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Brief description of the analysis procedure 

We briefly present here the steps we followed for the data analysis of the combined omics 

datasets and the TMZ response variable.  The analysis consisted of four steps. 

1. Filtering step.  If the dataset contains omics data with thousands to millions of variables a 

filtering step is needed to select those variables that are more likely to be relevant to the clinical 

problem. Possible methods for this filtering step include a variance filter, using prior knowledge 

to select genes or pathways that are likely to be involved in the disease of interest, or using a 

statistical filter to choose genes that are highly correlated with or predictive of certain disease 

features. Here we use a generalized correlation measure (described below) that is able to 

calculate correlation between pairs of variables that can be categorical or continuous. We 

selected the 1000 features most correlated with response to treatment using this measure.  

2. Normalization step. Most methods that identify conditional dependencies between continuous 

variables require these variables to be normally distributed. This is not the case with some of the 

biomedical data. For example, RNA-seq data are distributed according to the negative binomial 

distribution (1).  We normalize our continuous variables using the non-paranormal 

transformation (2). This method maps each data feature to a normal distribution which helps to 

satisfy the assumptions of normality in our subsequent methods and to allow us to learn a 

network over differently distributed data sources (3).  

3. Learning undirected graph over mixed type variables. For this step, we used our recently 

published algorithm, MGM (4).  In brief, the likelihood of a mixed graphical model (MGM) can 

be described as follows (5): 
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where β is the edge potential between each pair of continuous features, α is the node potential 

of a continuous feature, ρ is the edge potential between continuous and discrete features and φ 

is the edge potential between pairs of discrete features. Since computing the exact likelihood for 

this mixed model is computationally intractable, the use of the pseudolikelihood (6) is 

necessary. For this step we used the Lee and Hastie pseudolikelihood calculation (5): 
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This pseudolikelihood is convex and efficiently computable. Learning is performed using 

accelerated proximal gradient methods implemented in TFOCS (7). We used Nesterov’s 1983 

method for optimization with a maximum of 700 iterations for our stability runs and 1000 

iterations for all other runs. We used a modification to the Stability Approach to Regularization 

Selection (StARS) method (8) on the range .1 < λ < .3 subject to an instability threshold of .05 

to select the value λ  = .2 which we used to learn the model presented in the results. 



4. Directionality assesment step. Undirected graphs learned over datasets produced by an 

underlying directed model tend to generate false positive edges. Indeed, when there is a 

“collider” in the true graph, XàZßY (i.e., X and Y are causing Z) then the learned undirected 

model will be X – Z – Y – X.  This is because X and Y are dependent given Z or Dep(X, Y | Z). 

The false positive edge X – Y can be removed if we perform a conditional independence test 

over all possible subsets.  For example, in the simple case of XàZßY, we will find that Ind(X, 

Y | Ø), and so the X – Y edge will be removed and correct orientation of the XàZ and ZßY 

edges will be thus established. In addition for some additional undirected edge, Z - W, in the 

absence of the edges X – W and Y – W, we can infer the direction ZàW. This is because a 

ZßW true edge would have produced false positive edges X – W and Y – W.  We call this the 

directionality assessment step. Algorithmically we follow the procedure for PC-Stable (9) except 

we start from the MGM graph rather than a fully connected graph, and since we do not assume 

acyclicity we only use orientation rule R1.  

Generalized Correlation. In order to measure association between a continuous and categorical 

variable or two categorical variables we use the following strategy. We would like to calculate 

the equivalent of Pearson’s product moment coefficient for each possible pairing of these 

variables. The general formula for Pearson’s correlation between two vectors of observations, X 

and Y, with means 𝜇X and 𝜇Y and standard deviations 𝜎X and 𝜎Y is 𝑟XY =
\]^(X,Y)
_`_a

 where 

covariance is defined as 𝑐𝑜𝑣(𝑋, 𝑌) = 	𝐸[(𝑋 −	𝜇X)(𝑌 − 𝜇Y)]. This is a standard calculation for 

pairs of continuous variables because mean and standard deviation are well defined. For pairs of 

binary variables, these values are also well defined, and this formulation is called the Matthews’ 

Correlation Coefficient. For categorical variables we can calculate the covariance on a category 

by category basis. So for a categorical X continuous Y, we can focus on a, one of the categories 



of X when calculating a sample covariance: 𝑐𝑜𝑣(𝑋i, 𝑌) = 	𝐸j<𝑋i −	𝜇Xk=(𝑌 − 𝜇Y)l =

	 7
mn7

∑ [(𝕀(𝑋p = 𝑎) −	 �̂�i)(𝑌p −	 �̂�Y)m
p67 ] where 𝕀(𝑋p = 𝑎) is an indicator function that is 1 when 
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a in X. Since 𝕀(𝑋p = 𝑎) is equivalent to a Bernoulli random variable now it is easy to see that the 

sample standard deviation is 𝜎sXk = 	t
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mn7
�̂�i(1 − �̂�i). Similarly, if both X and Y are categorical 

we now look at each possible pairing of categories separately so 𝑐𝑜𝑣(𝑋i, 𝑌u) =

	 7
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p67 −	𝑞su)] where 𝑞su is the empirical probability of 

observing b in Y. So, in a discrete-continuous pair, we now have a vector for the covariance and 

a vector for the standard deviations corresponding to the different levels of the categorical 

variable, we use the 𝑙P norm to calculate a single score from these vectors (where X is 

categorical): 𝑟XY =
‖\]^(X,Y)‖y
‖_`‖_a

. In the discrete-discrete case we have two matrices corresponding 

to the possible pairs of levels in the two variables, and we combine them with the Frobenius 

norm: 𝑟XY =
‖\]^(X,Y)‖z	
‖_`_a‖z

. Both of these cases result in non-negative values so to make the 

continuous-continuous values comparable with the others we take the absolute value so scores 

for all pairs of edges fall on the interval [0,1]. 

One motivation for this approach is that these sample covariances turn out to be 

proportional to the partial gradients of negative log pseudolikelihood in a factorized (i.e. zero 

edges) MGM as described above with respect to the edge parameters and variable levels (see (5) 

supplement). Namely: {V
C
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the MGM and the pairs of X and Y are continuous-continuous, discrete-continuous, and discrete-

discrete respectively. 

Computational analysis methods – Software availability 

The MGM-Learn platform was developed in MATLAB and is available upon request.  

Undirected graphs are learned using the MATLAB code from 

http://www.stanford.edu/jdl17/learningmgm.html. For the non-paranormal normalization we 

used HUGE (10). To quantify PARP1 isoform abundances from paired-end reads of TCGA 

metastatic melanoma samples we used kallisto (11) using transcript definitions from Ensembl 

(12).   

SNP imputation on TCGA samples and NCI-60 cell lines 

NCI-60 data were obtained from Cell Miner in June 2013 

(http://discover.nci.nih.gov/cellminer/). For those cell lines or TCGA samples for which the 

identity of SNP rs1805407 was not available we used imputation to infer its identity. Using 

SNAP (13) we found 51 SNPs to be in perfect linkage disequilibrium (LD) with rs1805407 (R2 = 

1). Of these, 9 variants were covered by the Affymetrix SNP Array 6.0 used by the TCGA. To 

determine the rs1805407 genotype in TCGA samples we used birdseed calls (14) from 

Affymetrix Genome-Wide Human SNP Array 6.0. Only samples with a birdseed confidence less 

than 0.1 or where all 9 SNPs in perfect LD agreed with the birdseed call were used. 

  



LEGENDS FOR SUPPLEMENTARY FIGURES AND TABLES 

Fig. S1. Association of SNP rs1805407 to response to TMZ treatment. 

Fig. S2. eQTL association of SNP rs1805407 to PARP1 expression in whole blood. Data from 

GTEx; p-value 5.5e-06) 

Fig. S3. Cytotoxic effect of ABT-888, MMS or in combination in SNP vs WT cell lines.  Left 

panel. Dose-effect curves for MMS, ABT-888 and ABT-888 + MMS combination.  A2780 (A), 

M14 (B), SW620 (C) and H522 (D) cells exposed to ABT-888, MMS, or the drug combination 

(ABT + MMS were combined at the molar ratio of their IC50 values in each specific cell line). 

Right panel. Fraction affected (Fa)-C.I. plots. Combination index (C.I.) values are plotted as a 

function of the fractional inhibition (Fa). For each cell line, the mean of three independent 

experiments is displayed.  The Fa-C.I. plots indicate that the cytotoxic effects of the 

chemotherapeutic agent MMS is synergistically enhanced by the combination with PARPi 

(ABT-888) in the SNP cell lines, A2780 (A) and M14 (B) (C.I. <1). In contrast, in the WT cell 

lines, SW620 (C) and H522 (D), the interaction between ABT-888 and MMS is antagonistic 

(C.I. >1). 

Fig S4. Assessment of drug interactions by Bliss independence model.  Data from the median 

effect studies were independently analyzed by the Bliss independence method (15).  Growth 

inhibition curves of individual agents and their combinations were first fitted to a four parameter 

logistic equation.  Affected fractions (Fa) for concentrations of individual drugs that 

corresponded to their respective concentrations in the combination were then interpolated and 

used to compute an expected level of activity (Fa) according to Fa = FadrugA + FadrugB - FadrugA * 

FadrugB  (15).  Expected effect levels (black bars) were then compared to actual toxicity caused by 

the MMS/ABT-888 combination (gray bars).  Observed effect levels that are larger than 



expected constitute synergy; effect levels smaller than expected, antagonism.   The data are 

largely consistent with the median effect analysis, showing synergy to additivity in the SNP cell 

lines, and additivity to antagonism in the WT cell lines.  

 

Table S1. PARP1 SNPs in LD with rs1805407. 

Table S2. Drug compounds with differential IC50 values on WT vs SNP cell lines for rs1805407. 

IC50 values derived from NCI60. Statistical significance was assessed with Wilcoxon rank sum 

test. 

Table S3. PARP1 SNP rs1805407 genotyping analysis of a panel of human cancer cell lines. All 

six of the cell lines reported in the literature to be "resistant" to chemotherapy + PARPi 

combination treatment were WT for the rs1805407 locus. Six out of the nine  cell lines reported 

to be "sensitive" had at least one copy of C in this locus. Cell line was considered "sensitive" 

when chemopotentiation ratio was ≥ 2. S: sensitive; R: resistant. 

Table S4. Results from MMS treatment of cell lines with and without PARP1 inhibitor (ABT-

888).  The data from the MTT assays were expressed as mean ± standard deviation (SD). The 

ratio between the IC50 means of MMS treatment alone and in combination with ABT-888 was 

calculated for each cell line. A Potentiation factor (ratio) ≤ 1 indicates no chemo-potentiation. 

 
  



 
 
Supplementary Figure S1. Association of SNP rs1805407 to response to TMZ treatment. 
 
  



 

Supplementary Figure S2. eQTL association of SNP rs1805407 to PARP1 expression in whole 

blood. Data from GTEx; p-value 5.5e-06) 

 
  



 

 
Supplementary Figure S3. Cytotoxic effect of ABT-888, MMS or in combination in SNP vs 
WT cell lines.  Left panel. Dose-effect curves for MMS, ABT-888 and ABT-888 + MMS 
combinations.  A2780 (A), M14 (B), SW620 (C) and H522 (D) cells were exposed to ABT-888, 
MMS, or combinations thereof at the molar ratio of their IC50 values in each specific cell line.  
Middle panel. Determination of median effect (Dm) and slope (m) from linearized inhibition 
curves.  Right panel. Fraction affected (Fa)-CI plots. Combination indices were calculated for 
each effect level (closed symbols, interpolated from median effect analysis) and for each dose of 
the MMS/ABT-888 combination (open symbols, actual data points (combination)).   Plots show 



CI values as a function of the fraction affected (Fa). CI values of <1, 1 (solid line), and >1 
indicate synergism, additivity, and antagonism, respectively. For the interpolated CI values, each 
data point represents the mean CI ± S.D. of three independent experiments; open circles are the 
individual data points for the combinations from the three independent repeats. The Fa-CI plots 
indicate that the cytotoxic effect of the chemotherapeutic agent MMS is synergistically enhanced 
(CI <1). by the combination with PARPi (ABT-888) in the SNP cell lines, A2780 (A) and M14 
over a wide range of effect levels.  (B) In contrast, in the WT cell lines, SW620 (C) and H522 
(D), the interaction between ABT-888 and MMS is mostly antagonistic (CI >1).  
  



 
 
Supplementary Figure S4. Assessment of drug interactions by Bliss independence model.  Data 
from the median effect studies were independently analyzed by the Bliss independence method 
(15).  Growth inhibition curves of individual agents and their combinations were first fitted to a 
four parameter logistic equation.  Affected fractions (Fa) for concentrations of individual drugs 
that corresponded to their respective concentrations in the combination were then interpolated 
and used to compute an expected level of activity (Fa) according to Fa = FadrugA + FadrugB - 
FadrugA * FadrugB  (15).  Expected effect levels (black bars) were then compared to actual toxicity 
caused by the MMS/ABT-888 combination (gray bars).  Observed effect levels that are larger 
than expected constitute synergy; effect levels smaller than expected, antagonism.   The data are 
largely consistent with the median effect analysis, showing synergy to additivity in the SNP cell 
lines, and additivity to antagonism in the WT cell lines.  
 
  



 
Supplementary Table S1. PARP1 SNPs in LD with rs1805407. 

SNP Distance R2 D’ Chr Coord_hg18 GeneVariant 
rs3219031 437 1 1 chr1 224656019 INTRONIC 
rs3219027 580 1 1 chr1 224657036 INTRONIC 
rs6701634 1792 1 1 chr1 224654664 INTRONIC 
rs3754370 2445 1 1 chr1 224658901 INTRONIC 
rs3768347 2912 1 1 chr1 224659368 INTRONIC 
rs3768346 3021 1 1 chr1 224659477 INTRONIC 
rs7522351 3435 1 1 chr1 224659891 INTRONIC 
rs7525191 3438 1 1 chr1 224659894 INTRONIC 
rs4653732 4273 1 1 chr1 224660729 INTRONIC 
rs10799349 4317 1 1 chr1 224652139 INTRONIC 
rs7542788 4530 1 1 chr1 224651926 INTRONIC 
rs7548007 4553 1 1 chr1 224651903 INTRONIC 
rs4653733 4780 1 1 chr1 224661236 INTRONIC 
rs60698376 5024 1 1 chr1 224661480 N/A 
rs4653731 5861 1 1 chr1 224650595 INTRONIC 
rs2077197 6206 1 1 chr1 224662662 UPSTREAM 
rs12240196 6350 1 1 chr1 224650106 INTRONIC 
rs59672299 7760 1 1 chr1 224664216 N/A 
rs1073991 8759 1 1 chr1 224647697 INTRONIC 
rs2136876 8880 1 1 chr1 224647576 INTRONIC 
rs1000033 9446 1 1 chr1 224647010 INTRONIC 
rs6665208 9541 1 1 chr1 224665997 UPSTREAM 
rs1002153 9646 1 1 chr1 224646810 INTRONIC 
rs2280712 9740 1 1 chr1 224646716 INTRONIC 
rs1805405 9812 1 1 chr1 224646644 SPLICE_SITE, INTRONIC 
rs6679573 11114 1 1 chr1 224667570 INTERGENIC 
rs10915987 11848 1 1 chr1 224668304 INTERGENIC 
rs3219043 12239 1 1 chr1 224644217 INTRONIC 
rs77173384 12382 1 1 chr1 224668838 N/A 
rs28407557 12564 1 1 chr1 224669020 INTERGENIC 
rs4653445 12927 1 1 chr1 224643529 INTRONIC 
rs2293464 13537 1 1 chr1 224642919 INTRONIC 
rs12068460 13912 1 1 chr1 224670368 INTERGENIC 
rs3219053 15279 1 1 chr1 224641177 INTRONIC 
rs1805408 16431 1 1 chr1 224640025 INTRONIC 
rs3219058 17039 1 1 chr1 224639417 INTRONIC 
rs6681537 19603 1 1 chr1 224676059 INTERGENIC 
rs3219073 20458 1 1 chr1 224635998 INTRONIC 
rs2271343 22270 1 1 chr1 224634186 INTRONIC 



rs732284 22825 1 1 chr1 224633631 INTRONIC 
rs3219115 32892 1 1 chr1 224623564 INTRONIC 
rs752308 38327 1 1 chr1 224618129 INTRONIC 
rs747658 38655 1 1 chr1 224617801 INTRONIC 
rs747659 39092 1 1 chr1 224617364 INTRONIC 
rs6664761 39642 1 1 chr1 224616814 INTRONIC 
rs2282400 42834 1 1 chr1 224613622 DOWNSTREAM 
rs6675427 45851 1 1 chr1 224610605 DOWNSTREAM 
rs6675327 45924 1 1 chr1 224610532 DOWNSTREAM 
rs6661762 46142 1 1 chr1 224610314 DOWNSTREAM 
rs1991865 48782 1 1 chr1 224607674 INTERGENIC 
rs12092726 50806 1 1 chr1 224605650 INTERGENIC 
rs3219023 1223 0.947 1 chr1 224657679 INTRONIC 
rs7531668 6186 0.945 1 chr1 224662642 UPSTREAM 
rs12025487 15060 0.945 1 chr1 224671516 INTERGENIC 
rs1109032 28430 0.945 1 chr1 224628026 INTRONIC 
rs3754375 28768 0.945 1 chr1 224627688 INTRONIC 
rs4653735 10521 0.891 1 chr1 224666977 UPSTREAM 
rs878367 52311 0.891 1 chr1 224604145 INTERGENIC 
rs7527192 6246 0.838 1 chr1 224662702 UPSTREAM 

 
 



Supplementary Table S2. Drug compounds with differential IC50 values on WT vs SNP cell 
lines for rs1805407. GI50 values derived from NCI-60. Statistical significance was assessed with 
Wilcoxon rank sum test. Carmustine and Cyclophosphamide are classical DNA damaging 
alkylating agents. Parthenolide, a compound that induces apoptosis in acute myelogenous 
leukemia (AML) and progenitor cells (16). Increased sensitivity was observed for Irofluven, an 
alkylating agent that inhibits DNA replication (17).  For comparison purposes, we also added the 
PARP1 inhibitor Olaparib (which is not statistically significant when used as single agent).  
 

NSC Name FDA status u p 
26271 Cyclophosphamide FDA approved 175 0.01 

157035 Parthenolide FDA approved 148 0.02 
683863 Irofulven (Hydroxymethylacylfulvene) FDA approved 267.5 0.02 
409962 Carmustine FDA approved 294 0.03 
747856 Olaparib FDA approved 342.5 0.64 

 
 



Supplementary Table S3. Potentiation of response to chemotherapy or radiation combined 
with PARP inhibition (from literature).  PARP1 SNP rs1805407 genotyping analysis of a panel 
of human cancer cell lines. All six of the cell lines reported in the literature to be "resistant" to 
chemotherapy + PARPi combination treatment were WT for the rs1805407 locus.  Six out of the 
nine  cell lines reported to be "sensitive" had at least one copy of C in this locus. Cell line was 
considered "sensitive" when chemopotentiation ratio was ≥ 2. S: sensitive; R: resistant. 

 

Cell line Tumor 
type Response Tumor 

type 
rs1805407 
Genotype  

Therapy 
type 

PARPi 
agent REFs 

LoVo Colon  R Colon  T/T 
TMZ NU1025/

NU1085, 
AG14361 

(18, 19) 

SW620 Colorectal  R Colorectal  T/T Irinotecan ABT-888 (20) 

H522 Lung R Lung T/T TMZ NU1025/
NU1085 (18) 

HT-29 Colon  R Colon  T/T TMZ NU1025/
NU1085 (18) 

SKOV-3 Ovarian R Ovarian T/T TMZ NU1025/
NU1085 (18) 

LS174T Colon S Colon T/T TMZ NU1025/
NU1085 (18) 

HCT-116 Colon  S Colon  T/T Irinotecan ABT-888 (20) 
MDA-

MB-231 Breast  R Breast  T/T TMZ  NU1025/
NU1085  (18) 

MCF-7 Breast S Breast T/T TMZ NU1025/
NU1085 (18) 

Calu-6 Lung S Lung C/T TMZ  CEP-
6800 (21) 

M14 Melanoma S Melanoma C/T 
TMZ 3-

aminobe
nzamide (22) 

A549 Lung S Lung C/T 
TMZ  NU1025/

NU1085, 
AG1436 

(18, 19) 

H460 Lung S Lung C/T Radiation MK-4827 (23) 
SK-Mel-2 Melanoma S Melanoma C/C    

A2780 Ovarian S Ovarian C/T TMZ NU1025/
NU1085 (18) 

 

 



Supplementary Table S4. Results from MMS treatment of cell lines with and without PARP1 
inhibitor (ABT-888 or olaparib).  The data from the MTT assays were expressed as mean ± 
standard deviation (SD). A “potentiation factor”, defined as the ratio between the IC50 means of 
MMS treatment alone and in combination with ABT-888 or olaparib was calculated for each cell 
line. A potentiation factor (ratio) ≤ 1 indicates no chemo-potentiation. 
ABT-888 (10 nM): 

Cell line Tissue 
origin 

PARP1/SNP 
genotype MMS IC50 (µM) MMS + ABT-

888 IC50 (µM) 
Potentiation 

factor 
p-

value: 
FEMX melanoma T/T 166.3 (± 20.2) 176.0 (± 40.4) 0.945 0.626 
A375 melanoma T/T 306.0 (± 22.1) 283.3 (± 33.5) 1.080 0.172 
H-522  lung T/T 577.7 (± 56.8) 745.3 (± 68.6) 0.775 0.147 
SW620  colon T/T 299.4 (± 37.0) 449.4 (± 89.1) 0.666 0.047 

MDA-MB-231  breast T/T 287.2 (± 28.7) 303.2 (± 45.1) 0.947 0.530 
M14  melanoma C/T 520.8 (± 63.4) 359.8 (± 56.7) 1.447 0.005 
A549 lung C/T 254.8 (± 23.9) 143.9 (± 37.8) 1.771 0.002 

A2780 ovarian C/T 190.0 (± 41.0) 80.8 (± 14.7) 2.351 0.003 
H460 lung C/T 227.0 (± 21.4) 134.9 (± 20.5) 1.682 0.002 

 
Olaparib (5 nM): 

Cell line Tissue 
origin 

PARP1/SNP 
genotype MMS IC50 (µM) MMS + olaparib 

IC50 (µM) 
Potentiation 

factor 
p-

value 
SW620  colon T/T 342.7 (±68.7) 357 (±55.6) 0.960 0.720 
A2780 ovarian C/T 182.4 (± 24.0) 39.2 (± 8.8) 4.651 0.017 
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