n) is saturated (S5G Fig.). In contrast, when a change in the 

transcription rate occurs, a phase shift is induced (S5H Fig.). Thus, the same conclusion 

holds for the repressilator model. 

 

Random parameter generation 

To check whether a model can create a dead zone in a PRC, we generate parameter sets 

randomly from uniform distributions and compute phase sensitivity Z for limit cycles of 

those parameter sets. Values of each parameter are chosen randomly from a uniform 

distribution between 10–2 and 102. We use a logarithmic scale for choosing values from 

the uniform distribution. We generate 106 parameter sets and examine the linear stability 

of the steady state. If the Jacobian with a parameter set has complex eigenvalues with a 

positive real part, we consider that the parameter set can generate a limit cycle. We count 

the number of such oscillatory parameter sets and compute the fraction over the total 106 

parameter sets. The fraction should represent how likely a system generates oscillations. 

 

We then randomly select 2000 parameter sets with which the model generates a stable 

limit cycle. We numerically calculate phase sensitivity Z(t) of those 2000 limit cycles and 

check the length of a spanned time window within which |Zi(t)| < q as defined in Eq. (7) 
in the main text. A phase sensitivity may have several time windows that satisfy this 

criterion. In such cases, we choose the longest one for statistical analysis shown in S14Fig. 
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Saturation of transport of repressor protein from the cytoplasm to the nucleus 
We examine whether a saturation of repressor protein transport from the cytoplasm to the 

nucleus can create a dead zone in a PRC of the induction response. We introduce a 

saturation term of nuclear transport into Eqs. (9) and (10) in the main text as 

,       (S9a) 

.       (S9b) 

kt much smaller than the peak value of y(t) can saturate the transport in Eq. (S9) (S7A 
Fig.). The dynamics of mRNA x is described by Eq. (8) in the main text. 

 

The PRC and phase sensitivity of Eqs. (8, S9) shown in S7B, C Fig. do not include an 

extended dead zone. Figure S7D shows the time series of x, y and z in Eqs. (8, S9) with a 

light pulse at tl/Tp = 0.15. The increase in mRNA x by the light pulse elevates the levels 

of cytoplasmic protein y. As expected, the levels of nuclear protein z do not increase 

immediately after the light pulse due to the saturation of transport. However, the 

accumulated cytoplasmic protein eventually enters the nucleus, causing a higher peak 

value of z. The excess amount of nuclear protein thus results in a phase delay.  

 

To further confirm that the saturation of transport cannot create a dead zone, we examine 

the phase sensitivity of limit cycles of the model Eqs. (8, S9) for randomly generated 

parameter sets (section "Random parameter generation"). Linear stability analysis around 

the steady state indicates that 4732 out of 106 randomly generated parameter sets (0.47%) 

can generate limit cycles. This number is ~3-fold lower than that of the non-saturation 

model Eqs. (8-10) (1.5%) and almost half as that for the translation saturation model Eqs. 

(8, 10, 11) (0.88%), indicating that saturation of transport reduces parameter domains for 

oscillations more severely. Moreover, although we numerically compute phase sensitivity 

Zx using 2000 parameter sets, their dead zone lengths Ld are less than 1/24. Thus, the 

saturation of transport is less likely to produce a dead zone. These results also confirm 

that the saturation of biochemical reactions that is unaccompanied by cancelation of the 
effect of light signals cannot create a dead zone in the PRC. It is not saturation itself but 
the unaltered time series of nuclear protein that causes a dead zone. 

1
τ

dy t( )
dt

= γ1x t( )−γ2
y t( )

κ t + y t( )

1
τ

dz t( )
dt

= γ2
y t( )

κ t + y t( )
−γ3

z t( )
Km + z t( )
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Dead zone generated by the saturation of repressor mRNA degradation 
To test whether the saturation of repressor mRNA degradation can create a dead zone in 

daytime in the induction response, we consider the following dimensionless equation: 

,           (S10a) 

,       (S10b) 

,       (S10c) 

where  gx is the maximum degradation rate and Kx is the Michaelis constant of mRNA 

degradation. The degradation rate of mRNA can be approximated as ~ gx/Kx when x/Kx 
<< 1. Thus, strong saturation (Kx << 1) increases the rate of mRNA degradation when the 
mRNA abundance is low. Note that because the unit of the degradation rate for the 

Michaelis-Menten function is different from the one in the liner degradation function, we 

apply nondimensionalization different from other equations (e.g., Eqs. (8-10) in the main 

text) to derive Eq. (S10). With the saturation of mRNA degradation, the wave form of 

mRNA x(t) becomes more pulse-like (S8A Fig.). 

 

In the presence of saturation of mRNA degradation, a dead zone appears when the levels 

of mRNA x are lower, x/Kx << 1 (S8B, C Fig.). mRNAs induced by a light signal within 

this time window are quickly degraded due to the sharp increase of the Michaelis-Menten 

function. Hence, light pulses neither affect the levels of nuclear protein (S8D, G Fig.) nor 

change the phase of oscillation. In contrast, light signals can cause phase shifts when the 

levels of mRNA are higher x/Kx >> 1 (S8B, C Fig.). In this regime, the transient increase 
of mRNA does not affect the speed of degradation due to saturation. A light signal at the 

increasing phase of mRNA causes phase advance, because it decreases the forthcoming 

peak of both mRNA and nuclear protein, relieving repression earlier (S8E Fig.). A light 

signal at the peak or decreasing phases of mRNA results in a phase delay (S8B, C Fig.), 

as it increases the peak value of nuclear protein, prolonging transcriptional repression 

(S8F Fig.). In summary, the saturation of repressor mRNA degradation creates a dead 

zone only when the levels of mRNA are lower.  

1
τ
dx(t)
dt

=
γ1

1+ z(t) K1( )
n
+γ l (t)−γ x

x(t)
Kx + x(t)

1
τ
dy(t)
dt

= γ1x(t)− y(t)

1
τ
dz(t)
dt

= y(t)−γ2
z(t)

Km + z(t)
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Dead zone formation for the induction response in other oscillator models 

To examine whether saturated translation creates a dead zone in other oscillator models, 

here we consider an interlocked feedback loop model for the mammalian circadian clock 

and the repressilator model Eq. (S8). 

 

We first consider the interlocked feedbacks observed in the mammalian circadian clock. 

The model includes regulations among Per, Bmal1 and Rev-erb (7, 8). Free BMAL1 

protein induces transcription of Per and Rev-erb through E-box in their promoter regions. 

Nuclear PER protein binds to free BMAL1. The BMAL1/PER complex becomes a 

repressor for Per and Rev-erb by excluding the binding of free BMAL1 protein to E-box. 

REV-ERB protein represses the transcription of Bmal1. We model the time evolution of 

mRNA xi, cytoplasmic protein yi and nuclear protein zi (i Î{p, b, r}). Subscript p indicates 
that these variables are for Per, subscript b for Bmal1 and r for Rev-erb. The time 

evolution of the mRNA and protein levels is described by the following differential 

equations: 

 

For Per:  
1
τ

dxp(t)
dt  = 

(zb(t) K1⁄ )np

1 + (zb(t) K1⁄ )np+$zb(t)zp(t) K2⁄ %np  + γl(t)	– xp(t),                                  (S11a) 

1
τ

dyp(t)

dt 	=	γ1
xp(t)

Kt	+	xp(t)
	–	γ2yp(t), 																																																																																							(S11b) 

1
τ

dzp(t)
dt  = γ2yp(t) – γ3

zp(t)
Kp	+	zp(t)

,                                                                             (S11c) 

for Bmal1: 

1
τ

dxb(t)
dt  = 

1
1 + (zr(t) K3⁄ )nb

	– xb(t),                                       																																				   (S11d) 

1
τ

dyb(t)
dt  = xb(t)	–	yb(t),                   						                                                                     (S11e) 

1
τ

dzb(t)
dt 	=	yb(t)	–	zb(t), 																																																																																																										(S11f) 

and for Rev-erb:  
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1
τ

dxr(t)
dt 	=	

(zb(t) K4⁄ )n*

1	+	(zb(t) K4⁄ )nr+$zb(t)zp(t) K5⁄ %nr 		–	xr(t), 																																																			(S11g) 

1
τ

dyr(t)
dt 	=	γ4xr(t)	–	γ5yr(t), 																																																																																																		(S11h) 

1
τ

dzr(t)
dt  = γ5yr(t) – γ6

zr(t)
Kr 	+	zr(t)

.                                                                               (S11i) 

gl in Eq. (S11a) represents the light-induced transcription of Per, defined by Eq. (4) in the 
main text. We introduce the saturation of PER protein translation as in Eq. (S11b). We 

simplify the dynamics of Bmal1 by assuming linear translation and degradation of nuclear 

protein. In addition, we set most parameters in equations for Bmal1 to unity for simplicity. 

We use the following parameter values in simulations:  g1 = 18.5, g2 = 0.031, g3 = 14.1, g4 

= 33.0, g5 = 2.2, g6 = 16.1, K1 = 0.579, K2 = 1.83, Kt = 0.015, Kp = 0.025, K3 = 9.82, K4 = 

0.709, K5 = 2.0, Kr = 0.782, np = 4.0, nb = 2, nr = 4 and t = 1.273.  
 

The model can generate a stable limit cycle (S12A Fig.). The levels of Per and Rev-erb 

RNAs peak at similar timing, whereas there is a significant phase difference at protein 

levels (S12A Fig.). Such phase relations were observed in experiment (9). We confirm 

that the interlocked feedback model can produce a dead zone when the levels of Per 

mRNA are higher (S12B Fig.). 

 

Next, we consider the repressilator model with the induction response. We modify Eqs. 

(S8a), (S8b) and (S8d) to include induction by external signals and the saturation of 

translation as: 

1
τ

dmx(t)
dt  = 

1
1 + (z(t) K1⁄ )n 	+	γl(t) – mx(t),                                                                (S8a') 

1
τ

dx(t)
dt  = γ1

mx(t)
Kt	+	mx(t)

	– γ2x(t),                                                                                (S8b') 

1
τ

dz(t)
dt 	=	γ5

1
1	+	(y(t) K3⁄ )n 	–	γ6

z(t)
K4	+	z(t)

.																																																																								 (S8d') 

The equation for protein levels of Y is given by Eq. (S8c). We use the following parameter 

values in simulations: g1 = 0.312, g2 = 0.028, g3 = 34.48, g4 = 2.779, g5 = 0.629, g6 = 0.035, 

K1 = 0.023, K2 = 5.455, K3 = 2.121, K4 = 0.005, Kt = 0.056, n = 4 and t = 0.92. 
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The model can generate a stable limit cycle with the above parameter set (S12C Fig.). 

With the saturation of translation, a dead zone is generated when the levels of mx are 

higher (S12D Fig.). 

 

Thus, the saturation of repressor translation can generate a dead zone even in more 

complex models.  

 

Parameter domains for oscillation with the saturation of repressor translation 
Previous studies revealed that nonlinear reaction terms in a negative feedback loop 

change parameter domains for generating oscillations (10, 11). Saturation of translation 

tends to make the system less likely to oscillate (10). Indeed, smaller Michaelis constant 

of translation saturation Kt in Eq. (11) in the main text may lead to dy/dt ≈  t(g1 – g2y), 
breaking the feedback loop. To study to what extent saturation of translation in Eq. (11) 

in the main text reduces the parameter domains for oscillations, we randomly generate 

106 parameter sets from uniform distributions and examine the fraction of oscillatory 

parameter sets for both the translation saturation and non-saturation models (section 

"Random parameter generation"). To determine whether a parameter set can generate a 
limit cycle, we perform linear stability analysis of Eqs. (8, 10) and (11) in the main text 

around the steady state. We find that the fraction of oscillatory parameter sets detected in 

this way is 0.88%. This value is almost half as that for the non-saturation model Eq. (8-

10) (1.5%). Thus, the saturation of repressor translation narrows the parameter domains 

for oscillations. 

 

Then, to clarify how the saturation reduces parameter domains for oscillation, we draw 

two-dimensional phase diagrams with the amplitude of mRNA x for Eqs. (8, 10) and (11) 

(S13Fig.). For better comparisons between smaller and larger values of Kt, we fix the ratio 

g1/Kt = c in S13 Fig. With this parameterization, translation rate for x/Kt << 1 is same 

among different Kt values, ~(g1/Kt)x = cx. For g2 and K1, the strong saturation of translation 
reduces parameter domains for oscillations by both increasing lower bounds and 

decreasing upper bounds (S13A, C Fig.). In contrast, for g3 and Km, smaller values of Kt 

mainly decrease the upper bounds of oscillatory domains (S13B, D Fig.), suggesting that 

slower degradation of nuclear protein and its stronger saturation are required for 

sustaining oscillation. Given that smaller values of Km also lengthen the dead zone (S11E 
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Fig.), the saturation of protein degradation is key to both sustaining oscillation and dead 

zone formation. 

 
Night-time dead zone generated by the Hill function in translation 

We notice that the Hill function in translation Eq. (12) in the main text can create a dead 

zone when the levels of mRNA x are lower (S14A Fig.). Such dead zone is more likely to 

be formed when the minimum levels of mRNA x is much lower than the threshold Kt in 

the Hill function of Eq. (12). A Hill function realizes a translational switch with a 

threshold Kt. If the levels of mRNA x are lower than Kt and light induction is weak, x does 

not surpass Kt and translation does not occur. Hence, when the levels of mRNA are low, 

the Hill function can cancel the influence of the mRNA induction by light signals (S14B, 

C Fig.). This result further indicates that the cancelation of the influence of mRNA 

induction by light signals generates a dead zone in the PRC.  

 
Subsequently, we study the dead zone formation with randomly generated parameter sets. 

For this, we fix the Hill coefficient h in Eq. (12) as h = 4. As before, we generate 106 
parameter sets randomly from uniform distributions and check the linear stability of the 

steady state (section "Random parameter generation"). This analysis finds that 36174 out 

of 106 (~3.6%) parameter sets are oscillatory. In contrast, the fraction of oscillatory 
parameter sets for the linear translation model Eq. (8-10) in the main text is ~1.5%. Thus, 

the Hill function in translation allows the system to be more oscillatory than the linear 

translation process Eq. (9). Furthermore, the dead zone length Ld distributes more broadly 

for h = 4 than h = 1 (S14D, E Fig.). Out of 2000 parameter sets used for numerical 

computation of the phase sensitivity Zx, 17.7% (354/2000) create dead zones of which 

length Ld is longer than 1/24. 30 parameter sets out of 354 generate dead zones when the 

levels of mRNA are higher than Kt as shown in Fig. 7A. Remaining 324 form dead zones 
when the levels of mRNA are lower than Kt as shown in S14A Fig. Our analysis on the 

Hill function indicates that the type of nonlinear functions in translation can determine at 

which phase of oscillation a dead zone is generated. 
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