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Supplementary Figure 1. Systematic BOE analysis. 
a Schematic of the special strains (termed query strains) constructed for BOE analysis. 

In each query strain, the chromosomal copy of an essential gene (termed query gene) 
is deleted, and cell viability is maintained by an episomal plasmid (termed rescuing 
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plasmid) containing that essential gene and three markers including the counter-
selectable thymidine kinase gene (TK) and the colony color marker ade6+.  

b Schematic of the BOE analysis. After inducing genetic changes, cells that can lose the 
rescuing plasmid were selected using 5-fluorodeoxyuridine (FUdR), which kills cells 
with a functional TK gene.  

c Representative images of FUdR-containing plates on which suppressor-containing 
clones were selected. MNNG-mutagenized cells in patches were replica-plated onto 
YE plates containing FUdR and a low level of adenine (Ade- colonies turn red on 
plates with a low level of adenine). The white colonies, which still harbored a 
functional ade6+ gene, probably resulted from mutational inactivation of the TK gene, 
whereas the red colonies, which were TK- and Ade-, probably resulted from a BOE 
suppressor mutation.  

d Flowcharts of the BOE analysis pipelines for the three types of genetic change 
inducers. Candidate suppressors were identified by deep-sequencing-based methods 
termed BSA-seq, junction-seq, and ORF-seq, respectively, for C-BOE, T-BOE, and 
OP-BOE (see Methods for details). We experimentally verified all of the candidate 
suppressors by independently generating genetic alterations identical or similar to the 
ones found in the screen hits. Specifically, T-BOE suppressors were verified by 
deleting the transposon-inserted gene, or by inserting a marker gene at the position of 
transposon insertion. OP-BOE suppressors were verified by re-introducing the 
candidate plasmids. C-BOE suppressors were verified by re-creating the candidate 
mutations. 

e  Illustration of two verification procedures. In the first procedure, the viability of 
haploid progenies derived from a diploid heterozygous for both an essential gene 
deletion and a candidate suppressor was analyzed. Only a real suppressor could allow 
progenies without the essential gene to form colonies. In the second procedure, the 
query strain was mated with a strain with a candidate suppressor. Among the haploid 
progenies with the essential gene deletion, only those with a real suppressor could 
form colonies in the absence of the rescuing plasmid. The experimental data that 
verify BOE interactions listed in Supplementary Table S2 can be accessed at https://
bypass-of-essentiality.github.io/. 

f  The GO slim term associations of the 142 query genes (“E screened” in orange) are 
similar to those of all essential genes (“E” in red) and are different from those of all 
non-essential genes (“NE” in blue). The 12 GO slim terms most overrepresented 
among essential genes are shown. 

g T-BOE suppressor genes and OP-BOE suppressor genes do not substantially overlap 
in gene identity. For each of the 12 query essential genes that have both T-BOE and 
OP-BOE suppressors, the T-BOE suppressor genes were compared to the OP-BOE 
suppressor genes, and overlapped genes were tallied. 
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Supplementary Figure 2. Bypassability is correlated with gene importance and 
differential essentiality between species. 
a Genes encoding transcriptional regulators are more likely to be bypassable than are 

genes encoding parts of general transcription machineries. The P value was 
calculated using the Fisher’s exact test.  

b tRNA adaptation indices (tAI) of bypassable and non-bypassable genes. The P value 
was calculated using the Mann-Whitney-Wilcoxon test. 

c Hermes insertion densities in bypassable and non-bypassable genes. The P value was 
calculated using the Mann-Whitney-Wilcoxon test.  
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d, e  Slow spore lethality is not associated with high protein abundance (d) or with slow 
turnover rates (e) (only chrII-L query genes were included in the plots; the same 
conclusions were reached when all essential genes were plotted). P values were 
calculated using the Mann-Whitney-Wilcoxon test. 

f, g  High Hermes insertion densities are not associated with high protein abundance (f) 
or with slow turnover rates (g) (only chrII-L query genes were included in the plots; 
the same conclusions were reached when all essential genes were plotted). P and r 
values were calculated using the Pearson correlation analysis. 

h-j  Evolutionary rates (h), the number of species harboring orthologs (i), and codon 
adaptation index (j) of bypassable and non-bypassable genes among the query genes 
with slow spore lethality. P values were calculated using the Mann-Whitney-
Wilcoxon test. 

k Percentages of slow spore lethality genes whose one-to-one ortholog in S. cerevisiae 
is non-essential. The P value was calculated using the Fisher’s exact test. 

Boxplots show median (centerline), interquartile range (box), and most extreme data 
points no further than 1.5-fold interquartile range from either end of the box (whiskers). 
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Supplementary Figure 3. Bypassability tends to be shared by genes belonging to the 
same functional module. 
a Classification of the 12 BOE suppressors of mtDNA-expression genes identified in 

our systematic BOE analysis. 
b mtDNA loss was induced by ethidium bromide in strains harboring BOE suppressors 

of mtDNA-expression genes but not in a wild-type (WT) strain. PCR analysis was 
performed on ethidium bromide-treated cells. cox2 and atp8 are mtDNA-encoded 
genes. act1 is a nuclear-encoded gene. A strain known to lack mtDNA (ptp1-1 ρ0) was 
used as a control. 

c-e Subunits of the same complex share bypassability and bypass suppressors. sip1 (c), 
jmj3 (d), and slx8 (e) are three chrII-L-located bypassable essential genes and they 
encode proteins belonging to three different protein complexes. We asked whether 
their bypass suppressors can rescue the lethality caused by the deletion of genes 
encoding other essential subunits of the same complexes. In all three cases, the 
answer was yes. In (e), rfp1 and rfp2 encode redundant paralogs that bind to Slx8 and 
their deletions are synthetic lethal.  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Supplementary Figure 4. Complex bypassability can be predicted. 
a 19 quantitative features of essential protein complexes were evaluated for their 

correlation with protein complex bypassability using the Wilcoxon matched-pairs 
signed-rank test (bypassable and non-bypassable complexes but not mixed complexes 
were used in this analysis). Dashed line represents P value = 0.05. The 9 features 
significantly correlated with bypassability (P < 0.05) are highlighted in blue or red 
according to the relationship between the value of a feature and bypassability. 
Complex features were calculated as the medians of numeric features of the essential 
subunits of the complexes or the percentages of categorical features of the essential 
subunits of the complexes. 

b 19 quantitative features of essential protein complexes were evaluated for their ability 
to predict protein complex bypassability by calculating the area under a ROC curve 
(AUC) (bypassable and non-bypassable complexes but not mixed complexes were 
used in this analysis). 

c Three BOE suppressors of tho2. 
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Supplementary Figure 5. Non-uniformity between subunits of the same complex. 
a The four examples of “mixed complexes”. 
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b Complex relationships between subunits of Clr6 complexes revealed by BOE 
analysis. 

c Differences within the NURS complex revealed by BOE analysis. 
d Differences within the ERMES complex revealed by BOE analysis.  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Supplementary Figure 6. Classification of essentiality-bypassing mechanisms for the 
explainable cases of BOE interactions in fission yeast. 
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The type 1 mechanism, “bypass by avoiding toxic intermediate formation”, describes 
situations where the loss of an essential gene causes the toxic accumulation of a 
substance(s) and a BOE suppressor prevents the formation of that substance. The type 2 
mechanism, “bypass by downstream compensation”, refers to linear signal transduction 
pathways in which the loss of an essential gene can be compensated for by modulating 
downstream genes. The type 3 mechanism, “bypass by parallel compensation”, describes 
scenarios in which the loss of an essential gene is compensated for by either increasing a 
redundant activity or by decreasing a counteracting activity. Cases from fission yeast are 
given under the schematics. One case of the type 1 mechanism is the bypass of the 
topoisomerase III gene top3 by the deletion of the RecQ helicase gene rqh1. Rqh1 acts 
upstream of Top3 biochemically and the DNA structure generated by Rqh1 can kill the 
cell if not processed by Top3. Another case of the type 1 mechanism is the bypass of the 
SUMO-targeted ubiquitin ligase (STUbL) gene slx8 by the deletion of SUMO ligase gene 
pli1. Cases of the type 2 mechanism include the bypass of Cdc25, the activator of cyclin-
dependent kinase (CDK), by cdc2-3w, a dominant mutation of CDK, the bypass of the 
Tor2 activator Rhb1 by gain-of-function mutations of tor2, the bypass of the transcription 
factor Res1 by the overexpression of its transcription target gene cdc18, and the bypass of 
cdc16, which encodes a negative regulator of the septation initiation network (SIN) 
pathway by loss-of-function mutations affecting any of the 6 downstream SIN pathway 
genes. Cases of the type 3 mechanism include the bypass of the 5 chrII-L query genes 
rpl2501, zas1, SPBC27B12.12c, mug89, and pst3 by overexpressing a paralog, the bypass 
of cdc25 by a loss-of-function mutation of wee1, which encodes a CDK inhibitor, and the 
mutual bypass when wdr74, an essential gene involved in the assembly of the large 
ribosomal subunit, and fap7, an essential gene involved in the assembly of the small 
ribosomal subunit, were both deleted.  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Supplementary Figure 7. Applying BOE analysis to infer gene function.  
a Top hits of the rad21 T-BOE screens. Insertions falling into ORFs and intergenic 

regions (IGRs) were tallied and the enrichment levels were assessed using P values 
calculated with G tests. 
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b Co-immunoprecipitation of Erh1 with Mmi1. TAP-tagged Mmi1 was 
immunoprecipitated using IgG Sepharose beads. Total cell lysates and IgG precipitates 
were analyzed by immunoblotting. 

c Erh1 and Mmi1 interacted in a yeast two-hybrid assay. The Xrc1-Lig4 interaction 
served as a positive control. Xrc1 and Lig4 also served as specificity controls. 

d Localization of Mmi1 and Erh1 in mitotic cells. Bar, 2 µm. 
e Localization of Mmi1 and Erh1 in a cell undergoing meiosis. Bar, 2 µm. 
f Erh1 self-interacted in a yeast two-hybrid assay. 
g Mmi1-5xFlag co-immunoprecipitated with Mmi1-TAP-GFP in an erh1-dependent 

manner. 
h Triple mutant analysis showing that erh1Δ bypasses rad21 in a rec8-dependent 

manner. 
i png1Δ could not bypass jmj3. 
j Pull-down of recombinant Png1 by K4-methylated H3 peptides. 
k Y230A, D245A, or W253A mutation in Png1 abolished its physical interaction with 

K4-methylated H3 peptides. 
l Y230A, D245A, or W253A mutated version of Png1, but not WT Png1, when 

expressed, permitted the growth of jmj3∆ png1∆. 
m Immunoblotting analysis of SUMO conjugates. Coomassie brilliant blue (CBB) 

staining of membrane served as control for loading and transfer efficiency. Most BOE 
suppressors of slx8, when combined with slx8Δ, resulted in lower levels of high-
molecular-weight (HMW) SUMO conjugates than the slx8-29 temperature sensitive 
mutant at the restrictive temperature. ulp2Δ and rrp2Δ were two exceptions. The 
increase of HMW SUMO conjugates in slx8Δ ulp2Δ can be explained by the known 
role of Ulp2 as a SUMO-chain-trimming enzyme. 

n Live-cell imaging analysis of the subcellular localization of GFP tagged Pmt3 
(SUMO). GFP-Pmt3 formed conspicuous nuclear foci in the slx8-29 mutant. In 
comparison, GFP-Pmt3 foci were less bright in slx8Δ rrp2Δ but were brighter in slx8Δ 
ulp2Δ. Bar, 2 µm. 

o Quantitation of GFP-Pmt3 foci numbers. 
p Quantitation of GFP-Pmt3 foci intensity. Boxplots show median (centerline), 

interquartile range (box), and most extreme data points no further than 1.5-fold 
interquartile range from either end of the box (whiskers). 

q A model depicting the possible roles of several STUbL suppressor genes. 
r Mass spectrometry analysis of Dbl7 and SPAC22G7.03 immunoprecipitates. 
s SPAC22G7.03Δ rescued the DNA damage sensitivity of rqh1Δ to the same extent as 

sws1Δ and the rescuing effect was not enhanced when SPAC22G7.03 and sws1 were 
both deleted. 

t dbl7Δ rescued the DNA damage sensitivity of rqh1Δ to the same extent as sws1Δ and 
the rescuing effect was not enhanced when dbl7 and sws1 were both deleted. 

Source data are provided as a Source Data file.  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Supplementary Table 1. Query genes that have paralogs (related to Fig. 5a). 

Query gene Paralog gene(s)
Whether paralog 
overexpression can bypass the 
query gene

rpl2501 rpl2502 Yes

zas1 klf1 Yes

vrs1 vrs2 No

pst3 pst1, pst2 pst1 but not pst2 
overexpression can bypass

mug89 ivn1 Yes

tor2 tor1 No

SPBC27B12.12c mnr2 Yes

cdc13 cig2 No

kms2 kms1 No
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Supplementary Table 2. Primers used in this study. 

Name Sequence  (5' to 3')

oligo-128 CCTCACGGGAGCTCCAAGCGGCGAC

adaptor-A p-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-NH2

adaptor-B ACCCTTTCTCAGCACATACCGCTCTTCCGATCNNNNNN-NH2

oligo-498 CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGC
TGAACC

Junction-seq-
indexed-primer 
(with index XXXX)

CACGACGCTCTTCCGATCTXXXXACGCAGACTATCTTTCTA

seq-f AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG
ACGCTCTTCCGATCT

seq-r CAAGCAGAAGACGGCATACGA
ORFseq-up-f  (with 
index XXXX) CACGACGCTCTTCCGATCTXXXXTACAAAAAAGCAGGCTCT

YFP-5-3 CCACCCCGGTGAACAGCTCCTCGCC
ORFseq-dn-r (with 
index XXXX) CACGACGCTCTTCCGATCTXXXXTTTGTACAAGAAAGCTGG

LD214 CCTGGCATATCATCAATTG

t1264_atp8_up TTAAAAGGTCAGAGTGCAGACTTG

t1265_atp8_dn TCAATACTTTTGGAGGGGTTAAAT

t1268_cox2_up2 GTTCAATTGTTGAATTCATTTGGA

t1269_cox2_dn2 CACCTTGAACAACAATAGGCATAG

t1270_act1_up2 CATCACACTTTCTACAACGAGCTT

t1271_act1_dn2 TCGTTTCCGATAGTGATAACTTGA
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