List of Supporting Information

Appendix S1: Measurement of urinary glucose and serum creatinine2
Appendix S2: QTL analysis2
Appendix S3: Genotyping of <i>Ctns</i> variants in LEA substrains2
Appendix S4: Oral glucose tolerance test3
Supplemental reference
Supplemental Table S1: SSLP markers used in genetic mapping of the rat <i>ugl</i> locus4
Supplemental Table S2: SSLP markers used for generation of F344- <i>Ctns^{ugl}</i> congenic strain
5
Supplemental Fig. S1: Linkage analysis of the <i>ugl</i> locus6
Supplemental Fig. S2: Variants of the 13-bp deletion in exon 7 of <i>Ctns</i> in LEA substrains
7
Supplemental Fig. S3: Distribution of serum creatinine levels in the male 196 F_2 intercross
progeny8
Supplemental Fig. S4: LRS score plot for QTL of serum creatinine9
Supplemental Fig. S5: Oral glucose tolerance test for F344- <i>Ctns^{ugl}</i> rats10

Appendix S1: Measurement of urinary glucose and serum creatinine

Blood samples were collected from the tail veins of (LEA/Tohm × BN) F2 intercross progeny at 52 weeks of age in a fasting state. The serum creatinine concentration was measured using a Creatinine test Wako kit (Wako Pure Chemical Corporation, Japan).

Appendix S2: QTL analysis

For quantitative trait loci (QTL) analysis for serum creatinine, we performed a simple interval mapping method in Map Manager QTX (Manly et al. 2001) and calculated the likelihood ratio statistic (LRS) value on linkage maps with the free regression model. The significant and suggestive threshold levels for QTL were determined by permutation test in 1-cM steps for 5000 permutations using Map Manager QTX (Churchill et al. 1994; Lander et al. 1995). The same (LEA/Tohm × BN) F2 intercross progeny (a total of 196) used in genetic mapping for the *ugl* locus as described in "Material and Methods" was used for QTL analysis with polymorphic 196 SSLP markers (Supplemental Table S1).

Appendix S3: Genotyping of *Ctns* variants in LEA substrains

The genotyping of a 13-bp deletion in exon 7 of the *Ctns* gene was performed via PCR analysis. The PCR products were amplified with a set of primers (5'-CCCACTTTGTCCCCCTCTG-3' and 5'-TACCTGGATGTAGGGCACCCACA-3') and were separated via electrophoresis using a 4% NuSieve[™] 3:1 agarose gel (Lonza, Basel, Switzerland) at 300 V for 30 min, and stained with ethidium bromide. Sanger sequencing was performed as described in "Material and Methods" to confirm the deletion in the *Ctns* gene. The genomic DNAs of LEA/ Hkm, LEA/Hok, and LEA/Tj rats were supplied by the National BioResourse Project – Rat, Kyoto University (Kyoto, Japan).

Appendix S4: Oral glucose tolerance test

The rats were fasted for 16 h and tail blood glucose was measured at 0, 30, 60, 90, and 120 min after the oral administration of glucose (2 g/kg body weight; Otsuka Pharmaceutical, Tokyo, Japan) by gavage.

Supplementary reference

- Churchill RW, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963-971
- Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11: 241-247
- Manly KF, Cudmore RH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm. Genome 12:930-932

Supplemental Table S1 SSLP markers used in genetic mapping of the rat ugl locus

_

Chromosome	SSLP Marker
1	D1Rat246, D1Mgh17, D1Rat389, D1Rat403, D1Mit10, D1Mit1, D1Rat24, D1Rat27,
	D1Rat344, D1Rat269, D1Rat38, D1Rat271, D1Rat418, D1Rat158, D1Mgh19, D1Mit12,
	D1Rat139, D1Rat56, D1Rat67, D1Rat70, D1Rat169, D1Rat79, D1Rat81, D1Rat90
2	D2Rat189, D2Rat6, D2Mit5, D2Rat163, D2Mit17, D2Rat136, D2Rat115, D2Mit8
	D2Rat40, D2Mgh12, D2Rat61, D2Rat112, D2Mit16
3	D3Rat52, D3Rat117, D3Rat46, D3Rat188, D3Rat130, D3Mgh6, D3Rat35, D3Rat160,
	D3Mit3, D3Rat145, D3Rat142, D3Mgh10
4	D4Rat149, D4Rat11, D4Rat157, D4Rat119, D4Rat265, D4Rat175, D4Rat182,
	D4Rat273, D4Rat238, D4Rat198, D4Arb40, D4Rat203, D4Rat70, D4Rat207
5	D5Rat126, D5Rat2, D5Rat3, D5Rat4, D5Mit10, D5Rat113, D5Rat154, D5Rat30,
	D5Mgh8, D5Rat99, D5Rat51
6	D6Mit5, D6Rat41, D6Rat148, D6Rat34, D6Rat132, D6Rat20, D6Rat14,D6Rat11,
	D6Rat8, D6Rat109
7	D7Rat113, D7Rat31, D7Rat92, D7Rat73, D7Mit5, D7Mgh6, D7Rat85, D7Rat3
8	D8Rat55, D8Mit5, D8Rat47, D8Rat80, D8Mgh7, D8Mgh4, D8Rat130,
	D8Rat90, D8Rat3
9	D9Rat44, D9Rat133, D9Rat129, D9Rat76, D9Mit3, D9Rat11, D9Rat84, D9Rat5,
	D9Rat4, D9Rat110, D9Rat153, D9Rat108, D9Rat71
10	D10Rat95, D10Rat121, D10Rat181, D10Rat42, D10Rat34, D10Rat223ª, D10Rat77ª,
	D10Rat241ª, D10Rat80ª, D10Mgh6, D10Rat133ª, D10Rat151, D10Rat122, D10Rat7
11	D11Mit4, D11Rat21, D11Rat18, D11Rat10, D11Mgh4, D11Mgh3, D11Rat43
12	D12Rat58, D12Rat40, D12Rat39, D12Rat23, D12Rat15, D12Rat52
13	D13Rat2, D13Mgh4, D13Rat25, D13Mit2, D13Mit5, D13Mit4
14	D14Rat1, D14Mit2, D14Rat36, D14Rat16, D14Mit4, D14Rat40, D14Rat57, D14Rat94,
	D14Rat38, D14Rat132
15	D15Rat69, D15Mgh7, D15Rat5, D15Rat85, D15Mgh8, D15Mgh4, D15Mgh9,
	D15Rat26, D15Mgh5, D15Rat29
16	D16Mgh4, D16Rat9, D16Rat67, D16Rat64, D16Rat34, D16Rat37
17	D17Rat2, D17Rat8, D17Rat14, D17Rat15, D17Mgh5, D17Rat34, D17Rat37,
	D17Rat130, D17Rat47
18	D18Rat62, D18Mit1, D18Mit8, D18Rat60, D18Rat8, D18Rat77
19	D19Rat28, D19Rat17, D19Rat15, D19Rat73, D19Mit9, D19Rat68, D19Rat7, D19Rat60
20	D20Rat32, D20Mgh5, D20Rat3, D20Rat7, D20Rat39, D20Rat29
X	DXRat2, DXRat8, DXRat64, DXRat102

^aAdditional SSLP markers for fine mapping

Supplemantal Table S2 SSLP markers used for generation of F344-Ctns^{ugl} congenic strain

Chromosome	SSLP Marker
1	D1Rat2, D1Rat153, D1Rat403, D1Rat20, D1Rat27, D1Rat29, D1Rat38, D1Mgh19,
	D1Arb29, D1Rat70, D1Mit34, D1Rat452, D1Rat90
2	D2Rat251, D2Rat6, D2Wox3, D2Mit5, D2Mgh19, D2Rat215, D2Mit7,
	D2Mgh24, D2Mit11, D2Rat89, D2Rat118, D2Rat103, D2Rat70
3	D3Rat56, D3Rat193, D3Rat46, D3Rat130, D3Rat39, D3Rat222, D3Mgh11, D3Rat157,D3Mit2, D3Mgh10
4	D4Rat142, D4Mgh13, D4Mgh2, D4Mgh16, D4Rat166, D4Rat176, D4Rat80, D4Arb15, D4Rat72
5	D5Rat120, D5Rat126, D5Rat4, D5Rat141, D5Mit4, D5Mgh23, D5Mgh20, D5Mgh8, D5Rat49
6	D6Rat47, D6Rat41, D6Mit9, D6Wox3, D6Mit8, D6Rat160, D6Rat109
7	D7Rat66, D7Rat113, D7Rat31, D7Rat103, D7Rat24, D7Rat42, D7Rat67, D7Rat81, D7Rat1
8	D8Rat58, D8Mit5, D8Rat62, D8Rat16, D8Rat8, D8Rat171
9	D9Rat44, D9Rat132, D9Rat158, D9Rat16, D9Rat11, D9Rat110, D9Rat2
10	D10Rat95, D10Rat198, D10Rat223, D10Mgh8, D10Rat119, D10Rat80, D10Rat133, D10Rat193,
	D10Rat122, D10Rat2
11	D11Rat87, D11Mit4, D11Rat10, D11Mgh4, D11Mgh3, D11Rat43
12	D12Rat58, D12Rat40, D12Rat43, D12Rat16, D12Rat25, D12Rat22
13	D13Rat11, D13Rat1, D13Arb5, D13Rat31, D13Mit4, D13Mit15
14	D14Rat1, D14Wox3, D14Rat83, D14Arb10, D14Rat139, D14Mgh4
15	D15Rat114, D15Rat69, D15Rat85, D15Rat92, D15Mgh8, D15Rat28
16	D16Rat88, D16Rat118, D16Rat65, D16Rat34, D16Rat93
17	D17Rat2, D17Rat59, D17Rat15, D17Rat130, D17Rat65
18	D18Mit12, D18Rat132, D18Rat57, D18Mit8, D18Rat8, D18Rat44
19	D19Rat28, D19Rat15, D19Rat46, D19Rat2
20	D20Rat32, D20Rat34, D20Arb10

Supplemental Fig. S1 Linkage analysis of the *ugl* locus. Haplotype analysis of the male 196 F_2 intercross progeny. The numbers of offspring that inherited each type of chromosome are listed at the bottom of each column. Position of SSLP markers according to The Rat Genome Database (RGD) are indicated in parentheses. The *ugl* locus was mapped to close to *D10Rat241* on rat chromosome 10.

Shimizu Y et al.

Supplemental Fig. S2 Variants of the 13-bp deletion in exon 7 of *Ctns* in LEA substrains. Genotyping of the LEA substrains revealed the presence of a 13-bp deletion in LEA/Tohm and LEA/Hkm rats, while it was absent in LEA/Tj and LEA/Hok rats.

Supplemental Fig. S3 Distribution of serum creatinine levels in the 196 male F_2 intercross progeny.

Supplemental Fig. S4 LRS score plot for QTL of serum creatinine in F_2 intercross progeny on whole chromosomes. (a) One significant peak (LRS score, 64.1) and one suggestive peak (LRS score, 12.8) are located on chromosome 10 at *D10Mgh6* (64.6 Mb) and 12 at *D12Rat23* (27.2 Mb) respectively. (b) Genetic map of chromosome 10. Position of SSLP markers according to The Rat Genome Database (RGD) are indicated in parentheses. The horizontal solid line (LRS score 16.2) and dotted line (LRS score 10.0) indicate significant and suggestive threshold levels of the LRS score, respectively. The thresholds were determined by permutation test.

Supplemental Fig. S5 Oral glucose tolerance test (OGTT) for F344-*Ctns^{ugl}* rats. The glucose tolerance was evaluated by OGTT in male F344 (n = 4), F344-*Ctns^{ugl}* (n = 4) at 10 weeks of age and LEA/Tohm rats (n = 17) at 12 weeks of age. Blood glucose was measured at 0, 30, 60, 90 and 120 min after oral glucose administration.