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Supplemental Experimental Procedures

Materials

Neurobasal medium, B-27 supplement, GlutaMAX-I, Penicillin, Streptomycin and RPMI 1640
medium were purchased from GIBCO (Rockville, MD, USA). Trypsin, soybean trypsin inhibitor, sodium
pyruvate, L-glutamine, glutamate, DMSO, DNase, poly-D-lysine, iodoacetamide, formic acid, 2,5-
dihydrobenzoic acid, sodium cyanoborohydride, formaldehyde solution were purchased from Sigma (St
Louis, MO). Bond-Breaker TCEP solution from ThermoFisher Scientific, Titansphere (10um) from GL
Sciences, Oasis HLB 1cc cartridges from Waters, sequence grade trypsin from Promega and formaldehyde-
D2 were sourced from Cambridge Isotope Laboratories. Anti-Akt, phospho-Akt (S473), phospho-Akt
(T308), anti-p44/42 MAPK (Erk1/2), phospho-p44/42 MAPK (Erkl1/2), anti-GSK30f and phospho-
GSK3ap (Ser21/9), anti-CK2a, antibodies were sourced from Cell Signalling and used at 1:1000 dilution
unless otherwise mentioned.

Culture of primary mouse cortical neurons

All experiments involving animals were approved by the University of Melbourne Animal Ethics
Committee (Licence number: 161394.1) and were performed in accordance with the Prevention of Cruelty
to Animals Act 1986 under the guidelines of the National Health and Medical Research Council Code of
Practice for the Care and Use of Animals for Experimental Purposes in Australia. For preparation of primary
cortical neuronal cultures, embryos were collected from pregnant mice (gestational day 15-16) after they
were euthanized by CO; asphyxiation. The cortical region was aseptically micro-dissected out of the brains
of the embryos, free of meninges and dissociated in Hanks Balanced Salt Solution (HBSS) (9.5 g/l Hanks
Balanced Salt, 7.4 mM glucose, | mM sodium pyruvate, 10 mM HEPES, 0.35 g/L sodium bicarbonate, 1.2
mM MgSO4 and 3 mg/ml BSA). The suspended tissues were subjected to trypsin digestion (0.2 mg/ml
trypsin and 0.04 mg/ml DNase in HBSS) at 37°C for 5 min and trypsin was inactivated by the addition of
trypsin inhibitor (0.08 mg/ml). The suspension was centrifuged at 1000 x g for 5 min at room temperature.
The tissue pellet was then subjected to mechanical trituration in HBSS solution containing 0.04 mg/ml
DNase and 0.5 mg/ml trypsin inhibitor and then allowed to stand for 30 sec. The single-cell suspension was
then transferred to a new sterile 50 ml tube and centrifuged for 5 min at 1000 x g at room temperature. The
cell pellet was then re-suspended in warm (37°C) neurobasal medium supplemented with 2.5% B-27
supplement, 0.5 mM GlutaMAX-I, 100 IU/ml penicillin and 100 pg/ml streptomycin (NB/B27). Cells were
counted and then plated at a density of 6 x 10° cells per well in 24-well plates and at 1.5 x 10° cells per well
in 6-well plates pre-treated with 0.1 mg/ml Poly-D-lysine. All cultures were maintained at 37°C in a
humidified incubator supplemented with 5% CO,. After ~18-20 h, the medium was replaced with fresh
NB/B27 culture medium. The cultured neurons were incubated for seven days (DIV7) with 50% of the
medium replaced with fresh medium at DIV5. The DIV7 cultures were highly neuronal enriched and were
used for the experiments.

Western blotting

Western blotting was performed as described previously !. Briefly, proteins (~30 pg in each well)
in neuronal cell lysates were separated by 10 % SDS-PAGE gels using running buffer [25 mM Tris-HCI,
192 mM glycine, 10 % (w/v) SDS] for approximately 1.2 h at 150 V, and then transferred onto PVDF
membranes. The membranes were then blocked with 3% (w/v) non-fat dry milk in Tris buffered saline with
Tween-20 (TBST) (0.2 M Tris—HCI, pH 7.4, 1.5 M NacCl, and 0.1 % Tween-20). After blocking and
washing with TBST, the membranes were probed with the primary antibodies overnight. The membranes
were washed with TBST 3x before probing with horseradish peroxidase-conjugated goat anti-rabbit or goat
anti-mouse IgG secondary antibodies (1: 5,000) (Monash Antibody Technologies Facilities, Victoria,
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Australia) for 1 h at room temperature. Protein bands were visualized using chemiluminescence (ECL,
Amersham Biosciences) according to manufacturer’s instruction. Images were taken using Fuji film LAS-
3000. For Western blot with anti-Tau, phospho-Tau and anti-CK2 antibodies, neuronal lysates were
separated by SDS-PAGE on 12% gels and transferred to Immobilon-FL PVDF membranes (EMD
Millipore). Membranes were blocked in PBS + 0.1% Tween-20 (PBST) with 2% (w/v) non-fat dry milk in
PBST for 30 min at room temperature, washed and then incubated overnight with primary antibodies (1:
1000 dilutions in PBST). After washes with PBST, membranes were incubated with anti-rabbit or anti-
mouse IgG secondary antibodies, fluorescently-labelled with IR680 or IR800 dye, for 1 h. Immunoreactive
bands were visualised on an Odyssey® Infrared Imaging System with densitometry analyses determined
using Image Studio Lite software (LI-COR Biosciences).

Histology methods

Primary cortical neurons were seeded at a density of 80,000 cells per well into a 12 well dish and
grown on a poly-D-lysine treated 15 mm diameter glass coverslips. After 7 days in vitro culture, the cells
were treated with 0 (untreated) and 100 pM glutamate for 240 min. At completion of treatment, cells were
fixed in 4% paraformaldehyde (in PBS buffer) followed by cell permeabilization treatment (0.075% triton
X in blocking buffer) and blocking (10% goat serum in PBS buffer) at room temperature. Primary
antibodies were diluted in blocking buffer and incubated on cells overnight at 4°C then washed in PBS
buffer followed by incubation in secondary antibodies for 60 min at RT, washed in PBS buffer then mounted
on a glass slide with mounting media (prolong gold, Invitrogen). Slides were allowed to dry for at least 48
hr before imaging. Images were taken on a Zeiss axioscope epifluoresence microscope through either a
40x%/0.75 or 63%/0.95 EC Plan-neofluor air objectives using a combination of excitation/emission filter sets
for green (495nm/537nm), red (546nm/590nm) and DAPI (350/460nm), illuminated by a LED X-cite power
source. Images were taken using a coolsnap ES? Monochrome CCD camera from Photometrics and ZEN2
pro software from Zeiss. Fluorescence images (8 to 10 slices) were taken using the z-stack module then
processed using the modules for deconvolution and image projection into a single image using the ZEN pro
software v 2.3 and exported as a .tiff file. Bright field images were taken by illuminating the cells using a
Halogen 100W lamp. Antibodies used were: anti-MAP2 (mAb 1:500, Merck, Australia), anti-mAb-488
(1:500, Invitrogen, Australia), DAPI (Sigma, Australia), anti-GFAP (mAb 1:500, Cell Signalling
Technology, Australia), anti-Tau (Rb, 1:2000, Dako Australia), anti-Ibal (Rb, 1:500, Novachem,
Australia). The purity of the DIV 7 neuronal cultures were assessed by staining cultures for neurons,
microglia and astrocyte using specific marker antibodies. Over 90% of cells in the neuronal cultures were
found to be neurons (data not shown).

Monitoring the cleavage of specific neuronal proteins by calpains and caspase 3 activated by
treatments with glutamate, staurosporine (STS) and hydrogen peroxide (H20;)

Lysates of primary cortical neurons (DIV7) with and without treatment with glutamate (100 uM),
staurosporine (1 uM) or H202 (50 pM) for 240 min were analyzed by Western blotting. Lysates were
run on 12% and 8% SDS_PAGE gels for caspase 3 and a-fodrin blots, respectively. The primary
antibodies used were a-fodrin (1:1000, Cell Signalling #2122), caspase 3 (1:1000, Cell
Signalling #9662) and a-tubulin (1:1000).



Supplemental Results

Neurons treated with glutamate for 240 min exhibited biochemical features of regulated necrosis but
not apoptosis

Apoptosis and regulated necrosis are two major cell death mechanisms directing neuronal death
(reviewed in ?). One of the key events in apoptosis is activation of procaspase 3 by its upstream pro-
apoptotic proteases such as caspase 9, which catalyze proteolytic processing of procaspase 3 (~32 kDa) to
form the active caspase 3 consisting of the p17 and p12 subunits (reviewed in *). Thus, formation of the
active caspase 3 is a biomarker of apoptosis. Regulated necrosis of neurons, however, is governed by over-
activation of the calcium-dependent proteases calpains, which directly cleave many neuronal proteins to
cause cell death.? Among them, a-fodrin and procaspase 3 are direct substrates of calpains.* Upon cleavage
by calpains, a-fodrin forms two major proteolytic fragments of 145 kDa and 150 kDa while procaspase 3
forms a truncated fragment of 30 kDa.>’ Furthermore, calpain cleavage of procaspase 3 and procaspase 9
was found to prevent their activation by proteolytic processing to form the active caspase 3 and caspase 9.4
Hence, both 145/150 kDa a-fodrin proteolytic fragments and 30 kDa truncated procaspase 3 fragment are
biomarkers of necrosis.

To define the type of neuronal death triggered by glutamate over-stimulation, we monitored the
activation states of procaspase 3 and a-fodrin in neurons with and without glutamate over-stimulation for
240 min. We included neurons treated with cytotoxic levels of staurosporine (STS) and hydrogen peroxide
(H20») as controls because treatments of cultured primary neurons with both compounds were previously
found to induce significant activation of calpains and slight activation of procaspase 3 *%. Supplemental
Figure S3 shows that treatment of cultured cortical neurons with glutamate, STS or H,O» induced limited
proteolysis of intact procaspase 3 to form the 30 kDa truncated procaspase 3 fragment. Presumably, the
fragment was generated by calpain cleavage of the Ser-7/Val-8 peptide bond of intact procaspase 3 *°
defined previously by Wolf et al. ° (Figure S3). In contrast, the active caspase 3 p17 subunit was not
detectable in the lysate of neurons over-stimulated by glutamate while only a weak caspase 3 p17 subunit
signal was detected in lysate of neurons treated with STS and H,O,. These procaspase 3 cleavage patterns
suggest that all three treatments over-activated calpains in neurons and had little or no effect on procaspase
3 activation. This notion is further supported by the cleavage pattern of a-fodrin — all three treatments
caused a significant reduction in intact a-fodrin accompanied by a significant increase in the abundance of
the 145kDa/150kDa fragment generated by direct calpain cleavage of the Val-1175/Tyr-1176 and Gly-
1230/Ser-1231 peptide bonds of intact a-fodrin 7. Thus, results of Figure S3 indicate that necrosis associated
with over-activation of calpains was the major type of cell death of neurons caused by glutamate over-
stimulation and treatments with STS and H»O, for 140 min. The results also reveal that glutamate over-
stimulation did not cause apoptosis while treatment with STS and H»O; only induced slight stimulation of
the apoptotic signalling pathway.
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Figure S1
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Figure S1. Morphological features of cultured primary cortical neurons at seven days in vitro (DIV7)

Untreated mouse primary cortical neurons were grown in culture for 7 days in vitro then fixed and
immunostained for neuronal marker proteins, MAP2 (green) and Tau (red) proteins and the cell nucleus
was stained using DAPI (blue) dye. Scale bar 20 um.



Figure S2
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Figure S2. Time-dependent morphological changes of cultured primary cortical neurons in response to
glutamate treatment

Glutamate treatment of cortical neurons causes morphological changes over time. Mouse primary cortical
neurons were grown in culture for 7 days in vitro then treated with 100 uM glutamate for 5, 15, 60, and 240
min. Following treatment, cells were fixed and prepared for histological imaging (refer to the “Histology
Methods” section). Phase contrast images of treated cultures (top panel of images) were taken to
demonstrate how the presence of the neurite architecture morphology and cell soma shape in the untreated
cells gradually diminished and dramatically altered especially in the 240 min treated cultures. Fixed cells
were immunostained for the neuronal protein, Tau (red) and nucleus stained with DAPI (blue). The anti-
Tau immunofluorescence intensity and extent of neurite architecture are dramatically diminished in the 240
min glutamate treated cultures compared to the untreated cultures (lower panels). Scale bar 20 um.
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Figure S3. Necrosis involving the activation of calpains is the major cell-death signalling mechanism

in neurons treated with glutamate for 240 min

A. Western blot analysis of crude lysates of control neurons and neurons treated with glutamate (100 uM),
staurosporine (1 puM) and hydrogen peroxide (50 uM) for 240 min (labelled as Glu, STS and H,O,,
respectively). The blots were probed with the antibodies against a-fodrin, caspase 3 and o-tubulin. B.
Schematic depicting the products generated by calpain-mediated cleavage of procaspase 3 (~32 kDa) at the
Ser-7/Val-8 peptide bond to generate the procaspase 3 fragment of ~30 kDa. In cells undergoing apoptosis,
procaspase 3 is activated to form the activate caspase 3 fragments of 12-17 kDa. Results shown in panel A
suggest that most of procaspase 3 molecules in neurons were cleaved by calpains to form the procaspase 3
fragment of ~30 kDa (indicated by the large solid black arrow). Only a very small portion of procaspase 3
molecules underwent proteolytic processing (indicated by the small dotted black arrow) at Asp-28, Asp-
175 and Asp-179 (upward red arrows) by the upstream pro-apoptotic proteases to form the active mature
caspase 3 consisting of the p17 and p12 subunit of ~12-17 kDa. As the epitope of the anti-caspase 3 antibody
is mapped to the pl17 subunit segment of intact procaspase 3, the antibody recognizes procaspase 3,
procaspase 3 fragment, the p17 subunit but not the p12 subunit. C. Schematic depicting the products
generated by calpain-mediated cleavage of a-fodrin at Val-1175/Tyr-1176 and Gly-1230/Ser-1231 peptide
bonds. The numbers refer to the amino acid residue numbers of mouse a-fodrin (uniprot identifier P16546-
1). Cleavage at the two sites is expected to convert intact a-fodrin (~285 kDa) to two fragments of 145-150
kDa.
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Figure S4C
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Figure S4D
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Figure S4. Heat maps depicting time-dependent changes in abundance of selected neuronal proteins

Temporal changes (5 min to 240 min) in abundance of selected neuronal proteins from global proteome
data are presented in heat maps. Only neuronal proteins identified in at least two biological replicates in
all the time points are selected for presentation. For the complete list identified proteins and
corresponding abundance ratios, readers are requested to check Table S1.
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Figure S5
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Figure S5. Multi-scatter plot showing the correlation between replicates of global proteomic changes at
different time points

This plot depicts the variability in identified neuronal proteins over time. Darker blue represents higher
Pearson’s correlation between samples.
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Figure S7
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Figure S8
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Figure S8. Top canonical pathways and disease and function annotations identified by IPA

A. Top 10 canonical pathways those are affected by the identified significantly perturbed neuronal proteins
and phosphoproteins are presented. Pathways (overlapping pathways) containing identified sharing protein
molecules are shown and p-values of individual pathways are in parentheses. B. Top 10 disease and function

annotations identified by IPA are presented with corresponding p-values.
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Figure S10
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Figure S10. Western blot analysis of the CK2 expression in neurons and detection of CK2
immunoprecipitated from neuronal lysate

Lysates from control neurons and neurons over-stimulated with glutamate at 5, 15, 30, 60 and 240 min were
monitored for expression levels of CK2 by Western blotting (top part of the upper panel). The expression
levels of tubulin were used as the loading control. The ratios of densitometric values of the signals of CK2
versus those of tubulin are presented (lower part of the upper panel). CK2 in the neuronal lysates was
purified by immunoprecipitation for kinase activity assay. The amounts of CK2 in the immunoprecipitates
were monitored by Western blotting. The heavy and light chains of IgG in the immunoprecipitates are
indicated. The portion of this blot showing the immunoreactive signals of CK2 was also shown in Figure
8B. The densitometric values of the immunoprecipitated CK2 were used to calculate the specific enzymatic
activity of the immunoprecipitated CK2 in each neuronal lysate. Temporal changes of CK2 specific
enzymatic activity in response to glutamate over-stimulation are presented in Figure 8B.
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