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Methods 

Extraction and reformatting of phosphopeptide sequences from peptide ID results—The 

KinaMINE data formatter (Kinamine.jar) uses the Distinct Peptide Report and the FASTA file 

that was used in the proteomics search engine as input, filters the peptides from the report with 

a threshold of 1% FDR, to consolidate the sequences of all peptides that were phosphorylated 

in the experiment. It then outputs a .csv table (the “Positive Substrates” file, which is named by 

the user at the time of running the script) of those tyrosine-phosphorylated sequences, with 

each amino acid separated into an individual column and the phosphotyrosine aligned. This 

table also contains the accession number of the protein each peptide was from, which is used to 

extract the sequences of those proteins from the inputted FASTA file and calculate the 

“Substrate Background Frequency” (frequency of the 20 canonical amino acids found in each of 

the proteins individually; SBF), also output as a .csv. This .csv file also reports the total number 

of tyrosine residues within those protein sequences and the number of those tyrosine residues 

that were observed as phosphorylated in the experiment for subsequent use in determining 

FLT3’s “normalization score” in the Screener module of KINATEST-ID (described below). 

Phosphopeptide list comparison filtering—To select the sequences that were phosphorylated in 

common between the WT and the two mutant forms of FLT3, we developed a filtering script in R 

(“Similarity and Difference Finder.R”) to extract sequence lists and generate corresponding 

Substrate Background Frequency tables for the proteins corresponding to the selected peptides. 

This script provides either the intersection or symmetric difference between those sets as two 

new output tables containing only the information relevant to the sequences desired.   

Approximating most likely “true negative” sequence list from substrate dataset—The accession 

numbers for proteins that remain in the Substrate Background Frequency list after the previous 

filter are submitted to the reviewed human Uniprot/SwissProt database 

(http://uniprot.org/uploadlist/) to generate a FASTA file containing the sequences of those 
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proteins. The FASTA file is converted separately to .csv format using a script obtained from 

(https://www.researchgate.net/post/Converting_a_fasta_file_to_a_tab-delimited_file10). This file 

and the filtered Positive Substrates list file (generated as described in the previous section) are 

used as input for the “NegativeMotifFinder.R” to extract additional tyrosine-containing 

sequences from those proteins that could in principle have been phosphorylated but were not 

detected (outputting a “Negative Motifs” .csv file that is named by the user upon running the 

script). “Negative Motifs” files and corresponding “Positive Substrates” files are later used by the 

Kinatestpart1.R script to calculate Matthews Correlation Coefficient (MCC) values that give a 

general threshold for which peptides will or will not be phosphorylated by the kinase of interest. 
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Tables  

Substrate Substrate Sequence 
Molecular 
Weights 
(g/mol) 

[M+(1)H] [M+(2)H] [M+(3)H] [M+(4)H] [M+(5)H] [M+(6)H] [M+(7)H] [M+(8)H] 

FL-ABLtide EAIYAAPFAKKBGGGAPTYSPPPPPGGRKKRRQRRLL 4346.15 N/A 2174.4 1449.8 1087.8 870.3 725.4 622.0 544.5 

FLT3tide FTDRLQQYISTRGGBGG 2109.37 2109.9 1055.7 703.8 N/A N/A N/A N/A N/A 

A GGDEDNDNYCNPNEEGGBGG 2265.26 2264.2 1132.1 N/A N/A N/A N/A N/A N/A 

B GGDEDSDDYFNPNEEGGBGG 2283.24 2284.9 1143.1 N/A N/A N/A N/A N/A N/A 

C GGDEDSDIYANPNEEGGBGG 2205.22 2206.6 1114.9 N/A N/A N/A N/A N/A N/A 

D GGDEDSDNYFNPNEEGGBGG 2282.26 2281.9 1140.6 N/A N/A N/A N/A N/A N/A 

E GGDEDSDIYFNPNEEGGBGG 2281.31 2282.9 
1152.7 
(M+Na) 

N/A N/A N/A N/A N/A N/A 

F GGDEDSDNYFNFNEEGGBGG 2332.32 2334.7 

1167; 
1179 

(M+Na); 
1186.6 
(M+K) 

N/A N/A N/A N/A N/A N/A 

G GGDEDSNDYFNTNEEGGBGG 2286.25 2287.9 
1155.1 
(M+Na) 

N/A N/A N/A N/A N/A N/A 

H GGDEDHNQYEQPNEEGGBGG 2341.33 2343.1 
1172.1; 
1182.6 
(M+Na) 

781.8 N/A N/A N/A N/A N/A 

Table S1. A summary of the FLT3 Artificial Substrate (FAS) candidate sequences synthesized and assayed in vitro with recombinant FLT3 variants.  

Abltide (EAIYAAPFAK; the substrate has been incorporated with an SH3 recognition and cell penetrating sequence and termed FL-Abltide) is a 

previously known FLT3 peptide substrate and has been used a reference substrate to monitor kinase activity.1 The substrate sequences derived 

from the KINATEST-ID pipeline are underlined and were synthesized within the terbium binding motif shell (amino acids not underlined; sequence 

generated using the Aligner module of KINATEST-ID) with a biotinylated lysine (B) as an enrichment tag. The “Molecular Weights” column 

summarizes the theoretical weight (molecular weight) of the synthesized peptide sequences. The additional right-hand columns summarize the 
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major observed mass (M) to charge (m/z) signals [M+(n)H] for each peptide’s LC-MS analysis. Sodium (Na) or potassium (K) adducts were present 

in the second charge state [M+2H] for FAStides-E-H. Charge states not observed are denoted as N/A.   
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Scoring  

Model 

Database 
size 

MCC Sensitivity Specificity Accuracy Precision EER AROC Threshold 

WT-2H 888 0.39 0.73 0.81 80.28 0.31 0.20 0.86 17 

WT-OVLP 559 0.38 0.79 0.76 76.44 0.29 0.24 0.85 17 

WT-16H 1559 0.34 0.91 0.55 60.95 0.28 0.39 0.78 12 

D835Y-16H 2010 0.35 0.92 0.56 60.82 0.30 0.39 0.78 13 

ITD-16H 344 0.43 0.54 0.92 88.58 0.45 0.11 0.89 32 

SHARED-16H 244 0.45 0.66 0.89 86.50 0.42 0.59 0.89 45 

Table S2. Performance metrics and comparison of PSM models. Scoring model gives the substrate lists used to develop the scoring model. 

Database size represents the number of substrates in the list. The Matthew’s correlation coefficient (MCC) is a performance metric for binary 

classifiers with values within a -1 to +1 scale.2,3 A value close to 0 indicates a model’s prediction is random while a value close to 1 indicates a 

perfect prediction. A value close to -1 indicates the model is making inverse predictions. Sensitivity is the true positive rate (recall) of each scoring 

model. Specificity is the true negative rate (relative to the input dataset). Accuracy is the measure of a prediction model’s ability to correctly predict 

an outcome’s true classification (i.e. positives vs. negatives from the input dataset). Precision is the rate of a model’s ability for predicting true 

results from all its predictions. Equal error rate (EER) is the rate where the acceptance and rejection errors are the same. Area under the receiver 

operator curve (AROC) describes the number of correct predictions (of true positives or true negatives) at each given score. Threshold is the 

chosen value for binary classification for each predictive model. The lack of balance in the dataset (i.e. more true positives than true negatives or 

the inverse) is a potential caveat of these metrics. MCC-based performance metrics are shown to be compatible with imbalanced datasets. 

However, optimized classifying metrics for imbalanced datasets have been developed2,4 but require implementation of Bayesian statistics or the 

development of a support vector machines.2,5 Based on the satisfactory performance of KINATEST-ID for the applications pursued so far, these 
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have not yet been examined. However, advanced performance metrics should be considered in future updates of the KINATEST-ID predictive 

models.     
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FLT3tide 

  



S10 
 

HPLC-MS Analytical Blank 
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FAStide-A 
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FAStide-B 
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FAStide-C 
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FAStide-D 
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FAStide-E 
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FAStide-F 
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FAStide-G 
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FAStide-H 
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Figure S1  Schematic representation of raw mass spectrometer file combination for ProteinPilot database searches. Each KALIP kinase 

treatment (WT, D835Y and/or ITD) was performed with three biological replicates (R1). The KALIP process was then repeated later to generate 

a second independent KALIP technical experiment (R2). Replicates were individually analyzed on the mass spectrometer and then converted to 

MGF files, ProteinPilot 5.0 database search consisted of six mass spectrometer files for each kinase treatment (no kinase or kinase treatment).   
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Figure S2 is a heat map representation of the Site Selectivity Matrix (SSM) values found in “Output file 2” and was generated as 

previously reported.31 SSM values closer to 1 suggest that the kinase of interest would be more sensitive to changes in the particular 

residue at this position.  
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Figure S3. Heat map representation of FLT3-WT time course KALIP experiment, Site Selectivity Matrix and artificial substrate library 

sequence scoring comparison. (A) Observed representation of each amino acid at each position (-4 to +4 relative to phosphotyrosine) in the 

individual phosphoproteomics datasets for the kinase treatments at two hours (WT-2H) or sixteen hours (WT-16H), or for the sequences shared in 

the two datasets (WT-OVLP). Green = over-represented, white = neutral, red = under-represented. To summarize, differences were modest 

between the two treatment times. (B) We compared the three substrate lists’ SSM values to identify positions with a value greater than 1, which is 

the previously reported threshold used to consider a position as “significant.”1 None of the KALIP dataset SSMs contained a position with a value 

greater than one, suggesting that all positions exhibited some flexibility for which particular amino acid was present.  
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