
Accurate molecular polarizabilities with coupled-cluster theory and machine learning

Supplementary Information

David M. Wilkins,1 Andrea Grisafi,1 Yang Yang,2 Ka Un Lao,2 Robert A. DiStasio Jr.,2 and Michele Ceriotti1

1Laboratory of Computational Science and Modeling, IMX,
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OPTIMIZATION OF KERNEL HYPERPARAMETERS

Power-Spectrum Sparsification

It has been shown recently that the efficiency of SOAP-based methods can be improved by sparsification: rather

than retaining several tens of thousands of spherical harmonic components of the power spectrum, a farthest-point

sampling method allows us to choose a set of components among which the difference in the values observed within the

training set is as large as possible, meaning that we can retain instead a few hundred components with negligible loss

in accuracy [S1]. Fig. S1 shows learning curves for the λ = 0 and λ = 2 polarizability components retaining either the

full power spectrum or some subset thereof, using base power spectra with 8 radial functions and an l-cutoff of 6, with

nonlinearity parameter ζ = 2 and radial cutoff rc = 4 Å. In the λ = 2 case it is prohibitively expensive to use the full

power spectrum in building the kernel, so instead the error is shown to reach a plateau when a large enough number

of components are retained. We see that both the λ = 0 and λ = 2 kernels remain accurate when 400 components

are retained (amounting to ∼2% of the 16,128 components in the un-sparsified λ = 0 power spectrum and ∼0.7% of

the 59,904 components in the original λ = 2 power spectrum). It is worth noting that even if only 10 components

of the power spectra are kept, amounting to 0.06% for λ = 0 and 0.02% for λ = 2, then the error in predicting the

polarizability is ∼15%, which is comparable to the error incurred when using DFT to predict the CCSD polarizability.
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FIG. S1. Error in learning the λ = 0 and λ = 2 components of the per-atom polarizability for the QM7b dataset, with different

percentages of the spherical harmonic components retained in calculating the kernels. Polarizabilities were calculated using

CCSD. The training set was chosen to contain 5400 molecules, and the testing set in all cases consists of 1811 molecules. We use

a nonlinearity parameter ζ = 2 and radial cutoff rc = 4 Å.



3

Nonlinear Kernels

Fig. S2 shows learning curves for the λ = 0 and λ = 2 components of the polarizability per atom, using kernels with

varying values of the nonlinearity parameter ζ. In both cases, the linear kernel with ζ = 1 saturates at large training

set size, while the nonlinear kernels do not saturate. ζ = 2 provides a clear advantage over the linear kernel, while

larger values of ζ give no further improvement. The advantage of nonlinear kernels is apparent in both polarizability

components: the accuracy in learning the λ = 0 component increases twofold when nonlinearity is included, and the

accuracy of the λ = 2 component increases threefold.
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FIG. S2. Learning curves for (a) the λ = 0 and (b) the λ = 2 components of the per-atom polarizability for the QM7b dataset,

with linear (ζ = 1) and nonlinear (ζ = 2, 4) kernels. Polarizabilities were calculated using CCSD, and the testing set in all cases

consists of 1811 molecules. We use a radial cutoff rc = 4 Å.

Multiscale Kernels

The cutoff radius rc also affects the accuracy of learning. Fig. S3 shows learning curves for kernels with several

different cutoff radii. In the case of the scalar SOAP kernel, it has previously been shown that a combination of

kernels with different cutoffs can perform better than any individual kernel [S2]. To test whether this is also true of

the λ-SOAP kernel, we optimized a multiscale λ = 0 kernel k
(λ=0)
MS =

∑5
i=2 ci k

(λ=0)

rc=i Å
to minimize the prediction error

on the QM7b set, using 2-fold cross-validation on a training set of 5400 configurations. The coefficients ci were used

to build a multiscale kernel for both the λ = 0 and λ = 2 polarizability components. Fig. S3 also shows results for

the optimum multiscale kernel, with c2 = 0.04053, c3 = 0.00997, c4 = 0.02250 and c5 = 0.01560. It can be clearly

seen that, as has been previously observed for the scalar case only, for both components the learning curves with

rc = 2 Å kernels saturate fairly quickly, whereas kernels with larger cutoff radii do not lead to saturation. The MS

kernel performs better than any single kernel, and as in Ref. [S2] the greatest contribution to the optimum multiscale

kernel is from the rc = 2 Å kernel.
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FIG. S3. Learning curves for (a) the λ = 0 and (b) the λ = 2 components of the per-atom polarizability for the QM7b dataset,

using kernels built with different cutoffs and a multiscale (MS) kernel built by combining individual kernels. Polarizabilities

were calculated using CCSD, and the testing set in all cases consists of 1811 molecules.

SHOWCASE MOLECULES

Fig. S4 shows a numbered key of the 52 showcase molecules used in the manuscript.

FIG. S4. Names and chemical structures of the 52 molecules included in the showcase dataset. The numbers refer to the position

of each molecule in the dataset and are used for reference in the text and other figures.

LEARNING DIFFERENT LEVELS OF THEORY

QM7b Set

In Fig. S5 we show learning curves for both the SCAN0-DFT and B3LYP-DFT functionals as well as for the

difference between the two. We see that although these two levels of theory provide different predictions for the

polarizability, in each case the polarizability is learned with essentially the same accuracy. The difference between the
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SCAN0 and B3LYP results is predicted with an accuracy of 7.92×10−3 a.u.. Performing ∆-learning on this difference

allows αSCAN0 to be predicted with a relative error that is 0.44% of the 1.820 a.u. intrinsic deviation of the SCAN0

polarizabilities, a significant improvement over the 7.01 × 10−2 a.u. error (3.8% relative error) obtained by directly

learning the SCAN0 polarizability. Fig. S5 also shows that ∆-learning of the difference between CCSD and SCAN0

polarizabilities can be performed with a very similar accuracy to that of the B3LYP-CCSD difference.
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FIG. S5. Learning curves for the per-atom polarizability of the QM7b molecules, calculated using DFT with the B3LYP or

SCAN0 functionals and the double-ζ basis set, as well as the differences between SCAN0 and B3LYP, between CCSD and

B3LYP and between CCSD and SCAN0. In all cases the testing set consists of 1811 molecules.

Showcase Set

Table I shows the error in learning the SCAN0 polarizability of the members of the showcase set, extending Table I

in the main text. The error incurred in using the SCAN0-DFT polarizability to predict the CCSD result is higher than

using B3LYP-DFT for the showcase set, as shown in more detail by Fig. S6. The accuracy of the λ = 2 component

given by both functionals is very similar for all showcase molecules, with B3LYP performing slightly worse in a small

number of cases, the accuracy of the λ = 0 component varies much more: for the nucleobases, amino acids and sugar

molecules the SCAN0 systematically under-predicts this component, while B3LYP generally slightly over-predicts it.

On the other hand, for the hydrocarbons both functionals over-predict αiso, with SCAN0 giving the more accurate

prediction. As in the QM7b set, an AlphaML model of the SCAN0 polarizabilities performs about as well as that of

the B3LYP polarizabilities, although the difference between SCAN0 and CCSD is more difficult to learn than that

between B3LYP and CCSD, increasing the error by about 25%. Although ∆-learning from either of these functionals
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is more accurate than simply predicting the CCSD polarizability, the B3LYP polarizability is a better starting point

for doing so.

TABLE I. Root mean square errors in machine-learning of the per-atom polarizabilities of the showcase molecules. CCSD/SCAN0

denotes the RMSE between CCSD and SCAN0 calculations, while CCSD/ML and SCAN0/ML give the errors in predicting

CCSD and SCAN0 αn respectively, using a machine-learning model. ∆(CCSD-SCAN0)/ML gives the error in predicting

the difference between CCSD and SCAN0 polarizability. In all cases, the full QM7b database is used as a training set. For

comparison, the errors from Table I in the main text are also reproduced here.

Method RMSE RMSE(λ = 0) RMSE(λ = 2)

CCSD/SCAN0 0.579 0.363 0.451

CCSD/B3LYP 0.573 0.348 0.456

CCSD/ML 0.244 0.120 0.212

SCAN0/ML 0.321 0.134 0.291

B3LYP/ML 0.302 0.143 0.266

∆(CCSD-SCAN0)/ML 0.171 0.113 0.128

∆(CCSD-B3LYP)/ML 0.181 0.083 0.161
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FIG. S6. Error made in approximating the λ = 0 (bottom panel) and λ = 2 (top panel) components of the average polarizability

per atom for the 52 showcase molecules, as a function of the molecule indices in Fig. 2 of the main text. Vertical lines show the

partitioning of these molecules into different groups. Blue circles show the error made in using the B3LYP polarizability to

approximate the CCSD polarizability and green squares show the error when the SCAN0 polarizability is used to approximate

the CCSD polarizability. Where components are outside of the graph, the top bracketed number refers to the B3LYP and the

bottom number to the SCAN0 value.
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REPRESENTATION OF CHEMICAL COMPOUND SPACE

Figure S7 shows a kernel principal component analysis (KPCA) [S3] for the QM7b dataset, wherein each point

corresponds to a molecule and the positions of the points correspond to the two principal eigenvectors of the kernel

matrix. We used the same kernel that we employed for the scalar part of AlphaML. Red dots correspond to the

projection of the showcase molecules on these KPCA axes. One can see that most molecules lie at the periphery of

the dataset, underscoring the difficulties associated with predicting their properties. The showcase molecules span a

broad portion of the QM7b chemical compound space, indicating the diversity of this dataset. The distance between

showcase molecules and QM7b points is roughly equivalent to the spacing between the first 52 farthest point sampling

(FPS) points of the QM7b. In fact, the errors in the showcase predictions are indeed of the same order of magnitude

as the accuracy of the QM7b model when trained on about 100 FPS reference compounds.
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FIG. S7. A KPCA representation of the chemical space covered by the QM7b dataset (black points). Red points correspond to

the projection of the showcase molecules, and cyan points to the first 52 FPS points from the QM7b set.
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POLARIZABILITIES OF ATOM-CENTERED ENVIRONMENTS

The prediction of the polarizability as a sum of environmental contributions means that we can use AlphaML to

better understand the origins of the difference between CCSD and DFT polarizabilities. By writing (αCCSD −αDFT) =

∆α =
∑
i ∆αi, where i is an atom label, we can predict the contribution of each atom to this difference. Fig. S8 shows

the distribution of the predicted difference between λ = 0 components of the CCSD and DFT polarizability, decomposed

into atom-centered contributions for each member of the QM7b set. Aside from sulfur, which is considerably more

polarizable than the other elements considered, each distribution is centered around some constant value. This suggests

a simpler model for predicting the λ = 0 polarizability component, in which,

α
(0)
i,CCSD = α

(0)
i,DFT +

∑
j

nij∆α
(0)
i,eff, (S1)

where the label i refers to a molecule and j an element, nij is the stoichiometry of element j in molecule i and ∆α
(0)
i,eff

is an effective λ = 0 polarizability difference for element i, which can be found by regression on the training set. Using

this dressed-atom model we obtain a relative error of 11% (compared to the intrinsic deviation of the polarizability for

the respective functional) in predicting the λ = 0 component of the B3LYP or SCAN0 polarizability. While this is

an improvement over the ∼20% error between DFT and CCSD, this prediction is still far worse than that obtained

from AlphaML. The effective differences we obtain are given in Table II, with the two different functionals giving

quite different values for most of the elements. These ∆α
(0)
i,eff values also afford some further insight into the results

shown in Fig. S6: Both B3LYP and SCAN0 over-predict the λ = 0 polarizability of the hydrocarbons, but this is

more pronounced for B3LYP. These molecules contain CH2 and CH3 groups, whose total ∆α
(0)
i,eff are respectively 0.71

a.u. and 0.44 a.u. from B3LYP, and 0.31 a.u. and -0.05 a.u. from SCAN0, on average. That is, for SCAN0 there is

much greater compensation between the carbon and hydrogen contributions to the total polarizability difference. On

the other hand, the effective polarizability differences predicted for N,O, and S are significantly more negative for

SCAN0 than for B3LYP, which is consistent with the systematic under-prediction by SCAN0 of the polarizability of

nucleobases and amino acids, which contain these atoms.

While the effective λ = 0 polarizability predictions for C, H and N are quite reasonable compared to the distributions

of Fig. S8, the predictions for O, Cl and S are much worse. While a simple dressed-atom model can capture the

essential features of the difference between electronic structure methods, a full machine-learning model provides more

detailed information, being capable of picking up the difference in behavior for the same element in different functional

groups.

TABLE II. Effective λ = 0 polarizability difference ∆α
(0)
i,eff for elements in the QM7b set, as defined in Eq. (S1).

Element B3LYP (a.u.) SCAN0 (a.u.)

H −0.27 −0.36

C +1.25 +1.03

N −0.05 −0.69

O −0.59 −1.15

S −1.72 −2.60

Cl −2.16 −3.01

This atom-centered ML model of ∆-learning can also be built based on the predictions on the showcase dataset,
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FIG. S8. Predicted contributions of each atomic species to the difference between the λ = 0 component of CCSD and B3LYP-DFT

(left panel) or SCAN0-DFT (right panel) polarizabilities in the QM7b set. Vertical lines show the polarizability differences

predicted by fitting to the dressed-atom model of Eq. (S1), as shown in Table II.

revealing further the sources of the discrepancies between electronic structure methods. As shown in Fig. S9, the

∆-learning predictions between CCSD and DFT systematically attribute positive (negative) contributions to the C (O)

atoms. This confirms the observation made on the QM7b data set that DFT tends to overestimate the polarizability of

carbon-centered groups and underestimate that of oxygen-containing moieties. Inspecting individual ∆αi provides even

more detailed insight into the differences between an accurate and a more approximate method. In the case of DFT, we

observe an inherent asymmetry in the treatment of carbon atoms in different hybridization states. On one hand, DFT

tends to substantially overestimate α for conjugated systems such as octatetraene, an error which is attributed to an

inaccurate description of delocalized π electrons. On the other hand, DFT provides relatively low errors for saturated

carbon atoms, as seen in dimethylhexane and fructose. In contrast to the anisotropic and environment-dependent errors

observed for carbon, the ML-based decomposition of ∆α suggests that the DFT underestimation of polarizability

contributions from oxygen-containing groups is isotropic and relatively insensitive to the environment.
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FIG. S9. Top: distributions of the predicted atomic contribution to the λ = 0 component of the difference between DFT and

CCSD polarizabilities. Bottom: example decompositions of the polarizability difference. The ellipsoids represent the magnitude

and principal axes of ∆αi. Black (red) axes indicate that DFT polarizability is larger (smaller) than CCSD.

DETAILS OF THE REFERENCE ELECTRONIC STRUCTURE CALCULATIONS

All calculations used the Dunning-style d-aug-cc-pVDZ basis set [S4], which was obtained from the EMSL Basis Set

Library [S5, S6]. For all DFT calculations in Q-Chem, a tight threshold with scf convergence=10 and thresh=13 was

used for all molecules in the QM7b database, while scf convergence=8 combined with thresh=14 was used for the

molecules in the showcase dataset. For all DFT calculations in Psi4, the convergence criteria for the SCF density and

energy were both set to 10−10. For the LR-CCSD calculations, all convergence criteria were set to the default values

in Psi4. For the finite-field CCSD calculations, SCF convergence criteria on the density and energy were both set

to 5.0 × 10−10, and a much tighter convergence criterion of 5.0 × 10−9 was used for the CC amplitudes to minimize

numerical error.
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BASIS SET CONVERGENCE OF THE LR-CCSD CALCULATIONS

Since d-aug-cc-pVDZ (daDZ) and aug-cc-pVTZ (aTZ) are arguably the largest Dunning-style basis sets that one

can currently employ (without significant dedicated supercomputer resources) to compute the polarizabilities of every

molecule in the QM7b dataset, we investigate the accuracy and convergence properties of these necessarily incomplete

basis sets in this section. We begin our discussion by focusing on their performance with respect to a series of reference

values provided in the literature. In Table III, we compare polarizability values for 15 different atoms, ions, and small

molecules obtained with a number of different quantum chemical methods and Dunning-style basis sets (that are more

converged with respect to augmentation and/or angular momentum). With mean absolute errors (mean absolute

percent errors) of 0.27 (2.50%) for daDZ and 0.85 (6.15%) for aTZ, statistical error analysis indicates that daDZ

outperforms aTZ in the calculation of polarizabilities. However, the relative performance of these basis sets in this

rather limited dataset is dominated by the presence of highly diffuse systems such as the F– and Cl– anions, for which

the doubly-augmented daDZ basis set yields considerably smaller errors than aTZ. Excluding these anionic systems

from the statistical analysis yields mean absolute errors (mean absolute percent errors) of 0.14 (1.98%) for daDZ and

0.12 (3.33%) for aTZ, which indicates that these basis sets are able to yield atomic and molecular polarizabilities (such

as those found in the QM7b dataset) of comparable quality.

These two basis sets are also comparable when considering the α values corresponding to the 19 smallest molecules

contained within the most diverse 100 configurations (obtained via FPS) of the QM7b dataset. When compared

against LR-CCSD predictions of this quantity using the larger d-aug-cc-pVTZ (daTZ) basis set (i.e., the largest

feasible Dunning-style basis for computing the polarizabilities of molecules of this size without significant dedicated

supercomputer resources), we find that the difference between LR-CCSD/daDZ and LR-CCSD/aTZ is minuscule

with respect to the corresponding DFT error (see Table IV). In other words, even though the error of aTZ (RMSPE

of 1.1% σCCSD) on this subset is smaller than that of daDZ (2.8%), both of these errors are inconsequential when

compared to the B3LYP error (60%). Since this difference is comparable to the asymptotic accuracy of AlphaML

(2-3%), additional computational effort (with the objective of building a more accurate ML model) would be better

invested on increasing the size of the training set rather than using a slightly more converged basis set. We note in

passing that the FPS strategy chooses fairly extreme and challenging molecules from the QM7b dataset, which thereby

provides a stringent test of the quality of these basis sets; this is evidenced by the larger intrinsic variability in this

subset (6.72 a.u. per atom) when compared to the entirety of the QM7b dataset (2.20 a.u. per atom).

In making the decision to employ the daDZ basis set in this work, it is also important to note that the increased

computational effort and memory requirements associated with the slightly larger aTZ basis set would have prevented

us from performing LR-CCSD calculations for ∼ 1000 of the larger QM7b structures (on the hardware at our disposal).

This would have forced us to use finite-field methods to compute α, as was deemed necessary for the largest molecules in

the showcase dataset. In the training set, this would have introduced unnecessary inconsistencies that could potentially

interfere with our ability to learn the polarizability tensors. While the tests above are by no means exhaustive, they

still demonstrate that the level of theory chosen for our reference polarizability calculations (i.e., LR-CCSD/daDZ) is

more than appropriate for obtaining substantial improvements in accuracy relative to the predictions of hybrid DFT.

Future extensions to AlphaML will have to reassess the level of theory to strike the best balance between thorough

sampling of chemical compound space, inclusion of larger reference molecules, and basis set convergence.
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TABLE III. Performance of the d-aug-cc-pVDZ (daDZ) and aug-cc-pVTZ (aTZ) basis sets in the ab initio determination of

the polarizabilities in a series of 15 atoms, ions, and small molecules. Statistical error analysis with respect to the reference

values (and methods) indicated below includes: mean signed errors (MSE), mean absolute errors (MAE), root mean square

errors (RMSE), mean signed percent errors (MSPE), mean absolute percent errors (MAPE), and root mean square percent

errors (RMSPE). Error quantities dressed with an asterisk (*) denote that the anion data (F– and Cl– ) were not included in

the statistical error analysis. All polarizability values and errors are reported in a.u.

System Property daDZ aTZ Ref. Value Ref. Method Ref.

He αiso 1.39 1.38 1.38 CCSD/x-aug-cc-pVQZ limit S4

Ne αiso 2.64 2.39 2.63 CCSD/q-aug-cc-pVQZ S4

Ne αiso 2.71 2.43 2.67 CCSD/d-aug-cc-pV5Z S7

Ne αiso 2.68 2.42 2.66 CC3/d-aug-cc-pV6Z S8

Ne αiso 2.67 2.42 2.68 CCSD(T)/q-aug-cc-pVQZ S4

Ar αiso 10.96 10.81 11.16 MP2/x-aug-cc-pVQZ limit S4

Ar αiso 11.05 10.84 11.12 CCSD(T)/x-aug-cc-pVQZ limit S4

F– αiso 14.52 8.89 16.73 MP2/x-aug-cc-pVTZ limit S4

F– αiso 14.84 8.77 17.15 CCSD(T)/x-aug-cc-pVTZ limit S4

Cl– αiso 35.73 27.81 37.09 MP2/x-aug-cc-pVTZ limit S4

Cl– αiso 36.63 28.11 37.43 CCSD(T)/x-aug-cc-pVTZ limit S4

N2 αxx 10.25 10.16 10.19 MP2/x-aug-cc-pVTZ limit S4

N2 αzz 14.79 14.41 14.45 MP2/x-aug-cc-pVTZ limit S4

N2 αxx 10.19 10.13 10.08 CCSD/d-aug-cc-pV5Z S7

N2 αzz 14.74 14.58 14.52 CCSD/d-aug-cc-pV5Z S7

N2 α⊥ 10.19 10.13 10.11 CCSD/d-aug-cc-pVQZ S9

N2 α‖ 14.74 14.58 14.55 CCSD/d-aug-cc-pVQZ S9

N2 αxx 10.42 10.26 10.29 CCSD(T)/x-aug-cc-pVTZ limit S4

N2 αzz 15.44 14.96 14.99 CCSD(T)/x-aug-cc-pVTZ limit S4

N2 α⊥ 10.26 10.19 10.22 CCSDT/d-aug-cc-pVTZ S9

N2 α‖ 14.94 14.75 14.78 CCSDT/d-aug-cc-pVTZ S9

CO αxx 11.91 11.82 11.79 CCSD/d-aug-cc-pV5Z S7

CO αzz 15.91 15.70 15.57 CCSD/d-aug-cc-pV5Z S7

BH αxx 20.76 21.01 21.04 CCSD/d-aug-cc-pV5Z S7

BH αzz 23.33 22.90 22.75 CCSD/d-aug-cc-pV5Z S7

CH+ αxx 6.96 7.05 7.06 CCSD/d-aug-cc-pV5Z S7

CH+ αzz 8.44 8.34 8.27 CCSD/d-aug-cc-pV5Z S7

HF αxx 5.29 4.90 5.17 CCSD/d-aug-cc-pV5Z S7

HF αzz 6.46 6.35 6.34 CCSD/d-aug-cc-pV5Z S7

HF αxx 5.23 4.89 5.19 CC3/d-aug-cc-pV5Z S8

HF αzz 6.40 6.33 6.33 CC3/d-aug-cc-pV5Z S8

HCl αxx 16.70 16.30 16.67 MP2/x-aug-cc-pVTZ limit S4

HCl αzz 18.56 18.15 18.39 MP2/x-aug-cc-pVTZ limit S4

HCl αxx 16.86 16.45 16.86 CCSD(T)/x-aug-cc-pVTZ limit S4

HCl αzz 18.69 18.28 18.53 CCSD(T)/x-aug-cc-pVTZ limit S4

H2O αiso 9.79 9.48 9.56 CCSD/t-aug-cc-pV5Z S10

H2O αaniso 0.45 0.78 0.59 CCSD/t-aug-cc-pV5Z S10
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TABLE III. Continued

System Property daDZ aTZ Ref. Value Ref. Method Ref.

H2O αiso 9.72 9.47 9.60 CCSDT/t-aug-cc-pVQZ S10

H2O αaniso 0.44 0.74 0.53 CCSDT/t-aug-cc-pVQZ S10

C2H4 αxx 24.89 24.73 24.88 CC3/t-aug-cc-pVTZ S8

C2H4 αyy 22.26 21.89 21.93 CC3/t-aug-cc-pVTZ S8

C2H4 αzz 34.12 34.03 34.04 CC3/t-aug-cc-pVTZ S8

CH3CN αxx 24.48 24.36 24.45 MP2/d-aug-cc-pVTZ S11

CH3CN αyy 38.88 38.83 38.84 MP2/d-aug-cc-pVTZ S11

CH3CN αzz 29.28 29.18 29.25 MP2/d-aug-cc-pVTZ S11

C6H6 αLL 80.53 80.26 80.35 CCSD/d-aug-cc-pVTZ S12

C6H6 αNN 45.00 44.51 44.49 CCSD/d-aug-cc-pVTZ S12

MSE (MSPE) −0.05 (−0.82%) −0.81 (−2.90%)

MAE (MAPE) 0.27 (2.50%) 0.85 (6.15%)

RMSE (RMSPE) 0.55 (5.23%) 2.55 (13.78%)

MSE* (MSPE*) 0.10 (−0.15%) −0.08 (0.22%)

MAE* (MAPE*) 0.14 (1.98%) 0.12 (3.33%)

RMSE* (RMSPE*) 0.20 (4.60%) 0.17 (8.48%)

TABLE IV. Performance of the daDZ and aTZ basis sets in the determination of the polarizability (α) of the 19 smallest

molecules contained within the first 100 FPS structures in the QM7b dataset. All statistical errors were computed with respect

to the α values obtained using LR-CCSD and the d-aug-cc-pVTZ (daTZ) basis set, and reported as a percentage of the intrinsic

variability of the full QM7b dataset (σCCSD = 2.20 a.u. per atom) as defined in the main text.

Test Set Ref. Set MSPE MAPE RMSPE

CCSD/daDZ CCSD/daTZ 1.39% 2.59% 2.83%

CCSD/aTZ CCSD/daTZ −0.70% 1.01% 1.10%

B3LYP/daDZ CCSD/daTZ 39.70% 42.57% 60.29%
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[S3] B. Schölkopf, A. Smola, and K.-R. Müller, Neur. Comp. 10, 1299 (1998).

[S4] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 100, 2975 (1994).

[S5] D. Feller, J. Comput. Chem. 17, 1571 (1996).

[S6] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf.

Model. 47, 1045 (2007).

[S7] O. Christiansen, C. Hättig, and J. Gauss, J. Chem. Phys. 109, 4745 (1998).

[S8] K. Hald, F. Pawowski, P. Jørgensen, and C. Hättig, J. Chem. Phys. 118, 1292 (2003).

[S9] J. R. Hammond, W. A. de Jong, and K. Kowalski, J. Chem. Phys. 128, 224102 (2008).

[S10] J. R. Hammond, N. Govind, K. Kowalski, J. Autschbach, and S. S. Xantheas, J. Chem. Phys. 131, 214103 (2009).

[S11] H. Reis, M. G. Papadopoulos, and A. Avramopoulos, J. Phys. Chem. A 107, 3907 (2003).

[S12] J. R. Hammond, K. Kowalski, and W. A. de Jong, J. Chem. Phys. 127, 144105 (2007).


