

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Comparison of the EQ-5D-3L and the SF-6D (SF-36) contemporaneous utility scores in patients with Chronic Kidney Disease

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024854
Article Type:	Research
Date Submitted by the Author:	18-Jun-2018
Complete List of Authors:	Kularatna, Sanjeewa; Australian Centre For Health Services Innovation, Queensland University of Technoloy Senanayake, Sameera; Australian Centre For Health Services Innovation, Queensland University of Technology Gunawardena, Nalika; World Health Organization Graves, Nicholas; Australian Centre For Health Services Innovation, Queensland University of Technology
Keywords:	Cost utility analysis, Quality-Adjusted Life Years (QALYs), utility, Chronic Kidney Disease (CKD)

BMJ Open

Comparison of the EQ-5D-3L and the SF-6D (SF-36) contemporaneous utility scores in patients with Chronic Kidney Disease

<text><text><text><text><section-header><text>

Abstract

Objectives : The aim of this study was to compare utility weights of EQ-5D-3L and SF-6D in a representative cohort of patients with Chronic Kidney Disease (CKD). A cost-utility analysis is designed to report the change to costs required to achieve an estimated change to Quality-Adjusted Life Years (QALYs). The quality component of a QALY is measured by utility. Utility represents the preference of general population for a given health state. Classification systems of the multi-attribute utility instruments (MAUI) are used to define these health states. Utility weights developed from different classification systems can vary and so might affect the conclusions from cost-utility analyses.

Design: A community based cross sectional study

Setting : Anuradhapura a rural district in Sri Lanka.

Participants: A representative sample of 1096 CKD patients completed the EQ-5D-3L and SF-36 from which the SF-6D was constructed according to the published algorithm. The study assessed discrimination, correlation and differences across the two instruments.

Results: Study participants were predominantly male (62.6%). Mean EQ-5D-3L utility score was 0.540 (SD 0.35) compared with 0.534(0.09) for the SF-6D (p=0.588). The correlation (r) between the scores was 0.40 (p<0.001). Utility scores were significantly different in both males and females between the two tools, but there was no difference in age and educational categories. Both MAUI scores decreased significantly (p<0.001;ANOVA) with advancing CKD stage and the corresponding utility scores of the two instruments in different CKD stages were also significantly (p<0.05) different. The largest effect size was seen among the dialysis patients.

Conclusions: The correlation between the scores was moderate. Both tools were able to discriminate advancement of CKD stages. Findings indicate that both the tools cover different spaces in health. Thus, although there was a moderate correlation between the measures, both scores cannot be used interchangeably while assessing QALY during cost utility analysis.

Key words: Cost utility analysis, Quality-Adjusted Life Years (QALYs), utility, Chronic Kidney Disease (CKD)

Article summary

•

•

•

Strengths and limitations of this study

SF-6D in Chronic Kidney Disease patients

spaces in health among CKD patients.

the two instruments change over time.

This is the first study to compare the utility scores arising from the EQ-5D-3L and

This is the first study to demonstrate that EQ-5D-3L and SF-6D tools cover different

Our study was a cross-sectional study, thus we could not assess which utility scores of

ιμ oss-seci .nts change o.

1	
1	
2	
3	
4	
- -	
С	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
/3	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
50	
52	
53	
54	
55	

Introduction

Chronic kidney disease (CKD) is a substantial public health problem with adverse psychological, physical and economic outcomes. The burden of CKD is increasing globally(1). World Health Report (2002) and Global Burden of Disease (GBD) project stated that the diseases of the kidney contribute to the global disease burden with approximately 850,000 deaths every year globally (2). Furthermore, according to GBD study conducted in 2010, out of the top causes of DALY, CKD is ranked 29th globally, 23rd in South East Asia and 14th in Sri Lanka (3). Due to the progressive and disabling nature of CKD it has substantial impact on the quality of life (QOL) of individuals. It is important to measure QOL indicators for the management of chronic kidney disease patients. Several studies demonstrate a relationship between reduced QOL and increased morbidity and mortality (4-7).

World over, the importance of including QOL indicators in the clinical management of patients has been highlighted. This has come to the limelight after several studies demonstrated the strong relationship between reduced QOL and increased morbidity and mortality (5, 8). Meantime, economic evaluation has become increasingly popular among researchers and policy makers during resource allocation in recent years. Due to the relationship between QOL and clinical outcome, during the recent years, QOL has become an important health outcome in economic evaluations. In cost utility analysis (CUA), a method of economic evaluation, outcomes are usually measured in Quality-Adjusted Life Years (QALYs), which is a measure of QOL.

The concept of QALYs was developed in the 1970s. It can measure the changes of an individual's quality and quantity of life and can also aggregate these improvements across individual (9, 10). The change in the quality of life in QALY is measured using a set of weights, called utilities, which reflect different health states. For all possible health states, utilities should be measured on a scale where 1 refers to full health and 0 refers to death (11). Measuring utilities for different health states is complex and time-consuming. Thus, Multi Attribute Utility Instruments (MAUI) such as EuroQol-5D (EQ-5D-3L) (12), Short Form-6D (SF-6D) (13) or the Health Utility Index (HUI) (14, 15) are used to define different health states. The utility scores for different health states in different instruments are derived from methods such as Standard Gambling method (16), Discrete Choice Experiments (17) and Time Trade-Off experiments (18). EQ-5D-3L is the most widely used utility instrument at present (19). EQ-5D-5L, which is the newer version of EQ-5D, has also been developed and tested recently (20).

Page 5 of 20

BMJ Open

Since all the MAUIs aim at measuring the health state of individuals, all the instruments should generate the same utility value for a particular health state. However, the evidence indicates that there is essential difference in the utility scores for a particular health state between different instruments (19, 21-29). This, in turn, indicates that the choice of the MAUI used may adversely influence the results of CUA and thereby the decision-making process (30). Furthermore, for incremental analyses, use of different MAUIs may lead to different results regarding the magnitude, direction or significance of any change in health-related quality of life measure.

Though the differences of different MAUIs have been evaluated in many disease conditions (19, 21, 22, 24), there are no evidence in the literature comparing MAUIs using patients with CKD. The aim of our study is to compare contemporaneous EQ-5D-3L and SF-6D utility scores in patients with CKD. Results may be useful for researchers selecting a generic MAUI to estimate utilities for use in economic modelling of treatments for CKD.

Methods

Patients selection

A population-based descriptive cross-sectional study was conducted in the district of Anuradhapura in the North Central Province (NCP) of Sri Lanka. The study population consisted of 1162 confirmed CKD patients who were over 18 years old with documented evidence of CKD living in the Anuradhapura district. The diagnosis of CKD was made if the Glomerular Filtration Rate (GFR) was less than 60 ml/min per 1.73m2 of body surface area in two measurements made three months apart.

The inclusion criteria were patients above 18 years of age and those who were diagnosed as having CKD by a specialist nephrologist or a consultant physician. Presence of evidence of such diagnosis was made by way of diagnosis cards, clinic records or any other record issued by a specialist nephrologist, a consultant physician or a government hospital. Patients who had previous renal transplantation, who were unable to provide rational information due to any cause (e.g. mental retardation) and who were critically ill but reliable information cannot be acquired from them were excluded from the study.

The data collectors assessed the eligibility of patients by reviewing their clinical records. Informed consent was obtained from those who were eligible for participation in the study.

The study was conducted in all nineteen Medical Officer of Health (MOH) areas of the Anuradhapura district. The number of participants to be included from each MOH area was based on probability proportionate to the size of CKD patients registered in each of the MOH areas. The required number of participants from each MOH area was selected using the simple random sampling method. The population-based CKD register – which records the patients with a confirmed diagnosis of CKD from renal clinics in hospitals of the NCP since 2003 – was used as the sampling frame. The register was obtained from the office of the Provincial Director of Health Services (31).

Calculation of utility scores

Currently, there is no algorithm based on preferences of the Sri Lankan public to score the SF-6D on a utility scale. Therefore, the UK algorithm was used for this purpose (13). Though Sri Lankan EQ-5D-3L utility scores are available (18), the UK utility scores were used for the EQ-5D-3L (32) because of the unavailability of comparable Sri Lankan SF-6D utility scores as mentioned earlier. This allowed the comparison of utility scores from the same country.

The EQ-5D-3L instrument contains five domains; mobility, self-care, usual activities, pain / discomfort and anxiety / depression. Each domain has one item and each item has three levels: one denoting no problems and three denoting severe problems (12). Thus, EQ-5D-3L has mutually exclusive 243 different health states.

SF-6D is derived from SF-36, SF-12 Version 1 and SF-12 Version 2. The current study utilised SF-36 for the data collection. SF-36 includes 36 items that measure eight domains; role limitations caused by physical problems (4 items), physical function (10 items), role limitations caused by emotional problems (3 items), pain (2 items), social function (2 items), general health perceptions (5 items), emotional well-being (5 items) and energy / fatigue (4 items). Questions have different answer options which range from two to seven. While scoring, each question is scored in a scale ranging from 0 (worst health) to 100 (best health). All items in a domain are summed up and averaged to give an average score for each domain which ranges from 0 (worst health) to 100 (best health). To calculate the utility scores of the SF-6D, 11 items are used covering six domains; physical functioning, pain, mental health and vitality (13).

The EQ-5D-3L utility calculation was undertaken using the Stata syntax developed by Ramos-Goni et al. (33). The SF-6D scores were computed based on published algorithms

BMJ Open

(13). Patients for whom one of the two measurements was missing were excluded from the analysis.

The EQ-5D utility scores range from -0.59, 0=being dead; negative values represent health status considered worse than "dead", to 1.00 which indicate good health status. Values close to zero indicate worse conditions, while 1.00 represents perfect health status. The SF-6D utility scores ranged from 1.0 which indicates no difficulty in any dimensions to 0.296 which indicate severely impaired levels in all dimensions.

Data analysis

Stata 15.1 software was used for the analysis. Distribution of the socio-demographic characteristics of the study population was compared with their mean utility scores. Paired t-test was used to assess the difference between the two instruments in each socio-demographic class (34). Histograms were plotted for the two utility values distribution. Floor effects and ceiling (proportion of patients with the highest and lowest possible scores respectively) were calculated for the EQ-5D and SF-6D. Ceiling and floor effects were considered small if $\leq 15\%$ of patients occupy the best or worst health states, but they were considered serious if >15% of patients occupy these states (35).

Currently, an established methodology to compare different MAUIs is not available. Thus, recently published methodologies, which compared different MAUIs, were followed in the current study (19, 23, 34). This included a combination of statistical and psychometric analyses to examine discrimination, agreement, differences and correlation between the two instruments.

Agreement and differences

The paired t-test was used to assess the difference between the EQ-5D-3L and SF-6D utility scores. Overall difference of the two utility scores as well as the difference of the utility scores according to different socio-demographic and disease related features were assessed. Furthermore, the distribution of the responses to the different domains of the two instruments was tabulated to present the agreement and the differences between the two instruments. *Correlation*

The dimensions of the two instruments were compared using Spearman correlation coefficient. The related dimensions between the two MAUIs are role limitation (SF-6D)/usual activities (EQ-5D-3L), physical functioning (SF-6D)/mobility and self-care (EQ-5D-3L), pain (SF-6D)/pain and discomfort (EQ-5D-3L), social functioning (SF-6D)/usual activities

(EQ-5D-3L) and mental health (SF-6D)/anxiety and depression (EQ-5D-3L). The vitality dimension of the SF-6D did not have any related dimension with the EQ-5D-3L. The magnitude of the correlation coefficients were interpreted according to Guilford's criteria (36).

Discrimination

It is important that MAUIs can discriminate correctly among groups of different severity as MAUIs are meant to measure improvement in QOL due to health improvement in the condition of interest.

Glomerular Filtration Rate (GFR) is the most important indicator of kidney function of patients with CKD (37). Studies have shown that decreased GFR is associated with infection, impaired cognitive and physical function as well as threats to patient safety (38). Though classifications exist to classify stages of CKD, it is evident that at present most of the clinical decision making in CKD is solely based on GFR base classification (39, 40). Depending on the GFR value, CKD is categorised into five stages; stage I to stage V. For analytical purposes, the CKD stages I to III were categorised as "early stage" in the present study. It is expected that with advanced stages of the disease, the utility scores should be lower than the early stages.

Discrimination of EQ-5D-3L and SF-6D for different CKD stages was examined using ANOVA and effect size. The instrument's ability to discriminate between two adjacent stages was estimated by calculating the effect size. The effect size was calculated by dividing the mean difference of two adjacent CKD stages by the standard deviation of the milder of the two CKD stages (41). Large effect size indicates better discriminating ability of the instrument. The effect size was categorised into small (0.2–0.5), medium (0.5–0.8) and large (more than 0.8) (42).

Test-retest reliability

To assess the test-retest reliability of the study instrument, within a period of one week, 30 randomly selected study participants were visited at their households by the data collectors. Test re-test reliability of the utility scores of the two instruments was assessed using Spearman's r correlation coefficient and a value of 0.70 or greater was considered as satisfactory reliability (43).

Results

Sample characteristics

BMJ Open

Out of 1162 participants selected to be included in the study, 66 (5.6%) did not participate in the study giving a response rate of 94.4%. The mean age of the study population was 58.4 years (Standard Deviation (SD) 10.8). There was a preponderance of males among the study population (62.6%, N=686). The mean eGFR of the population was 31.8 (SD 20.2) ml/min/1.73 m². The mean number of years since diagnosed with CKD was found to be 4.1 (SD 3.2) years. The majority of participants was in the later stages, stage 4 or beyond, of CKD (n=803; 73.2%). 38 participants (3.6%), with stage 5 of the disease and undergoing dialysis, were on haemodialysis (Table 1). Chronic Kidney Disease of Unknown origin (CKDu) was the cause of the CKD in most of the study population (n=489; 43.7%).

Distribution of EQ-5D-3L and SF-6D utility scores

The mean EQ-5D-3L utility score at baseline was 0.540 compared with 0.534 for the SF-6D as summarised in Table 1. The EQ-5D-3L utility score ranged from -0.594 to 1, while SF-6D ranged from 0.3 to 0.89. The median baseline values have different locations in their respective scoring ranges (Fig 1). The EQ-5D-3L showed 1.0% floor effect and 11.8% ceiling effect, while SF-6D had 0.0% floor and ceiling effects.

Agreement, differences and correlation between the two utility scores

There was no significant difference (p=0.588) between overall mean scores of the two utility instruments as well as different age categories (p>0.05) and different education statuses (p>0.05). Compared to SF-6D, the mean EQ-5D-3L utility scores were significantly higher among males (p=0.016), which included those who were employed (p<0.001), had no comorbidities (p<0.001) and had CKD stages earlier than stage V (p=0.042 and 0.015). The mean SF-6D utility scores were significantly higher among females (p=0.045), which included those who were not employed (p<0.001), had comorbidities (p=0.028) and were on dialysis (p<0.001) (Table 1). The standard deviation of the EQ-5D-3L was considerably larger than that of the SF-6D among all sub groups.

Significant proportion of the patients reported "no problem" in any of the EQ-5D-3L dimensions than the SF-6D. However, fewer patients reported "extreme problems" in the EQ-5D-3L than in the SF-6D (Tables 2 and 3). Patients reported different results for the related dimensions of the two MAUIs (Tables 2 and 3). Nearly half of the patients reported "no problem" in Mobility domain of the EQ-5D-3L, while only 0.7% reported "no problems" with the physical functioning of the SF-6D. Nearly quarter (23.8%) of patients reported "no problems" for the anxiety / depression dimension in the EQ-5D-3L, whereas only 0.6% reported the same for the mental health dimension of the SF-6D.

The correlation between EQ-5D-3L and SF-6D was 0.408, which was statistically significant at p<0.001 level (Figure 2). Regarding the correlation between different domains of the two instruments, according to the Guilford's criteria, low level of correlation (0.2-0.4) was seen between Mobility and Physical functioning (0.3249), Social functioning (0.3672) and Pain (0.3607); between Usual activities and Social functioning (0.3152); between Pain/ discomfort and Physical functioning (0.3656), Pain (0.3697) and Vitality (0.3120); between Anxiety/ depression and Social functioning (0.3656), Pain (0.3495) and Vitality (0.3136). Also, moderate correlation (0.4-0.6) was evident between Pain / discomfort and Social functioning (0.4090). All other domains were poorly correlated between the two instruments (Table 4).

Discrimination

With both MAUIs, utility scores decreased with increasing severity (as measured by CKD stage) (Table 5). In both MAUIs, the utility differences across CKD stages were statistically significant (p<0.05; ANOVA) indicating good discrimination. Figure 3 indicated the boxplots present the median, quartiles and extreme values for the EQ-5D and SF-6D utility scores for CKD stage. Furthermore, the calculated effect size between CKD early stage and stage IV was 0.071 and 0.141 for EQ-5D-3L and SF-6D respectively. The highest effect size was observed between CKD stage V and dialysis group, which was 0.807 for EQ-5D-3L and 1.098 for SF-6D.

Test-retest reliability

The test re-test Spearman's correlations was more than 0.9 for both the instruments indicating good test re-test reliability.

Discussion

The findings from this study are a comparison of utility scores arising from the EQ-5D-3L and SF-6D in CKD patients. Comparisons between utility scores of EQ-5D-3L and SF-6D are scarce in the literature. Moreover, this is the first such comparison among CKD patients. According to the current study, the correlation between the scores was moderate. Both tools were able to discriminate advancement of CKD stages. Effect size, which denoted the discriminating ability of different CKD stages, is highest when disease condition is advanced and the highest effect size was seen in SF-6D.

At present, there is no consensus on the methodology to compare the utility scores of different MAUIs. The present study adopted the methodologies used by Kularatna et at.

BMJ Open

(2017) and Lamers et al. (2006) (19, 34). Only one time assessment of the utilities was done in the present study. Thus, the responsiveness of the two instruments was not assessed. Though Sri Lankan EQ-5D-3L utility scores are available (18), yet we used the UK utility scores for the EQ-5D-3L (32) because of the unavailability of comparable Sri Lankan SF-6D utility scores. This is an accepted method of calculating the utility scores in the absence of country specific utilities. Two studies conducted in Netherlands (24) and Italy (21), comparing the utility scores of the two instruments, had used the UK derived EQ-5D-3L and SF-6D utility scores.

The present study did not find any difference (p=0.588) between the overall mean scores of the two utility instruments. This was similar to a study conducted among a group of HIV/AIDS patients (28), but different to several other studies available in the literature where different results have been reported. Significantly higher utility values for EQ-5D-3L were found among general population (29), cardio-vascular disease patients (19), rheumatoid arthritis patients (21) and patients with stable angina (16). However, in a study conducted among a group of patients with psychiatric disorders, significantly higher utility values were obtained for SF-6D instrument (24). These varying results could be due to different recall periods of the two instruments. EQ-5D-3L assessed the health status of the day of instrument administration while SF-6D, which was derived from SF-36, assessed the health status of the past 30 days.

Though overall ceiling and floor effects of both instruments were small, significant ceiling effect was evident in the EQ-5D-3L. This was consistent with several other studies conducted elsewhere (16, 19, 44-46). This is mainly due to the fact that the EQ-5D-3L has limited response levels and the five level newer version of EQ-5D expected to improve the properties of the three-level in terms of reduced ceiling effects, increased reliability and improved ability to discriminate between different levels of health (47).

Discrimination of EQ-5D-3L and SF-6D for different CKD stages was examined using ANOVA and effect size. In both MAUIs, the utility differences across CKD stages were statistically significant (p<0.05; ANOVA) indicating good discrimination. However, the effect size was small for both the tools until the dialysis stage. At the dialysis stage, the effect size is large and this was highest in the SF-6D instrument. It could be due to the fact that CKD is considered asymptomatic until the later stages of the disease (48, 49) so that the instruments cannot discriminate different stages. According to a recent study conducted by

Jesky et al. (2016), the EQ-5D-3L utility scores of the adjacent pre-dialysis CKD stages were not found to be statistically significant (50).

Limitations

Some of the information related to QOL in SF-36 is considered to be sensitive in nature and the fact that this information was obtained utilising an interviewer-administered questionnaire could have led to some under-reporting in the assessment of QOL though many measures were taken to minimize this issue. Our study was a cross-sectional study, thus we could not assess which utility scores of the two instruments change over time.

Conclusions

The correlation between the scores was moderate. Both tools were able to discriminate advancement of CKD stages. Effect size, which denoted the discriminating ability of the different CKD stages, is highest when disease condition is advanced and the highest effect size was seen in SF-6D. Findings indicate that both tools cover different spaces in health. Thus, although there was a moderate correlation between the measures, both scores cannot be used interchangeably while assessing QALY during cost utility analysis.

Ethics approval and consent to participate

The study is in accordance with Helsinki Declaration. The study protocol has been approved by the Ethics Committee of Colombo Medical Faculty. Permission was obtained from the Provincial Director of Health Service, to assess the CKD register available at his office. Participants gave their informed consent.

Funding

This study was funded by the Ministry of Health, Sri Lanka

Competing interests: None declared.

Patient consent : Obtained.

Author Contributions

SK and SS : Research idea, study design, statistical analysis and drafting of the manuscript. NG²: study design, data analysis/interpretation. NG¹: participated in study design, data interpretation and supervision. All authors read and approved the final manuscript.

BMJ Open

Provenance and peer review : Not commissioned; externally peer reviewed.

Data sharing statement

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

- Senanayake S, Gunawardena N, Palihawadana P, Kularatna S, Peiris T. Validity and reliability of the Sri Lankan version of the kidney disease quality of life questionnaire (KDQOL-SFTM). Health and quality of life outcomes. 2017;15(1):119.
- 2. Schieppati A, Remuzzi G. Chronic renal diseases as a public health problem: epidemiology, social, and economic implications. Kidney International. 2005;68:S7-S10.
- 3. Evaluation IfHMa. Global Burden of Disease 2010 Arrow Diagram: Institue for Health Metrics and Evaluation; 2010 [Available from: http://vizhub.healthdata.org/irank/arrow.php.
- Rebollo-Rubio A, Morales-Asencio JM, Pons-Raventos ME, Mansilla-Francisco JJ. Review of studies on health related quality of life in patients with advanced chronic kidney disease in Spain. Nefrologia. 2015;35(1):92-109.
- Mujais SK, Story K, Brouillette J, Takano T, Soroka S, Franek C, et al. Health-related quality of life in CKD patients: correlates and evolution over time. Clinical Journal of the American Society of Nephrology. 2009;4(8):1293-301.
- Tsai Y-C, Hung C-C, Hwang S-J, Wang S-L, Hsiao S-M, Lin M-Y, et al. Quality of life predicts risks of end-stage renal disease and mortality in patients with chronic kidney disease. Nephrology dialysis transplantation. 2009;25(5):1621-6.
- DeOreo PB. Hemodialysis patient-assessed functional health status predicts continued survival, hospitalization, and dialysis-attendance compliance. American Journal of Kidney Diseases. 1997;30(2):204-12.
- Gussous Y, Theologis AA, Demb JB, Tangtiphaiboontana J, Berven S. Correlation Between Lumbopelvic and Sagittal Parameters and Health-Related Quality of Life in Adults With Lumbosacral Spondylolisthesis. Global spine journal. 2018;8(1):17-24.
- 9. Howren MB. Quality-Adjusted Life Years (QALYs). Encyclopedia of Behavioral Medicine: Springer; 2013. p. 1605-6.
- Torrance GW, Feeny D. Utilities and quality-adjusted life years. International journal of technology assessment in health care. 1989;5(4):559-75.
- 11. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes: Oxford university press; 2015.
- 12. Brooks R. EuroQol: the current state of play. Health policy. 1996;37(1):53-72.
- 13. Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health from the SF-36. Journal of health economics. 2002;21(2):271-92.

- Feeny D, Furlong W, Torrance GW, Goldsmith CH, Zhu Z, DePauw S, et al. Multiattribute and single attribute utility functions for the health utilities index mark 3 system. Medical care. 2002;40(2):113-28.
- 15. Feeny D, Furlong W, Boyle M, Torrance GW. Multi-attribute health status classification systems. Pharmacoeconomics. 1995;7(6):490-502.

- Wu J, Han Y, Zhao F-L, Zhou J, Chen Z, Sun H. Validation and comparison of EuroQoL-5 dimension (EQ-5D) and Short Form-6 dimension (SF-6D) among stable angina patients. Health and quality of life outcomes. 2014;12(1):156.
- Stolk EA, Oppe M, Scalone L, Krabbe PF. Discrete choice modeling for the quantification of health states: the case of the EQ 5D. Value in Health. 2010;13(8):1005-13.
- Kularatna S, Whitty JA, Johnson NW, Jayasinghe R, Scuffham PA. Valuing EQ-5D health states for Sri Lanka. Quality of Life Research. 2015;24(7):1785-93.
- Kularatna S, Byrnes J, Chan YK, Ski CF, Carrington M, Thompson D, et al. Comparison of the EQ-5D-3L and the SF-6D (SF-12) contemporaneous utility scores in patients with cardiovascular disease. Quality of Life Research. 2017;26(12):3399-408.
- Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of life research. 2011;20(10):1727-36.
- Salaffi F, Carotti M, Ciapetti A, Gasparini S, Grassi W. A comparison of utility measurement using EQ-5D and SF-6D preference-based generic instruments in patients with rheumatoid arthritis. Clinical and experimental rheumatology. 2011;29(4):661-71.
- 22. Kwakkenbos L, Fransen J, Vonk MC, Becker ES, Jeurissen M, van den Hoogen FH, et al. A comparison of the measurement properties and estimation of minimal important differences of the EQ-5D and SF-6D utility measures in patients with systemic sclerosis. Clinical and experimental rheumatology. 2013;31(2 Suppl 76):50-6.
- Rowen D, Young T, Brazier J, Gaugris S. Comparison of generic, condition-specific, and mapped health state utility values for multiple myeloma cancer. Value in Health. 2012;15(8):1059-68.
- 24. Lamers LM, Bouwmans CA, van Straten A, Donker MC, Hakkaart L. Comparison of EQ-5D and SF-6D utilities in mental health patients. Health economics. 2006;15(11):1229-36.
- 25. Barton GR, Bankart J, Davis AC. A comparison of the quality of life of hearing-impaired people as estimated by three different utility measures Un comparación de la calidad de vida de personas con trastornos auditivos estimada por tres diferentes medidas de utilidad. International Journal of Audiology. 2005;44(3):157-63.
- 26. Barton GR, Bankart J, Davis AC, Summerfield QA. Comparing utility scores before and after hearing-aid provision. Applied health economics and health policy. 2004;3(2):103-5.
- 27. van Stel HF, Buskens E. Comparison of the SF-6D and the EQ-5D in patients with coronary heart disease. Health and Quality of Life Outcomes. 2006;4(1):20.

BMJ Open

28.	Stavem K, Frøland SS, Hellum KB. Comparison of preference-based utilities of the 15D, EQ-
	5D and SF-6D in patients with HIV/AIDS. Quality of Life Research. 2005;14(4):971-80.
29.	Petrou S, Hockley C. An investigation into the empirical validity of the EQ \Box 5D and SF \Box 6D
	based on hypothetical preferences in a general population. Health economics.
	2005;14(11):1169-89.
30.	McDonough CM, Tosteson AN. Measuring preferences for cost-utility analysis.
	Pharmacoeconomics. 2007;25(2):93-106.
31.	Senanayake S, Gunawardena N, Palihawadana P, Bandara P, Haniffa R, Karunarathna R, et al.
	Symptom burden in chronic kidney disease; a population based cross sectional study. BMC
	nephrology. 2017;18(1):228.
32.	Dolan P. Modeling valuations for EuroQol health states. Medical care. 1997;35(11):1095-108.
33.	Ramos-Goni JM, Rivero-Arias O. eq5d: A command to calculate index values for the EQ-5D
	quality-of-life instrument. Stata Journal. 2011;11(1):120.
34.	Lamers L, Bouwmans C, van Straten A, Donker M, Hakkaart L. Comparison of EQ 5D and
	SF 6D utilities in mental health patients. Health economics. 2006;15(11):1229-36.
35.	Harrison M, Davies L, Bansback N, McCoy M, Verstappen S, Watson K, et al. The
	comparative responsiveness of the EQ-5D and SF-6D to change in patients with inflammatory
	arthritis. Quality of Life Research. 2009;18(9):1195.
36.	Tredoux C, Durrheim K. Numbers, hypotheses and conclusions: A course in statistics for the
	social sciences. Cape Town: University of Cape Town Press[Links]. 2002.
37.	Levey AS, Stevens LA, Coresh J. Conceptual model of CKD: applications and implications.
	American journal of kidney diseases. 2009;53(3):S4-S16.
38.	Seliger SL, Zhan M, Walker LD, Fink JC. Chronic kidney disease adversely influences patient
	safety. Journal of the American Society of Nephrology. 2008;19(12):2414-9.
39.	Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the
	kidney disease: improving global outcomes 2012 clinical practice guideline. Annals of internal
	medicine. 2013;158(11):825-30.
40.	Tseng C-L, Lafrance J-P, Lu S-E, Soroka O, Miller DR, Maney M, et al. Variability in
	estimated glomerular filtration rate values is a risk factor in chronic kidney disease progression
	among patients with diabetes. BMC nephrology. 2015;16(1):34.
41.	Kularatna S, Byrnes J, Chan YK, Ski CF, Carrington M, Thompson D, et al. Comparison of the
	EQ-5D-3L and the SF-6D (SF-12) contemporaneous utility scores in patients with
	cardiovascular disease. Quality of life research : an international journal of quality of life
	aspects of treatment, care and rehabilitation. 2017;26(12):3399-408.
42.	Cohen J. A power primer. Psychological bulletin. 1992;112(1):155.
43.	Litwin MS, Fink A. How to measure survey reliability and validity: Sage; 1995.
44.	Zhao Fl, Yue M, Yang H, Wang T, Wu Jh, Li SC. Validation and comparison of EuroQol and
	short form 6D in chronic prostatitis patients. Value in Health. 2010;13(5):649-56.

45. Cunillera O, Tresserras R, Rajmil L, Vilagut G, Brugulat P, Herdman M, et al. Discriminative capacity of the EQ-5D, SF-6D, and SF-12 as measures of health status in population health survey. Quality of Life Research. 2010;19(6):853-64.

- 46. Bharmal M, Thomas J. Comparing the EQ□5D and the SF□6D descriptive systems to assess their ceiling effects in the US general population. Value in Health. 2006;9(4):262-71.
- 47. Janssen M, Pickard AS, Golicki D, Gudex C, Niewada M, Scalone L, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multicountry study. Quality of Life Research. 2013;22(7):1717-27.
- de Boer IH, Olan GA, Patel UD. Screening for chronic kidney disease. Ann Intern Med. 2013;158(5 Pt 1):362-3.
- 49. Hummel A. Chronic renal failure, a frequent and asymptomatic pathology. Soins; la revue de reference infirmiere. 2010(745):24-6.
- 50. Jesky MD, Dutton M, Dasgupta I, Yadav P, Ng KP, Fenton A, et al. Health-related quality of life impacts mortality but not progression to end-stage renal disease in pre-dialysis chronic kidney disease: a prospective observational study. PloS one. 2016;11(11):e0165675.

Table 1 : Demographic distribution of the sample by the EQ-5D-3L and the SF-6D utility scores

[#] p value significant<0.05, paired t test

Variable	N (%)	EQ-5D-3L utility	Sf-6D utility mean	p value [#]
		mean (SD)	(SD)	
All sample	1096	0.540 (0.35)	0.534 (0.09)	0.588
Sex				
Male	686 (62.6)	0.561 (0.34)	0.532 (0.10)	0.016
Female	410 (37.4)	0.505 (0.37)	0.539 (0.09)	0.045
Age (years)				
Less than 20	07 (0.6)	0.570 (0.44)	0.455 (0.09)	0.486
20-40	45 (4.1)	0.591 (0.34)	0.536 (0.09)	0.259
41-60	562 (51.3)	0.555 (0.35)	0.540 (0.10)	0.282
More than 60	482 (44.0)	0.517 (0.35)	0.529 (0.08)	0.440
Education status				
No formal education	81 (7.4)	0.448 (0.42)	0.508 (0.09)	0.154
5 Grade	413 (37.7)	0.529 (0.35)	0.536 (0.09)	0.681
6-11 Grade	377 (34.4)	0.556 (0.34)	0.533 (0.10)	0.159
GCE O/L passed	190 (17.3)	0.554 (0.34)	0.540 (0.09)	0.513
GCE A/L passed	35 (3.2)	0.618 (0.34)	0.540 (0.09)	0.267
Employment status				
Employed	380 (34.7)	0.675 (0.25)	0.547 (0.10)	< 0.001
Not employed	716 (65.3)	0.468 (0.37)	0.528 (0.09)	< 0.001
Comorbidities				
Present	778 (71.0)	0.505 (0.36)	0.532 (0.09)	0.028
Absent	318 (29.0)	0.625 (0.29)	0.542 (0.10)	< 0.001
CKD stage				
Early stage	254 (24.0)	0.588 (0.30)	0.551 (0.10)	0.042
Stage IV	614 (58.1)	0.566 (0.42)	0.536 (0.09)	0.015
Stage V	151 (14.3)	0.467 (0.42)	0.523 (0.08)	0.076
Dialysis	38 (3.6)	0.126 (0.39)	0.432 (0.07)	< 0.001

Table 2 : Distribution of the sample by the EQ-5D-3L dimensions

	Mobility	Self-care	Usual	Pain/	Anxiety/
	(%)	(%)	activities (%)	discomfort (%)	depression (%)
No problem	515 (47.0)	644 (58.8)	473 (43.2)	182 (16.6)	261 (23.8)
Some problem	559 (51.0)	421 (38.4)	587 (53.6)	739 (67.4)	680 (62.0)
Extreme problem	22 (2.0)	31 (2.8)	36 (3.3)	175 (16.0)	155 (14.1)

	Physical functioning (%)	Role limitation (%)	Social functioning (%)	Pain (%)	Mental health (%)	Vitality (%)
1 ^a	8 (0.7)	173 (15.8)	17 (1.6)	7 (0.6)	6 (0.6)	2 (0.2)
2	22 (2.0)	5 (0.5)	60 (5.5)	5 (0.5)	130 (11.9)	194 (17.7)
3	304 (27.7)	135 (12.3)	482 (44.0)	59 (5.4)	582 (53.1)	498 (45.4)
4	356 (32.5)	783 (71.4)	481 (43.9)	452 (41.2)	364 (33.2)	287 (26.2)
5	87 (7.9)	NA	56(5.1)	333 (30.4)	14 (1.3)	115 (10.5)
6 ^b	319 (29.1	NA	NA	240 (21.9)	NA	NA

Table 3 : Distribution of the sample by the SF-6D dimensions

^a No problems

^b Severe problems

Table 4 : Correlation between the EQ-5D-3L and the SF-6D

	Mobility	Self-care	Usual	Pain/	Anxiety/
			activities	discomfort	depression
Physical	0.3249*	0.2644*	0.2347*	0.3123*	0.2988*
functioning					
Role limitation	0.0145	-0.0021	0.2615*	0.0099	0.0875*
Social functioning	0.3672*	0.2811*	0.3152*	0.4090*	0.3656*
Pain	0.3607*	0.2258*	0.2459*	0.3567*	0.3495*
Mental health	0.1770*	0.1975*	0.1771*	0.1387*	0.1401*
Vitality	0.2242*	0.0889*	0.1629*	0.3420*	0.3136*

Table 5 : Discrimination across clinical severity groups

CKD	EQ-5D-3L				SF-6D			
stage	Ν	Mean (SD)	Median	ES	Ν	Mean (SD)	Median	ES
Early	254 (24.0)	0.588 (0.30)	0.656		254 (24.0)	0.551 (0.10)	0.570	
stage								
IV	614 (58.1)	0.566 (0.42)	0.620	0.071	614 (58.1)	0.536 (0.09)	0.560	0.141
V	151 (14.3)	0.467 (0.42)	0.585	0.305	151 (14.3)	0.523 (0.08)	0.550	0.138
Dialysis	38 (3.6)	0 126 (0 39)	-0.016	0 807	38 (3 6)	0 432 (0 07)	0 4 1 0	1 098

Dialysis38 (3.6)0.126 (0.39)-0.0160.80738 (3.6)0.432 (0.07)0.432 (0.07)Between CKD stage utility differences are significant (<0.001) within EQ-5D-3L and SF-6D</td>(ANOVA; P<0.05)</td>

Fig. 1. Distribution of EQ-5D (A) and SF-6D (B)

Fig. 2 Correlation between the EQ-5D-3L and the SF-6D utilities

Fig 3: The box-plots present the median, quartiles and extreme values for the EQ-5D and SF-6D utility scores for CKD stage

BMJ Open

Comparison of the EQ-5D-3L and the SF-6D (SF-36) contemporaneous utility scores in patients with Chronic Kidney Disease in Sri Lanka; a cross sectional survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024854.R1
Article Type:	Research
Date Submitted by the Author:	22-Sep-2018
Complete List of Authors:	Kularatna, Sanjeewa; Australian Centre For Health Services Innovation, Queensland University of Technoloy Senanayake, Sameera; Australian Centre For Health Services Innovation, Queensland University of Technology Gunawardena, Nalika; World Health Organization Graves, Nicholas; Australian Centre For Health Services Innovation, Queensland University of Technology
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Health economics, Health services research, Renal medicine
Keywords:	Cost utility analysis, Quality-Adjusted Life Years (QALYs), utility, Chronic Kidney Disease (CKD)

1	1	Comparison of the EQ-5D-3L and the SF-6D (SF-36) contemporaneous utility scores in
3	2	patients with Chronic Kidney Disease in Sri Lanka; a cross sectional survey
4	3	
5 6	4	
7	5	Sanjeewa Kularatna ¹ , Sameera Senanavake ¹ , Nalika Gunawardena ² , Nicholas Graves ¹
8 9	6	
10	7	¹ Australian Centre for Health Services Innovation, Oueensland University of Technology
12	, 8	² World Health Organization Sri Lanka
13 14	0	wond nearth Organization, 511 Lanka
15	9	
16 17	10	Corresponding author;
18	11	Sanjeewa Kularatna - sanjeewa.kularatna@qut.edu.au
19 20	12	
21	13	Word count : 3277
22 23	14	
24	15	
25 26		
20		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

16	Abstract
17	
18	Objectives : The aim of this study was to compare utility weights of EQ-5D-3L and SF-6D in
19	a representative cohort of patients with Chronic Kidney Disease (CKD). A cost-utility
20	analysis is designed to report the change to costs required to achieve an estimated change to
1	Quality-Adjusted Life Years (QALYs). The quality component of a QALY is measured by
22	utility. Utility represents the preference of general population for a given health state.
3	Classification systems of the multi-attribute utility instruments (MAUI) are used to define
4	these health states. Utility weights developed from different classification systems can vary
5	and may affect the conclusions from cost-utility analyses.
6	
7	Design: A community based cross sectional study
8	
.9	Setting : Anuradhapura a rural district in Sri Lanka.
30	
1	Participants: A representative sample of 1096 CKD patients completed the EQ-5D-3L and
2	SF-36. SF-6D was constructed from the SF-36 according to the published algorithm. The
3	study assessed discrimination, correlation and differences across the two instruments.
4	
5	Results: Study participants were predominantly male (62.6%). Mean EQ-5D-3L utility score
6	was 0.540 (SD 0.35) compared with 0.534 (SD 0.09) for the SF-6D (p=0.588). The
7	correlation (r) between the scores was 0.40 (p<0.001). Utility scores were significantly
8	different in both males and females between the two tools, but there was no difference in age
9	and educational categories. Both MAUI scores were significantly lower (p<0.001) among
0	those who were in more advanced stages of the disease and the corresponding utility scores
1	of the two instruments in different CKD stages were also significantly different (p<0.05).
2	The largest effect size was seen among the dialysis patients.
3	
4	Conclusions: The correlation between the scores was moderate. SF 6D had the lowest floor
5	and ceiling effect, and was better at detecting different stages of the disease. Thus based on the
16	evidence presented in this study, SF 6D appears to be more appropriate to be used among CKD
7	patients
18	
19	Key words: Cost utility analysis, Quality-Adjusted Life Years (QALYs), utility, Chronic
50	Kidney Disease (CKD)

60

BMJ Open

1	51	Strengths and limitations of this study
2 3	52	• The response rate of the study is very high.
4	53	• Both tools used in the study (EQ 5D 3L and SF 36) have been previously validated to
6	54	the Sri Lankan setting before.
7 8	55	• Data collectors were experienced for many local and international studies done among
9	56	CKD patients in Sri Lanka and further they were trained by the principal investigator to
10 11	57	ensure the quality of the data collected
12	58	• Our study was a cross sectional study, thus we could not assess how utility scores of
13 14	50	• Our study was a cross-sectional study, thus we could not assess now utility scores of the two instruments change over time
15	59	
16 17	60	• Some of the information related to QOL in SF-36 is considered to be sensitive in
18	61	nature and the fact that this information was obtained utilising an interviewer-
19 20	62	administered questionnaire could have led to some under-reporting in the assessment
21	63	of QOL though many measures were taken to minimize this issue.
22 23	64	
24	65	
25 26	66	
27		
28 29		
30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
50		
58		

Chronic kidney disease (CKD) is a substantial public health problem with adverse psychological, physical and economic outcomes. The burden of CKD is increasing globally(1). World Health Report (2002) and Global Burden of Disease (GBD) project stated that the diseases of the kidney contribute much to the global disease burden with approximately 850,000 deaths every year globally (2). Furthermore, according to GBD study conducted in 2010, of the top causes of DALY, CKD is ranked 29th globally, 23rd in South East Asia and 14th in Sri Lanka (3). Due to the progressive and disabling nature of CKD, it poses a substantial impact on the quality of life (QOL) of individuals. It is important to measure QOL indicators for the management of chronic kidney disease patients. Several studies have demonstrated a relationship between reduced QOL and increased morbidity and mortality (4-7).

World over, the importance of including QOL indicators in the clinical management of patients has been highlighted. This has come to the limelight after several studies demonstrated the strong relationship between reduced QOL and increased morbidity and mortality (5, 8). Meantime, economic evaluation has become increasingly popular among researchers and policy makers during resource allocation in recent years. Due to the relationship between QOL and clinical outcome, during the recent years, QOL has become an important health outcome in economic evaluations. In cost utility analysis (CUA), a method of economic evaluation, outcomes are usually measured in Quality-Adjusted Life Years (QALYs), which is a measure of QOL.

The concept of QALYs was developed in the 1970s. It can measure the changes of an individual's quality and quantity of life and can also aggregate these improvements across individual (9, 10). The change in the quality of life in QALY is measured using a set of weights, called utilities, which reflect different health states. For all possible health states, utilities should be measured on a scale where 1 refers to best imaginable health and 0 refers to death (11). Measuring utilities for different health states is complex and time-consuming. Thus, Multi Attribute Utility Instruments (MAUI) such as EuroQol-5D (EQ-5D-3L) (12), Short Form-6D (SF-6D) (13) or the Health Utility Index (HUI) (14, 15) are used to define different health states. The utility scores for different health states in different instruments are derived from methods such as Standard Gambling method (16), Discrete Choice Experiments (17) and Time Trade-Off experiments (18). EQ-5D-3L is the most widely used utility instrument at present (19). EQ-5D-5L, which is the newer version of EQ-5D, has also been developed and tested recently (20).

67 Introduction

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 5 of 26

BMJ Open

1	103	
2 3	104	Since all the MAUIs aim at measuring the health state of individuals, all the instruments
4 5	105	should generate the same utility value for a particular state of health. However, the evidence
6	106	indicates that there is an essential difference in the utility scores for a particular health state
7 8	107	between different instruments (19, 21-29). This, in turn, indicates that the choice of the
9 10	108	MAUI used may adversely influence the results of CUA and thereby the decision-making
11	109	process (30). Furthermore, for incremental analyses, use of different MAUIs may lead to
12 13	110	different results regarding the magnitude, direction or significance of any change in health-
14	111	related quality of life measure.
15 16	112	
17 18	113	Though the differences between MAUIs have been evaluated in many disease conditions (19,
18 19	114	21, 22, 24), there are no evidence in the literature comparing MAUIs using patients with
20 21	115	CKD. The aim of our study is to compare contemporaneous EQ-5D-3L and SF-6D utility
22	116	scores in patients with CKD. Results may be useful for researchers selecting a generic MAUI
23 24	117	to estimate utilities for use in economic modelling of treatments for CKD.
25 26	118	
27	119	Methods
28 29	120	Participant selection
30	121	A population-based descriptive cross-sectional study was conducted in the district of
31 32	122	Anuradhapura in the North Central Province (NCP) of Sri Lanka between Septembers to
33 34	123	December 2015. The study population consisted of 1162 confirmed CKD patients, calculated
35	124	using the appropriate formula (31), who were over 18 years old with documented evidence of
36 37	125	CKD living in the Anuradhapura district. The diagnosis of CKD was made if the Glomerular
38	126	Filtration Rate (GFR) was less than 60 ml/min per 1.73m ² of body surface area in two
39 40	127	measurements made three months apart.
41 42	128	
43	129	The inclusion criteria were patients above 18 years of age and those who were diagnosed as
44 45	130	having CKD by a specialist nephrologist or a consultant physician. Presence of evidence of
46	131	such diagnosis was made by way of diagnosis cards, clinic records or any other record issued
47 48	132	by a specialist nephrologist, a consultant physician or a government hospital. Patients who
49 50	133	had previous renal transplantation, who were unable to provide rational information due to
51	134	any cause (e.g. mental retardation) and who were critically ill were excluded from the study.
52 53	135	
54 55	136	The study instrument was an interviewer-administered questionnaire to gather information on the
56	137	socio-demographic information, CKD related information, EQ-5D-3L and SF 36.
57 58	138	
59		For neer review only - http://bmionen.hmi.com/site/about/guidelines.yhtml
00		rorpeerreview only intep://binjopen.binj.com/site/about/guidelines.xitim

Five Public Health Inspectors working in the CKD unit in the North Central Province were used for the data collection and all have been working in the unit for more than 5 years and they had experience in functioning as data collectors for many local and international studies done among CKD patients in the NCP. Data collection was mostly done on weekdays considering the fact that most of the study units were expected to be at home, since most are employed in the informal sector. The data collectors assessed the eligibility of patients by reviewing their clinical records. Informed consent was obtained from those who were eligible for participation in the study. The study was conducted in all nineteen Medical Officer of Health (MOH) areas of the Anuradhapura district. The number of participants to be included from each MOH area was based on probability proportionate to the size of CKD patients registered in each of the MOH areas. The required number of participants from each MOH area was selected using simple random sampling method. The population-based CKD register – which records the patients with a confirmed diagnosis of CKD from renal clinics in hospitals of the NCP since 2003 – was used as the sampling frame. The register was obtained from the office of the Provincial Director of Health Services (32). Calculation of utility scores

158 Currently, there is no algorithm based on preferences of the Sri Lankan public to score the
159 SF-6D on a utility scale. Therefore, the UK algorithm was used for this purpose (13).
160 Though Sri Lankan EQ-5D-3L utility scores are available (18), the UK utility scores were
161 used for the EQ-5D-3L (33) because of the unavailability of comparable Sri Lankan SF-6D
162 utility scores as mentioned earlier. This allowed the comparison of utility scores from the
163 same country.

The EQ-5D-3L instrument contains five domains; mobility, self-care, usual activities, pain /
discomfort and anxiety / depression. Each domain has one item and each item has three
levels: one denoting no problems and three denoting severe problems (12). Thus, EQ-5D-3L
has mutually exclusive 243 different health states.

SF-6D is derived from SF-36, SF-12 Version 1 and SF-12 Version 2. The current study
utilised SF-36 for the data collection. SF-36 includes 36 items that measure eight domains;
role limitations caused by physical problems (4 items), physical function (10 items), role

- 173 limitations caused by emotional problems (3 items), pain (2 items), social function (2 items),
- 174 general health perceptions (5 items), emotional well-being (5 items) and energy / fatigue (4

Page 7 of 26

BMJ Open

1	175	items). Questions have different answer options which range from two to six. While scoring,
3	176	each question is scored in a scale ranging from 0 (worst health) to 100 (best health). All items
4 5	177	in a domain are summed up and averaged to give an average score for each domain which
6	178	ranges from 0 (worst health) to 100 (best health). To calculate the utility scores of the SF-6D,
7 8	179	11 items are used covering six domains; physical functioning, role limitation, social
9	180	functioning, pain, mental health and vitality (13).
10	181	
12 13	182	The EQ-5D-3L utility calculation was undertaken using the STATA syntax developed by
14	183	Ramos-Goni et al. (34). The SF-6D scores were computed based on published algorithms
15 16	184	(13). Patients for whom one of the two measurements was missing were excluded from the
17 19	185	analysis.
19	186	
20 21	187	The EQ-5D utility scores range from -0.59, 0=being dead; negative values represent health
22	188	status considered worse than "dead", to 1.00 which indicate best imaginable health. The SF-
23 24	189	6D utility scores ranged from 0.296 which indicate severely impaired levels in all dimensions
25 26	190	to 1.0 which indicates no difficulty in any dimensions.
27	191	
28 29	192	Data analysis
30 31	193	STATA 15.1 software was used for the analysis. Distribution of the socio-demographic
32	194	characteristics of the study population was compared with their mean utility scores.
33 34	195	Normality of the two distributions were assessed using Kolmogorov-Smirnov and Shapiro-
35	196	Wilk tests. Wilcoxon signed-rank test was used to assess the difference between the two
30 37	197	instruments in each socio-demographic class (35). Histograms were plotted for the two
38 39	198	utility values distribution. Floor effects and ceiling (proportion of patients with the highest
40	199	and lowest possible scores respectively) were calculated for the EQ-5D and SF-6D. Ceiling
41 42	200	and floor effects were considered small if $\leq 15\%$ of patients occupy the best or worst health
43 44	201	states, but they were considered serious if $>15\%$ of patients occupy these states (36).
45	202	
46 47	203	Currently, an established methodology to compare different MAUIs is not available. Thus,
48	204	recently published methodologies, which compared different MAUIs, were followed in the
49 50	205	current study (19, 23, 35). This included a combination of statistical and psychometric
51 52	206	analyses to examine discrimination, agreement, differences and correlation between the two
53	207	instruments.
54 55	208	
56 57	209	Agreement and differences
58		
50		

1	210	The Wilcoxon Signed-Ranks Test was used to assess the overall difference between the EQ-5D-
3	211	3L and SF-6D utility scores and the difference of the utility scores according to different
4 5	212	socio-demographic and disease related features. Furthermore, the distribution of the
6	213	responses to the different domains of the two instruments was tabulated to present the
7 8	214	agreement and the differences between the two instruments. Bland-Altman plot was also
9	215	used to assess the proportional error and the limit of agreement (37).
10 11	216	
12 13	217	Intra Class Correlation (ICC)
14	218	The dimensions of the two instruments were compared using ICC. The related dimensions
15 16	219	between the two MAUIs are role limitation (SF-6D)/usual activities (EQ-5D-3L), physical
17	220	functioning (SF-6D)/mobility and self-care (EQ-5D-3L), pain (SF-6D)/pain and discomfort
18 19	221	(EQ-5D-3L), social functioning (SF-6D)/usual activities (EQ-5D-3L) and mental health (SF-
20	222	6D)/anxiety and depression (EQ-5D-3L). The vitality dimension of the SF-6D did not have
21	223	any related dimension with the EQ-5D-3L. The magnitude of the correlation coefficients
23 24	224	were interpreted according to Guilford's criteria (38).
25	225	
26 27	226	Discrimination
28	227	It is important that MAUIs can discriminate correctly among groups of different severity as
29 30	228	MAUIs are meant to measure change in QOL due to health improvement in the condition of
31 32	229	interest.
33	230	
34 35	231	Glomerular Filtration Rate (GFR) is the most important indicator of kidney function of
36	232	patients with CKD (39). Studies have shown that decreased GFR is associated with infection,
37 38	233	impaired cognitive and physical function as well as threats to patient safety (40). Though
39 40	234	classifications exist to classify stages of CKD, it is evident that at present most of the clinical
40	235	decision making in CKD is solely based on GFR base classification (41, 42). Depending on
42 43	236	the GFR value, CKD is categorised into five stages; stage I to stage V. For analytical
44	237	purposes, the CKD stages I to III were categorised as "early stage" in the present study. It is
45 46	238	expected that with advanced stages of the disease, the utility scores should be lower than the
47 48	239	early stages.
49	240	
50 51	241	Discrimination of EQ-5D-3L and SF-6D for different CKD stages was examined using the
52	242	non-parametric test, Kruskal–Wallis, and effect size. The instrument's ability to discriminate
53 54	243	between two adjacent stages was estimated by calculating the effect size. The effect size was
55 56	244	calculated by dividing the mean difference of two adjacent CKD stages by the standard
57	245	deviation of the milder of the two CKD stages (23, 43). Large effect size indicates better
58		
59		

1	246	discriminating ability of the instrument. The effect size was categorised into small (0.2–0.5),
2 3	247	medium (0.5–0.8) and large (more than 0.8) (44).
4 5	248	
6	249	Test-retest reliability
7 8	250	To assess the test-retest reliability of the study instrument, within a period of one week, 30
9	251	randomly selected study participants were visited at their households by the data collectors.
10 11	252	Test re-test reliability of the utility scores of the two instruments was assessed using ICC and
12 13	253	a value of 0.70 or greater was considered as satisfactory reliability (45).
13 14	254	
15 16	255	Patient and Public Involvement
17	256	The main stakeholders in the provision of care for the CKD patients such as consultants,
18 19	257	medical officers working in nephrology units, community leaders and the patients living in
20	258	this area were involved in planning the study. Their concerns were always entertained and
21 22	259	where feasible their concerns were incorporated into the study. During the data collection,
23	260	stage permission was obtained from the respective local officers. The results of the study was
24 25	261	communicated to the local level officials such as Medical Officer of Health, Divisional
26 27	262	Secretariat, Regional Director of Health Services and Provincial Director of Health Services.
28	263	
29 30	264	Results
31 32	265	Sample characteristics
33	266	Out of 1162 participants selected to be included in the study, 66 (5.6%) did not participate in
34 35	267	the study giving a response rate of 94.4%. The mean age of the study population was 58.4
36	268	years (Standard Deviation (SD) 10.8). There was a preponderance of males among the study
37 38	269	population (62.6%, N=686). The mean eGFR of the population was 31.8 (SD 20.2)
39	270	ml/min/1.73 m^2 . The mean number of years since diagnosed with CKD was found to be 4.1
40 41	271	(SD 3.2) years. The majority of participants was in the later stages, stage 4 or beyond, of
42 43	272	CKD (n=803; 73.2%). 38 participants (3.6%), with stage 5 of the disease and undergoing
43 44	273	dialysis, were on haemodialysis (Table 1). Chronic Kidney Disease of Unknown origin
45 46	274	(CKDu) was the cause of the CKD in most of the study population ($n=489$; 43.7%).
47	275	
48 49 50	276 277	<i>Distribution of EQ-5D-3L and SF-6D utility scores</i> The mean EQ-5D-3L utility score at baseline was 0.540 compared with 0.534 for the SF-6D
51 52	278	as summarised in Table 1. The EQ-5D-3L utility score ranged from -0.594 to 1, while SF-6D
53	279	ranged from 0.3 to 0.89. The median baseline values have different locations in their
54 55 56	280	respective scoring ranges (Fig 1). The EQ-5D-3L showed 1.0% floor effect and 11.8% ceiling
	281	effect, while SF-6D had 0.0% floor and ceiling effects.
57 58	282	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

283 Agreement, differences and correlation between the two utility scores

Analyses revealed non- normal distribution of the utility scores of both the instruments, thus Wilcoxon Signed-Ranks test was used to compare the two utility scores. There was significant difference (p < 0.001) between overall scores of the two utility instruments. Further the two utility scores were significantly different among males (<0.001), age more than 40 years groups, those who were educated from grade 5 to General Certificate of Education (GCE) - Ordinary Level, those who were employed, among both who had and didn't have comorbidities, those who didn't have comorbidities, up to stage IV of CKD and among dialysis patients (Table 1). The standard deviation of the EQ-5D-3L was considerably larger than that of the SF-6D among all sub groups.

Significant proportion of the patients reported "no problem" in any of the EQ-5D-3L dimensions than the SF-6D. However, fewer patients reported "extreme problems" in the EQ-5D-3L than in the SF-6D (Tables 2 and 3). Patients reported different results for the related dimensions of the two MAUIs (Tables 2 and 3). Nearly half of the patients reported "no problem" in Mobility domain of the EQ-5D-3L, while only 0.7% reported "no problems" with the physical functioning of the SF-6D. Nearly quarter (23.8%) of patients reported "no problems" for the anxiety / depression dimension in the EQ-5D-3L, whereas only 0.6%reported the same for the mental health dimension of the SF-6D.

The correlation between EQ-5D-3L and SF-6D was 0.408, which was statistically significant at p<0.001 level (Figure 2). Regarding the ICC between different domains of the two instruments, according to the Guilford's criteria, low level of correlation (0.2-0.4) was seen between Mobility and Physical functioning (0.381), Mobility and Mental health (0.293), Mobility and Vitality (0.322), Self-care and Physical functioning (0.326), Self-care and Pain (0.330), Self-care and Mental Health (0.323), Usual activities and Physical functioning (0.296), Usual activities and Pain (0.355), Usual activities and Mental health (0.295), Pain/ discomfort and Physical functioning (0.382), Pain/ discomfort and Mental health (0.240), Anxiety/ depression and Physical functioning (0.381). Also, moderate correlation (0.4-0.6)was evident between Social functioning and Mobility (0.517), Social functioning and Self-care (0.424), Social functioning and Usual activities (0.464), Social functioning and Pain/discomfort (0.566), Social functioning and Anxiety/depression (0.528), Pain and Mobility (0.475), Pain and Pain/ discomfort (0.482), Pain and Anxiety/depression (0.484), Vitality and Pain/discomfort (0.475) and Vitality and Anxiety/depression (0.453). All other domains were poorly correlated between the two instruments (Table 4). The Bland-Altman plot showed proportional error and wide limits of agreement (Figure 3).

1	319	
3	320	Discrimination
4 5	321	With both MAUIs, utility scores decreased with increasing severity (as measured by CKD
6	322	stage) (Table 5). In both MAUIs, the utility differences across CKD stages were statistically
7 8	323	significant (p<0.05) indicating good discrimination. Figure 3 indicated the box-plots present
9	324	the median, quartiles and extreme values for the EQ-5D and SF-6D utility scores for CKD
10 11	325	stage. Furthermore, the calculated effect size between CKD early stage and stage IV was
12	326	0.071 and 0.141 for EQ-5D-3L and SF-6D respectively. The highest effect size was observed
13 14	327	between CKD stage V and dialysis group, which was 0.807 for EQ-5D-3L and 1.098 for SF-
15 16	328	6D.
17	329	
18 19	330	Test-retest reliability
20	331	The test re-test ICC was more than 0.943 in EQ-5D-3L while it was 0.921 in SF 6D,
21 22	332	indicating good test re-test reliability in both the instruments.
23	333	
24 25	334	Discussion
26 27	335	This is the first study to compare the utility scores arising from the EQ-5D-3L and SF-6D in
28	336	CKD patients. According to the current study, the correlation between the scores was
29 30	337	moderate. Both tools were able to discriminate advancement of CKD stages. Effect size,
31	338	which denoted the discriminating ability of different CKD stages, is highest when disease
32 33	339	condition is advanced and the highest effect size was seen in SF-6D. Further, the lowest
34 35	340	ceiling effect and the floor effect were seen in SF 6D.
36	341	
37 38	342	Evidence indicate that the choice of MAUI (e.g.; EQ 5D or SF6D) has an impact on the
39 40	343	results of the cost-utility analysis (46, 47). Sack et al. (2009) compared the results of cost-
40	344	utility estimates using both EQ 5D and SF 6D. Results indicated contrasting results for the
42 43	345	two instruments and authors concluded that the choice of the instrument does matter in cost-
44	346	utility analysis (46). Thus, from an economic perspective it is important to know the most
45 46	347	suitable MAUI to be used among CKD patients.
47 48	348	
49	349	At present, there is no consensus on the methodology to compare the utility scores of
50 51	350	different MAUIs (19, 35). The present study adopted the methodologies used by Kularatna et
52	351	at. (2017) and Lamers et al. (2006) (19, 35). Only one time assessment of the utilities was
53 54	352	done in the present study. Thus, the responsiveness of the two instruments was not assessed.
55 56	353	Though Sri Lankan EQ-5D-3L utility scores are available (18), yet we used the UK utility
57	354	scores for the EQ-5D-3L (33) because of the unavailability of comparable Sri Lankan SF-6D
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

utility scores. This is an accepted method of calculating the utility scores in the absence of
country specific utilities. Two studies conducted in Netherlands (24) and Italy (21),
comparing the utility scores of the two instruments, had used the UK derived EQ-5D-3L and
SF-6D utility scores.

The present study did not find any difference (p=0.588) between the overall mean scores of the two utility instruments. This was similar to a study conducted among a group of HIV/AIDS patients (28), but different from other studies available in the literature where different results have been reported. Significantly higher utility values for EQ-5D-3L were found among general population (29, 48), cardio-vascular disease patients (19), rheumatoid arthritis patients (21) and patients with stable angina (16). However, in a study conducted among a group of patients with psychiatric disorders, significantly higher utility values were obtained for SF-6D instrument (24). These varying results could be due to different recall periods of the two instruments. EQ-5D-3L assessed the health status of the day of instrument administration while SF-6D, which was derived from SF-36, assessed the health status of the past 30 days.

Though overall ceiling and floor effects of both instruments were small, relatively higher ceiling effect was evident in the EQ-5D-3L. This was consistent with several other studies conducted elsewhere, where EQ 5D 3L reported a relatively higher ceiling effect compared to SF 6D (16, 19, 49-51). This is mainly due to the fact that the EQ-5D-3L has limited response levels and the five level newer version of EQ-5D expected to improve the properties of the three-level in terms of reduced ceiling effects, increased reliability and improved ability to discriminate between different levels of health (52). Further, the current study reported relatively lower ceiling effect, for the EQ 5D, compared to results obtained among Parkinson's disease (13.5%) and stable angina (15.5%) patients. However, our result was higher compared to the ceiling effect observed among patients with systemic sclerosis (7.0%). Among many other factors that could contribute to these differences, the level of morbidity of a disease is said to be one of the factors which could influence the ceiling effect observed in EQ 5D (53). Thus the diseases with lower morbidity are expected to have higher ceiling effects.

387 Discrimination of EQ-5D-3L and SF-6D for different CKD stages was examined using
388 ANOVA and effect size. In both MAUIs, the utility differences across CKD stages were
389 statistically significant (p<0.05; ANOVA) indicating good discrimination. However, the
390 effect size was small for both the tools until the dialysis stage. At the dialysis stage, the effect

BMJ Open

391 size is large and this was highest in the SF-6D instrument. It could be because CKD is

392 considered asymptomatic until the later stages of the disease (54, 55), not allowing the

393 instruments to discriminate the different stages. According to a recent study conducted by

Jesky et al. (2016), the EQ-5D-3L utility scores of the adjacent pre-dialysis CKD stages were

395 not found to be statistically significant (56).

397 Limitations

Some of the information related to QOL in SF-36 is considered to be sensitive in nature and the fact that this information was obtained utilising an interviewer-administered questionnaire could have led to some under-reporting in the assessment of QOL though many measures were taken to minimize this issue. Our study was a cross-sectional study, thus we could not assess how utility scores of the two instruments change over time.

Conclusions

The correlation between the scores was moderate. Both tools were able to discriminate advancement of CKD stages. Effect size, which denoted the discriminating ability of the different CKD stages, is highest when disease condition is advanced and the highest effect size was seen in SF-6D. Findings indicate that both tools cover different aspects of health. Thus, although there was a moderate correlation between the measures, both scores cannot be used interchangeably while assessing QALY during cost utility analysis. Finally, SF 6D had the lowest floor and ceiling effect, and was better at detecting different stages of the disease. Thus based on the evidence presented in this study, SF 6D appears to be more appropriate to be used among CKD patients.

415 Ethics approval and consent to participate

416 The study is in accordance with Helsinki Declaration. The study protocol has been approved

- 417 by the Ethics Committee of Colombo Medical Faculty. Permission was obtained from the
- 418 Provincial Director of Health Service, to assess the CKD register available at his office.
- 419 Participants gave their informed consent.

421 Acknowledgement:

422 Authors acknowledge Asanga Ranasinghe, Priyantha Kumara and Anura Ranasinghe for the423 support rendered during the study.

425 Funding

426 This study was funded by the Ministry of Health, Sri Lanka
		BMJ Open
1	427	
2 3	428	Competing interests: None declared.
4 5	429	
6	430	Patient consent : Obtained.
7 8	431	
9	432	Author Contributions
10	433	SK and SS : Research idea, study design, statistical analysis and drafting of the manuscript.
12 13	434	NG ² : study design, data analysis/interpretation. NG ¹ : participated in study design, data
14	435	interpretation and supervision. All authors read and approved the final manuscript.
15 16	436	Provenance and peer review : Not commissioned; externally peer reviewed.
17 18	437	
19	438	Data sharing statement
20 21	439	The datasets used and/or analysed during the current study available from the corresponding
22	440	author on reasonable request.
25 24	441	
25 26	442	Figure legend
27	443	Fig. 1. Distribution of EQ-5D (A) and SF-6D (B)
28 29	444	Fig. 2 Correlation between the EQ-5D-3L and the SF-6D utilities
30 31	445	Fig. 3 : Bland and Altman plot of differences between EQ-5D and SF-6D for patients with
32	446	СКД
33 34	447	Fig 4: The box-plots present the median, quartiles and extreme values for the EQ-5D and SF-
35	448	6D utility scores for CKD stage
30 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	449	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	450	References
2	451	1 Senanavake S. Gunawardena N. Palihawadana P. Kularatna S. Peiris T. Validity and reliability
5 ⊿	452	of the Sri Lankan version of the kidney disease quality of life questionnaire (KDOOL-SE ^M). Health and
4 5	453	quality of life outcomes 2017:15(1):119
5	454	2 Schiennati A Remuzzi G Chronic renal diseases as a public health problem: enidemiology
7	455	social and economic implications. Kidney International 2005;68:57-510
8	456	3 Evaluation IfHMa, Global Burden of Disease 2010 Arrow Diagram: Institue for Health Metrics
9	450	and Evaluation: 2010 [Available from: http://wizbub bealthdata.org/irank/arrow.php
10	458	A Pobello Pubio A Morales Asoncio IM Dans Payontos ME Mansilla Francisco II. Poviou of
10	450	4. Rebuild-Rubio A, Morales-Asencio JM, Pors-Raventos ML, Marsina-Prancisco JJ. Review of studios on health related quality of life in patients with advanced chronic kidney disease in Spain
12	459	Nofrologia 2015:25(1):02 100
13	400	Nellologia. 2015;55(1).92-109.
14	401	5. Mujais SK, Story K, Brouinette J, Takano T, Soroka S, Franek C, et al. Health-related quality of
15	402	Newbrolew, 2000;4/0):4202,201
16	403	
17	464	6. Isai Y-C, Hung C-C, Hwang S-J, Wang S-L, Hsiao S-M, Lin M-Y, et al. Quality of life predicts
18	465	risks of end-stage renal disease and mortality in patients with chronic kidney disease. Nephrology
19	466	dialysis transplantation. 2009;25(5):1621-6.
20	467	7. DeOreo PB. Hemodialysis patient-assessed functional health status predicts continued
21	468	survival, hospitalization, and dialysis-attendance compliance. American Journal of Kidney Diseases.
22	469	1997;30(2):204-12.
23	470	8. Gussous Y, Theologis AA, Demb JB, Tangtiphaiboontana J, Berven S. Correlation Between
24	471	Lumbopelvic and Sagittal Parameters and Health-Related Quality of Life in Adults With Lumbosacral
25	472	Spondylolisthesis. Global spine journal. 2018;8(1):17-24.
26	473	9. Howren MB. Quality-Adjusted Life Years (QALYs). Encyclopedia of Behavioral Medicine:
27	474	Springer; 2013. p. 1605-6.
28	475	10. Torrance GW, Feeny D. Utilities and quality-adjusted life years. International journal of
29	476	technology assessment in health care. 1989;5(4):559-75.
30	477	11. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the
31	478	economic evaluation of health care programmes: Oxford university press; 2015.
32	479	12. Brooks R. EuroQol: the current state of play. Health policy. 1996;37(1):53-72.
33	480	13. Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health
34	481	from the SF-36. Journal of health economics. 2002;21(2):271-92.
35	482	14. Feeny D, Furlong W, Torrance GW, Goldsmith CH, Zhu Z, DePauw S, et al. Multiattribute and
36	483	single-attribute utility functions for the health utilities index mark 3 system. Medical care.
3/	484	2002;40(2):113-28.
38	485	15. Feeny D, Furlong W, Boyle M, Torrance GW. Multi-attribute health status classification
39 40	486	systems. Pharmacoeconomics. 1995;7(6):490-502.
40 41	487	16. Wu J, Han Y, Zhao F-L, Zhou J, Chen Z, Sun H. Validation and comparison of EuroQoL-5
41 42	488	dimension (EQ-5D) and Short Form-6 dimension (SF-6D) among stable angina patients. Health and
т∠ 43	489	quality of life outcomes. 2014;12(1):156.
44	490	17. Stolk EA, Oppe M, Scalone L, Krabbe PF. Discrete choice modeling for the quantification of
45	491	health states: the case of the EQ-5D. Value in Health. 2010;13(8):1005-13.
46	492	18. Kularatna S, Whitty JA, Johnson NW, Jayasinghe R, Scuffham PA. Valuing EQ-5D health states
47	493	for Sri Lanka. Quality of Life Research. 2015:24(7):1785-93.
48	494	19. Kularatna S. Byrnes J. Chan YK. Ski CF. Carrington M. Thompson D. et al. Comparison of the
49	495	EQ-5D-3L and the SE-6D (SE-12) contemporaneous utility scores in patients with cardiovascular
50	496	disease Quality of Life Research 2017;26(12):3399-408
51	497	20. Herdman M. Gudex C. Llovd A. Janssen M. Kind P. Parkin D. et al. Development and
52	498	preliminary testing of the new five-level version of FO-5D (FO-5D-5L). Quality of life research
53	499	2011.20(10).1727-36
54	500	21 Salaffi F Carotti M Cianetti A Gasnarini S Grassi W A comparison of utility measurement
55	501	using FO-5D and SE-6D preference-based generic instruments in patients with rheumatoid arthritis
56	502	Clinical and experimental rheumatology 2011/20/A)/661-71
57	502	Cimical and Cyperimental meanatology. 2011,23(4).001-71.
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 503 22. Kwakkenbos L, Fransen J, Vonk MC, Becker ES, Jeurissen M, van den Hoogen FH, et al. A 2 504 comparison of the measurement properties and estimation of minimal important differences of the 3 505 EQ-5D and SF-6D utility measures in patients with systemic sclerosis. Clinical and experimental 4 506 rheumatology. 2013;31(2 Suppl 76):50-6. 5 507 Rowen D, Young T, Brazier J, Gaugris S. Comparison of generic, condition-specific, and 23. 6 508 mapped health state utility values for multiple myeloma cancer. Value in Health. 2012;15(8):1059-7 509 68. 8 510 24. Lamers LM, Bouwmans CA, van Straten A, Donker MC, Hakkaart L. Comparison of EQ-5D and 9 511 SF-6D utilities in mental health patients. Health economics. 2006;15(11):1229-36. 10 512 25. Barton GR, Bankart J, Davis AC. A comparison of the quality of life of hearing-impaired 11 513 people as estimated by three different utility measures Un comparación de la calidad de vida de 12 514 personas con trastornos auditivos estimada por tres diferentes medidas de utilidad. International 13 515 Journal of Audiology. 2005;44(3):157-63. 14 516 26. Barton GR, Bankart J, Davis AC, Summerfield QA. Comparing utility scores before and after 15 517 hearing-aid provision. Applied health economics and health policy. 2004;3(2):103-5. 16 518 17 27. van Stel HF, Buskens E. Comparison of the SF-6D and the EQ-5D in patients with coronary 519 heart disease. Health and Quality of Life Outcomes. 2006;4(1):20. 18 520 19 28. Stavem K, Frøland SS, Hellum KB. Comparison of preference-based utilities of the 15D, EQ-521 20 5D and SF-6D in patients with HIV/AIDS. Quality of Life Research. 2005;14(4):971-80. 21 522 29. Petrou S, Hockley C. An investigation into the empirical validity of the EQ-5D and SF-6D 22 523 based on hypothetical preferences in a general population. Health economics. 2005;14(11):1169-89. 23 524 30. McDonough CM, Tosteson AN. Measuring preferences for cost-utility analysis. 24 525 Pharmacoeconomics. 2007;25(2):93-106. 25 526 Lwanga SK, Lemeshow S, Organization WH. Sample size determination in health studies: a 31. 26 527 practical manual. 1991. 27 528 Senanayake S, Gunawardena N, Palihawadana P, Bandara P, Haniffa R, Karunarathna R, et al. 32. 28 529 Symptom burden in chronic kidney disease; a population based cross sectional study. BMC 29 530 nephrology. 2017;18(1):228. 30 531 33. Dolan P. Modeling valuations for EuroQol health states. Medical care. 1997;35(11):1095-31 532 108. 32 533 34. Ramos-Goni JM, Rivero-Arias O. eq5d: A command to calculate index values for the EQ-5D 33 534 quality-of-life instrument. Stata Journal. 2011;11(1):120. 34 535 Lamers L, Bouwmans C, van Straten A, Donker M, Hakkaart L. Comparison of EQ-5D and SF-35. 35 536 6D utilities in mental health patients. Health economics. 2006;15(11):1229-36. 36 537 Harrison M, Davies L, Bansback N, McCoy M, Verstappen S, Watson K, et al. The comparative 37 36. 538 responsiveness of the EQ-5D and SF-6D to change in patients with inflammatory arthritis. Quality of 38 539 39 Life Research. 2009;18(9):1195. 540 Bland JM, Altman D. Statistical methods for assessing agreement between two methods of 40 37. 41 541 clinical measurement. The lancet. 1986;327(8476):307-10. 42 542 38. Tredoux C, Durrheim K. Numbers, hypotheses and conclusions: A course in statistics for the 43 543 social sciences. Cape Town: University of Cape Town Press[Links]. 2002. 44 544 39. Levey AS, Stevens LA, Coresh J. Conceptual model of CKD: applications and implications. 45 545 American journal of kidney diseases. 2009;53(3):S4-S16. 46 546 Seliger SL, Zhan M, Walker LD, Fink JC. Chronic kidney disease adversely influences patient 40. 47 547 safety. Journal of the American Society of Nephrology. 2008;19(12):2414-9. 48 548 Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the 41. 49 549 kidney disease: improving global outcomes 2012 clinical practice guideline. Annals of internal 50 550 medicine. 2013;158(11):825-30. 51 551 42. Tseng C-L, Lafrance J-P, Lu S-E, Soroka O, Miller DR, Maney M, et al. Variability in estimated 52 552 glomerular filtration rate values is a risk factor in chronic kidney disease progression among patients 53 553 with diabetes. BMC nephrology. 2015;16(1):34. 54 554 43. Kularatna S, Byrnes J, Chan YK, Ski CF, Carrington M, Thompson D, et al. Comparison of the 55 555 EQ-5D-3L and the SF-6D (SF-12) contemporaneous utility scores in patients with cardiovascular 56 556 disease. Quality of life research : an international journal of guality of life aspects of treatment, care 57 557 and rehabilitation. 2017;26(12):3399-408. 58 59

BMJ Open

558 44. Cohen J. A power primer. Psychological bulletin. 1992;112(1):155.

559 45. Litwin MS, Fink A. How to measure survey reliability and validity: Sage; 1995.

560 46. Sack TH, Barton GR, Jenkinson C, Doherty M, Avery AJ, Muir KR. Comparing cost-utility 561 estimates: does the choice of EQ-5D or SF-6D matter? Med Care. 2009:889-95.

5 562 47. Grieve R, Grishchenko M, Cairns J. SF-6D versus EQ-5D: reasons for differences in utility 563 scores and impact on reported cost-utility. The European journal of health economics. 564 2009;10(1):15-23.

856548.Stewart ST, Cutler DM, Rosen AB. Comparison of Trends in US Health-Related Quality of Life9566over the 2000's Using the SF-6D, HALex, EQ-5D, and EQ-5D Visual Analog Scale versus a Broader Set11567of Symptoms and Impairments. Medical care. 2014;52(12):1010.

1256849.Zhao Fl, Yue M, Yang H, Wang T, Wu Jh, Li SC. Validation and comparison of EuroQol and13569short form 6D in chronic prostatitis patients. Value in Health. 2010;13(5):649-56.

1457050.Cunillera O, Tresserras R, Rajmil L, Vilagut G, Brugulat P, Herdman M, et al. Discriminative15571capacity of the EQ-5D, SF-6D, and SF-12 as measures of health status in population health survey.16572Quality of Life Research. 2010;19(6):853-64.

1757351.Bharmal M, Thomas J. Comparing the EQ-5D and the SF-6D descriptive systems to assess18574their ceiling effects in the US general population. Value in Health. 2006;9(4):262-71.

1957552.Janssen M, Pickard AS, Golicki D, Gudex C, Niewada M, Scalone L, et al. Measurement20576properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country21577study. Quality of Life Research. 2013;22(7):1717-27.

578 53. Bharmal M, Thomas III J. Comparing the EQ-5D and the SF-6D descriptive systems to assess
 579 their ceiling effects in the US general population. Value Health. 2006;9(4):262-71.
 580 E4 do Boor IH, Olan GA, Batel HD, Screening for shronic kidney disease. Ann Intern Med.

580 54. de Boer IH, Olan GA, Patel UD. Screening for chronic kidney disease. Ann Intern Med. 581 2013;158(5 Pt 1):362-3.

582 55. Hummel A. Chronic renal failure, a frequent and asymptomatic pathology. Soins; la revue de 583 reference infirmiere. 2010(745):24-6.

584 56. Jesky MD, Dutton M, Dasgupta I, Yadav P, Ng KP, Fenton A, et al. Health-related quality of 585 life impacts mortality but not progression to end-stage renal disease in pre-dialysis chronic kidney 586 disease: a prospective observational study. PloS one. 2016;11(11):e0165675.

589 Tables

591 Table 1 : Demographic distribution of the sample by the EQ-5D-3L and the SF-6D utility 592 scores

Variable	N (%)	EQ-5D-3L	Sf-6D utility	p value [#]
		utility mean	mean (SD)	
		(SD)		
All sample	1096	0.540 (0.35)	0.534 (0.09)	< 0.001*
Sex				
Male	686 (62.6)	0.561 (0.34)	0.532 (0.10)	< 0.001*
Female	410 (37.4)	0.505 (0.37)	0.539 (0.09)	0.342
Age (years)	4			
Less than 20	07 (0.6)	0.570 (0.44)	0.455 (0.09)	0.235
20-40	45 (4.1)	0.591 (0.34)	0.536 (0.09)	0.103
41-60	562 (51.3)	0.555 (0.35)	0.540 (0.10)	< 0.001*
More than 60	482 (44.0)	0.517 (0.35)	0.529 (0.08)	0.006*
Education status		4		
No formal education	81 (7.4)	0.448 (0.42)	0.508 (0.09)	0.441
5 Grade	413 (37.7)	0.529 (0.35)	0.536 (0.09)	0.001*
6-11 Grade	377 (34.4)	0.556 (0.34)	0.533 (0.10)	< 0.001*
GCE O/L passed	190 (17.3)	0.554 (0.34)	0.540 (0.09)	0.007^{*}
GCE A/L passed	35 (3.2)	0.618 (0.34)	0.540 (0.09)	0.225
Employment status				
Employed	380 (34.7)	0.675 (0.25)	0.547 (0.10)	< 0.001*
Not employed	716 (65.3)	0.468 (0.37)	0.528 (0.09)	0.417
Comorbidities				
Present	778 (71.0)	0.505 (0.36)	0.532 (0.09)	0.037*
Absent	318 (29.0)	0.625 (0.29)	0.542 (0.10)	< 0.001*
CKD stage				
Early stage	254 (24.0)	0.588 (0.30)	0.551 (0.10)	< 0.001*
Stage IV	614 (58.1)	0.566 (0.42)	0.536 (0.09)	< 0.001*
Stage V	151 (14.3)	0.467 (0.42)	0.523 (0.08)	0.808
Dialysis	38 (3.6)	0.126 (0.39)	0.432 (0.07)	< 0.001*

[#] Wilcoxon signed-rank test ; ^{*} Significant at p < 0.05

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

595 Table 2 : Distribution of the sample by the EQ-5D-3L dimensions

	Mobility	Self-care	Usual	Pain/	Anxiety/
	(%)	(%)	activities (%)	discomfort (%)	depression
					(%)
No problem	515	644			
	(47.0)	(58.8)	473 (43.2)	182 (16.6)	261 (23.8)
Some problem	559	421			
	(51.0)	(38.4)	587 (53.6)	739 (67.4)	680 (62.0)
Extreme					
problem	22 (2.0)	31 (2.8)	36 (3.3)	175 (16.0)	155 (14.1)

598 Table 3 : Distribution of the sample by the SF-6D dimensions

	Physical	Role	Social	Pain (%)	Mental	Vitality (%)
	functioning	limitation	functioning		health (%)	
	(%)	(%)	(%)			
1 ^a	8 (0.7)	173 (15.8)	17 (1.6)	7 (0.6)	6 (0.6)	2 (0.2)
2	22 (2.0)	5 (0.5)	60 (5.5)	5 (0.5)	130 (11.9)	194 (17.7)
3	304 (27.7)	135 (12.3)	482 (44.0)	59 (5.4)	582 (53.1)	498 (45.4)
4	356 (32.5)	783 (71.4)	481 (43.9)	452 (41.2)	364 (33.2)	287 (26.2)
5	87 (7.9)	NA	56(5.1)	333 (30.4)	14 (1.3)	115 (10.5)
6 ^b	319 (29.1	NA	NA	240 (21.9)	NA	NA

^a No problems

600 ^b Severe problems

603

604 Table 4 : Intra Class Correlation between the EQ-5D-3L and the SF-6D

	Mobility	Self-care	Usual	Pain/	Anxiety/
			activities	discomfort	depression
Physical	0.381*	0.326*	0.296*	0.382*	0.381*
functioning					
Role limitation	0.023	-0.003	-0.104	0.016	0.138*
Social	0.517*	0.424*	0.464*	0.566*	0.528*
functioning					
Pain	0.475*	0.330*	0.355*	0.482*	0.484*
Mental health	0.293*	0.323*	0.295*	0.240*	0.244*
Vitality	0.322*	0.148*	0.255*	0.475*	0.453*

605 * Significant at p<0.05 level

608 Table 5 : Discrimination across clinical severity groups

CKD	EQ-5D)- 3L				SF-6D				
stage	Ν	Mean	Media	Sig [#]	ES	Ν	Mean	Media	Sig [#]	ES
		(SD)	n				(SD)	n		
Early	254	0.588	0.656			254	0.551	0.570		
stage	(24.0	(0.30				(24.0	(0.10			
))))			
IV	614	0.566	0.620		0.07	614	0.536	0.560		0.14
	(58.1	(0.42			1	(58.1	(0.09			1
))		< 0.00))		< 0.00	
V	151	0.467	0.585	1	0.30	151	0.523	0.550	1	0.13
	(14.3	(0.42			5	(14.3	(0.08			8
))))			
Dialysi	38	0.126	-0.016		0.80	38	0.432	0.410		1.09
S	(3.6)	(0.39			7	(3.6)	(0.07			8
))			

[#] Kruskal–Wallis test

Fig. 1. Distribution of EQ-5D (A) and SF-6D (B)

137x99mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fig 4: The box-plots present the median, quartiles and extreme values for the EQ-5D and SF-6D utility scores for CKD stage

137x99mm (300 x 300 DPI)

	Item No	Recommendation	Line numbe
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the	1
The and abstract	1	(a) indicate the study's design with a commonly used term in the	1
			16
		(b) Provide in the abstract an informative and balanced summary	16
		of what was done and what was found	
Introduction	1	1	
Background/rationale	2	Explain the scientific background and rationale for the	67
		investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	115
Methods			
Study design	4	Present key elements of study design early in the paper	121
Setting	5	Describe the setting, locations, and relevant dates, including	121-126
8		periods of recruitment, exposure, follow-up, and data collection	-
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	129-134
r	Ĭ	selection of participants	
Variables	7	Clearly define all outcomes exposures predictors potential	157-190
v arrables	/	confounders, and effect modifiers. Give diagnostic criteria, if	137-190
		contounders, and effect modifiers. Give diagnostic criteria, in	
Data sources/	Q*	Ear and variable of interact, give sources of data and datails of	157 100
	0.	rol each variable of interest, give sources of data and details of	137-190
measurement		methods of assessment (measurement). Describe comparability of	
D.	0	assessment methods if there is more than one group	NT 4
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	123
Quantitative variables	11	Explain how quantitative variables were handled in the analyses.	157-190
		If applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to	193-207
		control for confounding	
		(b) Describe any methods used to examine subgroups and	NA
		interactions	
		(c) Explain how missing data were addressed	NA
		(d) If applicable, describe analytical methods taking account of	NA
		sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg	266-267
p		numbers potentially eligible examined for eligibility confirmed	
		eligible included in the study completing follow-up and	
		analysed	
		(b) Give reasons for non-participation at each stage	267
		(c) Consider use of a flow diagram	NA
Descriptive data	1/*	(a) Give characteristics of study participants (as domographic	266 274
Descriptive data	14.	(a) Give enalacteristics of study participants (eg demographic,	200 - 274
		confounders	
	1	comounders	
		(b) Indiants much an efficiency $(1, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	NT A

Outcome data	15*	Report numbers of outcome events or summary measures	NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	NA
		adjusted estimates and their precision (eg, 95% confidence	
		interval). Make clear which confounders were adjusted for and	
		why they were included	
		(b) Report category boundaries when continuous variables were	Table 1
		categorized	
		(c) If relevant, consider translating estimates of relative risk into	NA
		absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and	NA
		interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	335 - 340
Limitations	19	Discuss limitations of the study, taking into account sources of	397
		potential bias or imprecision. Discuss both direction and	
		magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering	405 - 413
		objectives, limitations, multiplicity of analyses, results from	
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	410 - 413
Other information			
Funding	22	Give the source of funding and the role of the funders for the	425
		present study and, if applicable, for the original study on which	
		the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Comparison of the EQ-5D-3L and the SF-6D (SF-36) contemporaneous utility scores in patients with Chronic Kidney Disease in Sri Lanka; a cross sectional survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024854.R2
Article Type:	Research
Date Submitted by the Author:	25-Nov-2018
Complete List of Authors:	Kularatna, Sanjeewa; Australian Centre For Health Services Innovation, Queensland University of technology Senanayake, Sameera; Australian Centre For Health Services Innovation, Queensland University of Technology Gunawardena, Nalika; World Health Organization Graves, Nicholas; Australian Centre For Health Services Innovation, Queensland University of Technology
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Health economics, Health services research, Renal medicine
Keywords:	Cost utility analysis, Quality-Adjusted Life Years (QALYs), utility, Chronic Kidney Disease (CKD)

1 2	1	Comparison of the EQ-5D-3L and the SF-6D (SF-36) contemporaneous utility scores in
3	2	patients with Chronic Kidney Disease in Sri Lanka; a cross sectional survey
4 5	3	
6 7	4	
8	5	Sanjeewa Kularatna ¹ , Sameera Senanayake ¹ , Nalika Gunawardena ² , Nicholas Graves ¹
9 10	6	
11 12	7	¹ Australian Centre for Health Services Innovation, Queensland University of Technology
13 14	8	² World Health Organization, Sri Lanka
15	9	
16 17	10	Corresponding author;
18 19	11	Sanjeewa Kularatna - sanjeewa.kularatna@qut.edu.au
20	12	
22	13	Word count : 3277
23 24	14	
25 26	15	
27		
28 29		
30 31		
32		
33 34		
35 36		
37		
39		
40 41		
42 43		
44		
45 46		
47 48		
49		
50 51		
52 53		
54 57		
55 56		
57 58		
59		
00		

1 2	16	Abstract
3	17	
4 5	18	Objectives : The aim of this study was to compare utility weights of EQ-5D-3L and SF-6D in
6 7 8 9 10 11 12 13 14 15 16 17	19	a representative cohort of patients with Chronic Kidney Disease (CKD). A cost-utility
	20	analysis is designed to report the change to costs required to achieve an estimated change to
	21	Quality-Adjusted Life Years (QALYs). The quality component of a QALY is measured by
	22	utility. Utility represents the preference of general population for a given health state.
	23	Classification systems of the multi-attribute utility instruments (MAUI) are used to define
	24	these health states. Utility weights developed from different classification systems can vary
	25	and may affect the conclusions from cost-utility analyses.
18 19	26	
20 21	27	Design: A community based cross sectional study
21 22 23 24 25	28	
	29	Setting : Anuradhapura a rural district in Sri Lanka.
25 26	30	
27 28 29 30	31	Participants: A representative sample of 1096 CKD patients, selected using the population-
	32	based CKD register, completed the EQ-5D-3L and SF-36. SF-6D was constructed from the
30 31	33	SF-36 according to the published algorithm. The study assessed discrimination, correlation
32 33	34	and differences across the two instruments.
34 35	35	
35 36	36	Results: Study participants were predominantly male (62.6%). Mean EQ-5D-3L utility score
37 38	37	was 0.540 (SD 0.35) compared with 0.534 (SD 0.09) for the SF-6D (p=0.588). The
39 40	38	correlation (r) between the scores was 0.40 (p<0.001). Utility scores were significantly
41 42	39	different in both males and females between the two tools, but there was no difference in age
42	40	and educational categories. Both MAUI scores were significantly lower (p<0.001) among
44 45	41	those who were in more advanced stages of the disease and the corresponding utility scores
46 47	42	of the two instruments in different CKD stages were also significantly different (p<0.05).
48	43	The largest effect size was seen among the dialysis patients.
49 50	44	
51 52	45	Conclusions: The correlation between the scores was moderate. SF 6D had the lowest floor
53 54	46	and ceiling effect, and was better at detecting different stages of the disease. Thus based on the
55	47	evidence presented in this study, SF 6D appears to be more appropriate to be used among CKD
56 57	48	patients
58 59	49	
60	50	Key words: Cost utility analysis, Quality-Adjusted Life Years (QALYs), utility, Chronic
	51	Kidney Disease (CKD)

1 2	52	Strengths and limitations of this study
3	53	• The response rate of the study is very high.
4 5	54	• Both tools used in the study (EQ 5D 3L and SF 36) have been previously validated to
6 7	55	the Sri Lankan setting before.
8 9	56	• Data collectors were experienced for many local and international studies done among
10	57	CKD patients in Sri Lanka and further they were trained by the principal investigator to
12	58	ensure the quality of the data collected.
13 14	59	• Our study was a cross-sectional study, thus we could not assess how utility scores of
15 16	60	the two instruments change over time.
17	61	• Some of the information related to QOL in SF-36 is considered to be sensitive in
18 19	62	nature and the fact that this information was obtained utilising an interviewer-
20 21	63	administered questionnaire could have led to some under-reporting in the assessment
22	64	of QOL though many measures were taken to minimize this issue.
23	65	
25 26	66	
27 28	67	
29		
30 31		
32 33		
34 35		
36		
37 38		
39 40		
41 42		
42		
44 45		
46 47		
48		
49 50		
51 52		
53 54		
55		
56 57		
58 59		
60		

Chronic kidney disease (CKD) is a substantial public health problem with adverse

 Introduction

psychological, physical and economic outcomes. The burden of CKD is increasing globally(1). World Health Report (2002) and Global Burden of Disease (GBD) project stated that the diseases of the kidney contribute much to the global disease burden with approximately 850,000 deaths every year globally (2). Furthermore, according to GBD study conducted in 2010, of the top causes of DALY, CKD is ranked 29th globally, 23rd in South East Asia and 14th in Sri Lanka (3). Due to the progressive and disabling nature of CKD, it poses a substantial impact on the quality of life (QOL) of individuals. It is important to measure QOL indicators for the management of chronic kidney disease patients. Several studies have demonstrated a relationship between reduced QOL and increased morbidity and mortality (4-7). World over, the importance of including QOL indicators in the clinical management of patients has been highlighted. This has come to the limelight after several studies demonstrated the strong relationship between reduced OOL and increased morbidity and mortality (5, 8). Meantime, economic evaluation has become increasingly popular among researchers and policy makers during resource allocation in recent years. Due to the relationship between QOL and clinical outcome, during the recent years, QOL has become an important health outcome in economic evaluations. In cost utility analysis (CUA), a method of economic evaluation, outcomes are usually measured in Quality-Adjusted Life Years (QALYs), which is a measure of QOL. The concept of QALYs was developed in the 1970s. It can measure the changes of an individual's quality and quantity of life and can also aggregate these improvements across individual (9, 10). The change in the quality of life in OALY is measured using a set of weights, called utilities, which reflect different health states. For all possible health states, utilities should be measured on a scale where 1 refers to best imaginable health and 0 refers to death (11). Measuring utilities for different health states is complex and time-consuming. Thus, Multi Attribute Utility Instruments (MAUI) such as EuroQol-5D (EQ-5D-3L) (12), Short Form-6D (SF-6D) (13) or the Health Utility Index (HUI) (14, 15) are used to define different health states. The utility scores for different health states in different instruments are derived from methods such as Standard Gambling method (16), Discrete Choice Experiments (17) and Time Trade-Off experiments (18). EO-5D-3L is the most widely used utility instrument at present (19). EQ-5D-5L, which is the newer version of EQ-5D, has also been developed and tested recently (20).

Page 5 of 26

BMJ Open

1 ว	104	
2	105	Since all the MAUIs aim at measuring the health state of individuals, all the instruments
4 5	106	should generate the same utility value for a particular state of health. However, the evidence
6 7 8 9 10 11 12	107	indicates that there is an essential difference in the utility scores for a particular health state
	108	between different instruments (19, 21-29). This, in turn, indicates that the choice of the
	109	MAUI used may adversely influence the results of CUA and thereby the decision-making
	110	process (30). Furthermore, for incremental analyses, use of different MAUIs may lead to
13 14	111	different results regarding the magnitude, direction or significance of any change in health-
15 16	112	related quality of life measure.
17	113	
18 19	114	Though the differences between MAUIs have been evaluated in many disease conditions (19,
20 21	115	21, 22, 24), there are no evidence in the literature comparing MAUIs using patients with
22	116	CKD. The aim of our study is to compare contemporaneous EQ-5D-3L and SF-6D utility
25 24	117	scores in patients with CKD. Results may be useful for researchers selecting a generic MAUI
25 26	118	to estimate utilities for use in economic modelling of treatments for CKD.
27 28	119	
28 29 30 31	120	Methods
	121	Participant selection
32 33	122	A population-based descriptive cross-sectional study was conducted in the district of
34 35	123	Anuradhapura in the North Central Province (NCP) of Sri Lanka between Septembers to
36	124	December 2015. The study population consisted of 1162 confirmed CKD patients, calculated
37 38	125	using the appropriate formula (31), who were over 18 years old with documented evidence of
39 40	126	CKD living in the Anuradhapura district. The diagnosis of CKD was made if the Glomerular
41	127	Filtration Rate (GFR) was less than 60 ml/min per 1.73m ² of body surface area in two
42 43	128	measurements made three months apart.
44 45	129	
46 47	130	The inclusion criteria were patients above 18 years of age and those who were diagnosed as
48	131	having CKD by a specialist nephrologist or a consultant physician. Presence of evidence of
49 50	132	such diagnosis was made by way of diagnosis cards, clinic records or any other record issued
51 52	133	by a specialist nephrologist, a consultant physician or a government hospital. Patients who
53	134	had previous renal transplantation, who were unable to provide rational information due to
54 55	135	any cause (e.g. mental retardation) and who were critically ill were excluded from the study.
56 57	136	
58 59	137	The study instrument was an interviewer-administered questionnaire to gather information on the
60	138	socio-demographic information, CKD related information, EQ-5D-3L and SF 36.
	139	

Five Public Health Inspectors working in the CKD unit in the North Central Province were used for the data collection and all have been working in the unit for more than 5 years and they had experience in functioning as data collectors for many local and international studies done among CKD patients in the NCP. The data collectors assessed the eligibility of patients by reviewing their clinical records. Informed consent was obtained from those who were eligible for participation in the study before doing the face-to-face interview.

The study was conducted in all nineteen Medical Officer of Health (MOH) areas of the Anuradhapura district. The number of participants to be included from each MOH area was based on probability proportionate to the size of CKD patients registered in each of the MOH areas. The required number of participants from each MOH area was selected using simple random sampling method. The population-based CKD register – which records the patients with a confirmed diagnosis of CKD from renal clinics in hospitals of the NCP since 2003 – was used as the sampling frame. The register was obtained from the office of the Provincial Director of Health Services (32).

27 155

156 Calculation of utility scores

157 Currently, there is no algorithm based on preferences of the Sri Lankan public to score the
158 SF-6D on a utility scale. Therefore, the UK algorithm was used for this purpose (13).
159 Though Sri Lankan EQ-5D-3L utility scores are available (18), the UK utility scores were
160 used for the EQ-5D-3L (33) because of the unavailability of comparable Sri Lankan SF-6D
161 utility scores as mentioned earlier. This allowed the comparison of utility scores from the
162 same country.

The EQ-5D-3L instrument contains five domains; mobility, self-care, usual activities, pain /
discomfort and anxiety / depression. Each domain has one item and each item has three
levels: one denoting no problems and three denoting severe problems (12). Thus, EQ-5D-3L
has mutually exclusive 243 different health states.

49 168

SF-6D is derived from either SF-36 or SF-12 (Version 1 and Version 2). The current study utilised SF-36 for the data collection. SF-36 includes 36 items that measure eight domains; role limitations caused by physical problems (4 items), physical function (10 items), role limitations caused by emotional problems (3 items), pain (2 items), social function (2 items), general health perceptions (5 items), emotional well-being (5 items) and energy / fatigue (4 items). Questions have different answer options which range from two to six. While scoring, each question is scored in a scale ranging from 0 (worst health) to 100 (best health). All items

BMJ Open

- 177 ranges from 0 (worst health) to 100 (best health). To calculate the utility scores of the SF-6D,
 178 11 items are used covering six domains; physical functioning, role limitation, social
- 178 11 items are used covering six domains; physical functioning, role limitation, s
 179 functioning, pain, mental health and vitality (13).
- 8 180

10181The EQ-5D-3L utility calculation was undertaken using the STATA syntax developed by11182Ramos-Goni et al. (34). The SF-6D scores were computed based on published algorithms13183(13). Patients for whom one of the two measurements was missing were excluded from the15184analysis.

- The EQ-5D-3L utility scores range from -0.59, 0=being dead; negative values represent
 health status considered worse than "dead", to 1.00 which indicate best imaginable health.
 The SF-6D utility scores ranged from 0.296 which indicate severely impaired levels in all
 dimensions to 1.0 which indicates no difficulty in any dimensions.
- 191 Data analysis

STATA 15.1 software was used for the analysis. Mean utility scores on each instrument were compared by socio-demographic characteristics. Normality of the two distributions were assessed using Kolmogorov-Smirnov and Shapiro-Wilk tests. Wilcoxon signed-rank test was used to assess the difference between the two instruments in each socio-demographic class (35). Histograms were plotted for the two utility values distribution. Floor effects and ceiling (proportion of patients with the highest and lowest possible scores respectively) were calculated for the EQ-5D-3L and SF-6D. Ceiling and floor effects were considered small if $\leq 15\%$ of patients occupy the best or worst health states, but they were considered serious if >15% of patients occupy these states (36).

Currently, an established methodology to compare different MAUIs is not available. Thus,
recently published methodologies, which compared different MAUIs, were followed in the
current study (19, 23, 35). This included a combination of statistical and psychometric
analyses to examine discrimination, agreement, differences and correlation between the two
instruments.

⁵⁴ 207

208 Agreement and differences

The Wilcoxon Signed-Ranks Test was used to assess the overall difference between the EQ-5D3L and SF-6D utility scores and the difference of the utility scores according to different
socio-demographic and disease related features. Furthermore, the distribution of the

1 2	212	responses to the different domains of the two instruments was tabulated to present the
3	213	agreement and the differences between the two instruments. Bland-Altman plot was also
4 5	214	used to assess the proportional error and the limit of agreement (37).
6 7 8 9	215	
	216	Intra Class Correlation (ICC)
10 11	217	between the two MALUE are role limitation (SE 6D)/usual activities (EQ 5D 2L), physical
12 13 14 15 16	210	functioning (SE (D)/mobility and colf come (EQ 5D 2L), noin (SE (D)/moin and diacomfort
	219	functioning (SF-6D)/mobility and self-care (EQ-5D-5L), pair (SF-6D)/pair and discomfort (EQ-5D-2L) $= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $
	220	(EQ-5D-3L), social functioning (SF-6D)/usual activities (EQ-5D-3L) and mental health (SF-
17 19	221	6D)/anxiety and depression (EQ-5D-3L). The vitality dimension of the SF-6D did not have
18 19	222	any related dimension with the EQ-5D-3L. The magnitude of the correlation coefficients
20 21	223	were interpreted according to Guilford's criteria (38).
22	224	
23 24 25 26	225	Discrimination
	226	It is important that MAUIs can discriminate correctly among groups of different severity as
27	227	MAUIs are meant to measure change in QOL due to improvement or worsening of the health,
28 29	228	in the condition of interest.
30 31 32	229	
	230	Glomerular Filtration Rate (GFR) is the most important indicator of kidney function of
33 34	231	patients with CKD (39). Studies have shown that decreased GFR is associated with infection,
35	232	impaired cognitive and physical function as well as threats to patient safety (40). Though
30 37	233	classifications exist to classify stages of CKD, it is evident that at present most of the clinical
38 39	234	decision making in CKD is solely based on GFR base classification (41, 42). Depending on
40	235	the GFR value, CKD is categorised into five stages; stage I to stage V. For analytical
41	236	purposes, the CKD stages I to III were categorised as "early stage" in the present study. It is
43 44	237	expected that with advanced stages of the disease, the utility scores should be lower than the
45 46	238	early stages.
40 47	239	
48 49	240	Discrimination of EQ-5D-3L and SF-6D for different CKD stages was examined using the
50 51	241	non-parametric test, Kruskal-Wallis, and effect size. The instrument's ability to discriminate
52	242	between two adjacent stages was estimated by calculating the effect size. The effect size was
53 54	243	calculated by dividing the mean difference of two adjacent CKD stages by the standard
55 56	244	deviation of the milder of the two CKD stages (23, 43). Large effect size indicates better
57 58	245	discriminating ability of the instrument. The effect size was categorised into small (0.2–0.5),

- medium (0.5–0.8) and large (more than 0.8) (44).

1 2	248	Test-retest reliability
3 4	249	To assess the test-refest renability of the study instrument, within a period of one week, so
5	250	randomly selected study participants were visited at their nouseholds by the data collectors.
7	251	Test re-test reliability of the utility scores of the two instruments was assessed using ICC and
8 9	252	a value of 0.70 or greater was considered as satisfactory reliability (45).
10	253	
12	254	Patient and Public Involvement
13 14	255	The main stakeholders in the provision of care for the CKD patients such as consultants,
15 16 17	256	medical officers working in nephrology units, community leaders and the patients living in
	257	this area were involved in planning the study. Their concerns were always entertained and
18 19	258	where feasible their concerns were incorporated into the study. During the data collection,
20	259	stage permission was obtained from the respective local officers. The results of the study was
21	260	communicated to the local level officials such as Medical Officer of Health, Divisional
23 24	261	Secretariat, Regional Director of Health Services and Provincial Director of Health Services.
25	262	
26 27 28 29 30	263	Results
	264	Sample characteristics
	265	Out of 1162 participants selected to be included in the study, 66 (5.6%) did not participate in
31 32	266	the study giving a response rate of 94.4%. The mean age of the study population was 58.4
33 34	267	years (Standard Deviation (SD) 10.8). There was a preponderance of males among the study
35	268	population (62.6%, N=686). The mean eGFR of the population was 31.8 (SD 20.2)
36 37	269	ml/min/1.73 m ² . The mean number of years since diagnosed with CKD was found to be 4.1
38 39	270	(SD 3.2) years. The majority of participants was in the later stages, stage 4 or beyond, of
40	271	CKD (n=803; 73.2%). 38 participants (3.6%), with stage 5 of the disease and undergoing
41 42	272	dialysis, were on haemodialysis (Table 1). Chronic Kidney Disease of Unknown origin
43 44	273	(CKDu) was the cause of the CKD in most of the study population ($n=489$; 43.7%).
45	274	
46 47	275	Distribution of EQ-5D-3L and SF-6D utility scores
48 49	276	The mean EQ-5D-3L utility score at baseline was 0.540 compared with 0.534 for the SF-6D
50	277	as summarised in Table 1. The EQ-5D-3L utility score ranged from -0.594 to 1, while SF-6D
51 52	278	ranged from 0.3 to 0.89. The median baseline values have different locations in their
53 54	279	respective scoring ranges (Fig 1). The EQ-5D-3L showed 1.0% floor effect and 11.8% ceiling
55	280	effect, while SF-6D had 0.0% floor and ceiling effects.
56 57	281	
58 59	282	Agreement, differences and correlation between the two utility scores
60	283	Analyses revealed non- normal distribution of the utility scores of both the instruments, thus
	284	Wilcoxon Signed-Ranks test was used to compare the two utility scores. There was significant

difference (p<0.001) between overall scores of the two utility instruments. Further the two utility scores were significantly different among males (<0.001), age more than 40 years groups, those who were employed, among both who had and didn't have comorbidities, up to stage IV of CKD and among dialysis patients (Table 1). The standard deviation of the EQ-5D-3L was considerably larger than that of the SF-6D among all sub groups. Significant proportion of the patients reported "no problem" in any of the EQ-5D-3L

dimensions than the SF-6D. However, fewer patients reported "extreme problems" in the EQ-5D-3L than in the SF-6D (Tables 2 and 3). Patients reported different results for the related dimensions of the two MAUIs (Tables 2 and 3). Nearly half of the patients reported "no problem" in Mobility domain of the EQ-5D-3L, while only 0.7% reported "no problems" with the physical functioning of the SF-6D. Nearly quarter (23.8%) of patients reported "no problems" for the anxiety / depression dimension in the EQ-5D-3L, whereas only 0.6% reported the same for the mental health dimension of the SF-6D.

The correlation between EO-5D-3L and SF-6D was 0.408, which was statistically significant at p<0.001 level (Figure 2). Regarding the ICC between different domains of the two instruments, according to the Guilford's criteria, moderate correlation (0.4-0.6) was evident between Social functioning and Mobility (0.517), Social functioning and Self-care (0.424), Social functioning and Usual activities (0.464), Social functioning and Pain/discomfort (0.566), Social functioning and Anxiety/depression (0.528), Pain and Mobility (0.475), Pain and Pain/ discomfort (0.482), Pain and Anxiety/depression (0.484), Vitality and Pain/ discomfort (0.475) and Vitality and Anxiety/depression (0.453) (Table 4). The Bland-Altman plot showed proportional error and wide limits of agreement (Figure 3).

Discrimination

With both MAUIs, utility scores decreased with increasing severity (as measured by CKD stage) (Table 5). In both MAUIs, the utility differences across CKD stages were statistically significant (p<0.05) indicating good discrimination. Figure 4 indicated the box-plots present the median, quartiles and extreme values for the EQ-5D-3L and SF-6D utility scores for CKD stage. Furthermore, the calculated effect size between CKD early stage and stage IV was 0.071 and 0.141 for EQ-5D-3L and SF-6D respectively. The highest effect size was observed between CKD stage V and dialysis group, which was 0.807 for EQ-5D-3L and 1.098 for SF-6D.

Test-retest reliability

Page 11 of 26		BMJ Open					
1	321	The test re-test ICC was 0.943 in EQ-5D-3L while it was 0.921 in SF 6D, indicating good test					
3	322	re-test reliability in both the instruments.					
4 5	323						
6 7	324	Discussion					
8	325	This is the first study to compare the utility scores arising from the EQ-5D-3L and SF-6D in					
9 10	326	CKD patients. According to the current study, the correlation between the scores was					
11 12	327	moderate. Both tools were able to discriminate advancement of CKD stages. Effect size,					
13 14	328	which denoted the discriminating ability of different CKD stages, is highest when disease					
15	329	condition is advanced and the highest effect size was seen in SF-6D. Further, the lowest					
16 17	330	ceiling effect and the floor effect were seen in SF 6D.					
18 19	331						
 19 20 21 22 23 24 25 26 27 28 	332	Evidence indicate that the choice of MAUI (e.g.; EQ 5D or SF6D) has an impact on the					
	333	results of the cost-utility analysis (46, 47). Sack et al. (2009) compared the results of cost-					
	334	utility estimates using both EQ 5D and SF 6D. Results indicated contrasting results for the					
	335	two instruments and authors concluded that the choice of the instrument does matter in cost-					
	336	utility analysis (46). Thus, from an economic perspective it is important to know the most					
29	337	suitable MAUI to be used among CKD patients.					
30 31 32 33	338						
	339	At present, there is no consensus on the methodology to compare the utility scores of					
34	340	different MAUIs (19, 35). The present study adopted the methodologies used by Kularatna et					
35 36	341	at. (2017) and Lamers et al. (2006) (19, 35). Only one time assessment of the utilities was					
37 38	342	done in the present study. Thus, the responsiveness of the two instruments to changes in					
39 40	343	kidney function over time was not assessed. Though Sri Lankan EQ-5D-3L utility scores are					
41	344	available (18), yet we used the UK utility scores for the EQ-5D-3L (33) because of the					
42 43	345	unavailability of comparable Sri Lankan SF-6D utility scores values. This is an accepted					
44 45	346	method of calculating the utility scores in the absence of country specific utilities. Two					
46 47	347	studies conducted in Netherlands (24) and Italy (21), comparing the utility scores of the two					
48	348	instruments, had used the UK derived EQ-5D-3L and SF-6D utility scores.					
49 50	349						
51 52	350	The present study did not find any difference (p=0.588) between the overall mean scores of					
53 54	351	the two utility instruments. This was similar to a study conducted among a group of					

different results have been reported. Significantly higher utility values for EQ-5D-3L were

HIV/AIDS patients (28), but different from other studies available in the literature where

- found among general population (29, 48), cardio-vascular disease patients (19), rheumatoid
- arthritis patients (21) and patients with stable angina (16). However, in a study conducted
 - among a group of patients with psychiatric disorders, significantly higher utility values were

obtained for SF-6D instrument (24). These varying results could be due to different recall
periods of the two instruments. EQ-5D-3L assessed the health status of the day of instrument
administration while SF-6D, which was derived from SF-36, assessed the health status of the
past 30 days.

8 361

Though overall ceiling and floor effects of both instruments were small, relatively higher ceiling effect was evident in the EQ-5D-3L. This was consistent with several other studies conducted elsewhere, where EQ 5D 3L reported a relatively higher ceiling effect compared to SF 6D (16, 19, 49-51). This is mainly due to the fact that the EQ-5D-3L has limited response levels and the five level newer version of EQ-5D-3L expected to improve the properties of the three-level in terms of reduced ceiling effects, increased reliability and improved ability to discriminate between different levels of health (52). Further, the current study reported relatively lower ceiling effect, for the EQ 5D, compared to results obtained among Parkinson's disease (13.5%) and stable angina (15.5%) patients. However, our result was higher compared to the ceiling effect observed among patients with systemic sclerosis (7.0%). Among many other factors that could contribute to these differences, the level of morbidity of a disease is said to be one of the factors which could influence the ceiling effect observed in EQ 5D (53). Thus the diseases with lower morbidity are expected to have higher ceiling effects.

34 376

Discrimination of EQ-5D-3L and SF-6D for different CKD stages was examined using ANOVA and effect size. In both MAUIs, the utility differences across CKD stages were statistically significant (p<0.05; ANOVA) indicating good discrimination. However, the effect size was small for both the tools until the dialysis stage. At the dialysis stage, the effect size is large and this was highest in the SF-6D instrument. It could be because CKD is considered asymptomatic until the later stages of the disease (54, 55), not allowing the instruments to discriminate the different stages. According to a recent study conducted by Jesky et al. (2016), the EQ-5D-3L utility scores of the adjacent pre-dialysis CKD stages were not found to be statistically significant (56).

52 386

53 387 Limitations 54

Some of the information related to QOL in SF-36 is considered to be sensitive in nature and the fact that this information was obtained utilising an interviewer-administered questionnaire could have led to some under-reporting in the assessment of OOL though many measures were taken to minimize this issue. Our study was a cross-sectional study, thus we could not assess how utility scores of the two instruments change over time.

Page 13 of 26

1 2	393	
3	394	Conclusions
4 5	395	The correlation between the scores was moderate. Both tools were able to discriminate
6 7	396	advancement of CKD stages. Effect size, which denoted the discriminating ability of the
8	397	different CKD stages, is highest when disease condition is advanced. Findings indicate that
1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 20 1 22 3 24 25 26 7 8 9 30 1 32 33 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 20 1 22 3 24 25 26 7 8 9 30 1 32 33 4 5 36 7 8 9 40 1 42 3 44 5 46 7 8 9 51 52 3 4 55 6 57 55 56 57	398	both tools cover different aspects of health. Thus, although there was a moderate correlation
	399	between the measures, both scores cannot be used interchangeably while assessing QALY
	400	during cost utility analysis. Finally, SF 6D had the lowest floor and ceiling effect, and was
	401	better at detecting different stages of the disease. Thus based on the evidence presented in
	402	this study, SF 6D appears to be more appropriate to be used among CKD patients.
	403	
	404	Ethics approval and consent to participate
	405	The study is in accordance with Helsinki Declaration. The study protocol has been approved
	406	by the Ethics Committee of Colombo Medical Faculty. Permission was obtained from the
	407	Provincial Director of Health Service, to assess the CKD register available at his office.
27	408	Participants gave their informed consent.
28 29	409	
30 31	410	Acknowledgement:
32 33	411	Authors acknowledge Asanga Ranasinghe, Priyantha Kumara and Anura Ranasinghe for the
34	412	support rendered during the study.
35 36	413	
37 38	414	Funding
39 40	415	This study was funded by the Ministry of Health, Sri Lanka
41	416	
42 43	417	Competing interests: None declared.
44 45	418	
46 47	419	Patient consent : Obtained.
48	420	
49 50	421	Author Contributions
51 52	422	SK and SS : Research idea, study design, statistical analysis and drafting of the manuscript.
53	423	NG ² : study design, data analysis/interpretation. NG ¹ : participated in study design, data
54 55	424	interpretation and supervision. All authors read and approved the final manuscript.
56 57	425	Provenance and peer review : Not commissioned; externally peer reviewed.
58 59	426	
60	427	Data sharing statement

- The datasets used and/or analysed during the current study available from the corresponding
- author on reasonable request.
- **Figure legend**
- Fig. 1. Distribution of EQ-5D-3L (A) and SF-6D (B)
- Fig. 2 Correlation between the EQ-5D-3L and the SF-6D utilities
- Fig. 3 : Bland and Altman plot of differences between EQ-5D-3L and SF-6D for patients with
- CKD
- Fig 4: The box-plots present the median, quartiles and extreme values for the EQ-5D-3L and
- SF-6D utility scores for CKD stage to beet teries only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	439	References
3	440	1. Senanayake S, Gunawardena N, Palihawadana P, Kularatna S, Peiris T. Validity and reliability
4	441	of the Sri Lankan version of the kidney disease quality of life questionnaire (KDOOL-SF [™]). Health and
5	442	quality of life outcomes 2017:15(1):119
6	443	2 Schiennati A Remuzzi G Chronic renal diseases as a nublic health problem: enidemiology
7	111	z. Scheppatr A, Remuzzr G. Chronic renar diseases as a public health problem. epidemology,
8	444	Social, and economic implications. Kuney international. 2005,08.57-510.
9	443	3. Evaluation II Hivia. Global Burden of Disease 2010 Arrow Diagram: Institue for Health Metrics
10	446	and Evaluation; 2010 [Available from: http://vizhub.healthdata.org/irank/arrow.php.
11	44 /	4. Rebollo-Rubio A, Morales-Asencio JM, Pons-Raventos ME, Mansilla-Francisco JJ. Review of
12	448	studies on health related quality of life in patients with advanced chronic kidney disease in Spain.
13	449	Nefrologia. 2015;35(1):92-109.
14	450	5. Mujais SK, Story K, Brouillette J, Takano T, Soroka S, Franek C, et al. Health-related quality of
16	451	life in CKD patients: correlates and evolution over time. Clinical Journal of the American Society of
17	452	Nephrology. 2009;4(8):1293-301.
18	453	6. Tsai Y-C, Hung C-C, Hwang S-J, Wang S-L, Hsiao S-M, Lin M-Y, et al. Quality of life predicts risks
19	454	of end-stage renal disease and mortality in patients with chronic kidney disease. Nephrology dialysis
20	455	transplantation. 2009;25(5):1621-6.
21	456	7. DeOreo PB. Hemodialysis patient-assessed functional health status predicts continued
22	457	survival, hospitalization, and dialysis-attendance compliance. American Journal of Kidney Diseases.
23	458	1997;30(2):204-12.
24	459	8. Gussous Y, Theologis AA, Demb JB, Tangtiphaiboontana J, Berven S. Correlation Between
25	460	Lumbopelvic and Sagittal Parameters and Health-Related Quality of Life in Adults With Lumbosacral
26	461	Spondylolisthesis, Global spine journal, 2018:8(1):17-24.
27	462	9. Howren MB. Quality-Adjusted Life Years (OALYs). Encyclopedia of Behavioral Medicine:
20 20	463	Springer: 2013 n 1605-6
30	464	10 Torrance GW Feeny D Utilities and quality-adjusted life years. International journal of
31	465	technology assessment in health care 1989:5(4):559-75
32	465	11 Drummond ME Sculpher ML Clayton K Stoddart GL Torrance GW Methods for the economic
33	460	evaluation of health care programmes: Oxford university press: 2015
34	468	12 Prooks P. EuroOol: the current state of play. Health policy, 1006:27(1):52, 72
35	400	12. Blooks K. Eurodoi. the current state of play. Health poincy. 1990, 57(1), 55-72.
36	409	the SE 26 Journal of health accommise, 2002;21(2):271.02
37	470	the SF-30. Journal of health economics. 2002;21(2):271-92.
38	4/1	14. Feeny D, Furlong W, Torrance GW, Goldsmith CH, Zhu Z, DePauw S, et al. Multialtribute and
39	472	single-attribute utility functions for the health utilities index mark 3 system. Medical care.
40 41	4/3	2002;40(2):113-28.
41 12	4/4	15. Feeny D, Furlong W, Boyle M, Torrance GW. Multi-attribute health status classification
43	4/5	systems. Pharmacoeconomics. 1995;7(6):490-502.
44	476	16. Wu J, Han Y, Zhao F-L, Zhou J, Chen Z, Sun H. Validation and comparison of EuroQoL-5
45	477	dimension (EQ-5D) and Short Form-6 dimension (SF-6D) among stable angina patients. Health and
46	478	quality of life outcomes. 2014;12(1):156.
47	479	17. Stolk EA, Oppe M, Scalone L, Krabbe PF. Discrete choice modeling for the quantification of
48	480	health states: the case of the EQ-5D. Value in Health. 2010;13(8):1005-13.
49	481	18. Kularatna S, Whitty JA, Johnson NW, Jayasinghe R, Scuffham PA. Valuing EQ-5D health states
50	482	for Sri Lanka. Quality of Life Research. 2015;24(7):1785-93.
51	483	19. Kularatna S, Byrnes J, Chan YK, Ski CF, Carrington M, Thompson D, et al. Comparison of the
52	484	EQ-5D-3L and the SF-6D (SF-12) contemporaneous utility scores in patients with cardiovascular
55 54	485	disease. Quality of Life Research. 2017;26(12):3399-408.
55	486	20. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al. Development and preliminary
56	487	testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of life research. 2011;20(10):1727-
57	488	36.
58	489	21. Salaffi F, Carotti M, Ciapetti A, Gasparini S, Grassi W. A comparison of utility measurement
59	490	using EQ-5D and SF-6D preference-based generic instruments in patients with rheumatoid arthritis.
60	491	Clinical and experimental rheumatology. 2011;29(4):661-71.

1 492 22. Kwakkenbos L, Fransen J, Vonk MC, Becker ES, Jeurissen M, van den Hoogen FH, et al. A 2 493 comparison of the measurement properties and estimation of minimal important differences of the 3 494 EQ-5D and SF-6D utility measures in patients with systemic sclerosis. Clinical and experimental 4 495 rheumatology. 2013;31(2 Suppl 76):50-6. 5 496 Rowen D, Young T, Brazier J, Gaugris S. Comparison of generic, condition-specific, and mapped 23. 6 7 497 health state utility values for multiple myeloma cancer. Value in Health. 2012;15(8):1059-68. 8 498 24. Lamers LM, Bouwmans CA, van Straten A, Donker MC, Hakkaart L. Comparison of EQ-5D and 9 499 SF-6D utilities in mental health patients. Health economics. 2006;15(11):1229-36. 10 500 25. Barton GR, Bankart J, Davis AC. A comparison of the quality of life of hearing-impaired people 11 501 as estimated by three different utility measures Un comparación de la calidad de vida de personas con 12 502 trastornos auditivos estimada por tres diferentes medidas de utilidad. International Journal of 13 503 Audiology. 2005;44(3):157-63. 14 504 Barton GR, Bankart J, Davis AC, Summerfield QA. Comparing utility scores before and after 26. 15 505 hearing-aid provision. Applied health economics and health policy. 2004;3(2):103-5. 16 17 506 27. van Stel HF, Buskens E. Comparison of the SF-6D and the EQ-5D in patients with coronary heart 18 507 disease. Health and Quality of Life Outcomes. 2006;4(1):20. 19 508 Stavem K, Frøland SS, Hellum KB. Comparison of preference-based utilities of the 15D, EQ-5D 28. 20 509 and SF-6D in patients with HIV/AIDS. Quality of Life Research. 2005;14(4):971-80. 21 510 29. Petrou S, Hockley C. An investigation into the empirical validity of the EQ-5D and SF-6D based 22 511 on hypothetical preferences in a general population. Health economics. 2005;14(11):1169-89. 23 512 30. McDonough CM, Tosteson AN. Measuring preferences for cost-utility analysis. 24 513 Pharmacoeconomics. 2007;25(2):93-106. 25 26 514 Lwanga SK, Lemeshow S, Organization WH. Sample size determination in health studies: a 31. 27 515 practical manual. 1991. 28 516 Senanayake S, Gunawardena N, Palihawadana P, Bandara P, Haniffa R, Karunarathna R, et al. 32. 29 517 Symptom burden in chronic kidney disease; a population based cross sectional study. BMC 30 518 nephrology. 2017;18(1):228. 31 519 33. Dolan P. Modeling valuations for EuroQol health states. Medical care. 1997;35(11):1095-108. 32 520 34. Ramos-Goni JM, Rivero-Arias O. eq5d: A command to calculate index values for the EQ-5D 33 521 quality-of-life instrument. Stata Journal. 2011;11(1):120. 34 522 35 Lamers L, Bouwmans C, van Straten A, Donker M, Hakkaart L. Comparison of EQ-5D and SF-6D 35. 36 523 utilities in mental health patients. Health economics. 2006;15(11):1229-36. 37 524 Harrison M, Davies L, Bansback N, McCoy M, Verstappen S, Watson K, et al. The comparative 36. 38 525 responsiveness of the EQ-5D and SF-6D to change in patients with inflammatory arthritis. Quality of 39 526 Life Research. 2009;18(9):1195. 40 527 37. Bland JM, Altman D. Statistical methods for assessing agreement between two methods of 41 528 clinical measurement. The lancet. 1986;327(8476):307-10. 42 529 38. Tredoux C, Durrheim K. Numbers, hypotheses and conclusions: A course in statistics for the 43 530 social sciences. Cape Town: University of Cape Town Press[Links]. 2002. 44 45 531 39. Levey AS, Stevens LA, Coresh J. Conceptual model of CKD: applications and implications. 46 532 American journal of kidney diseases. 2009;53(3):S4-S16. 47 533 40. Seliger SL, Zhan M, Walker LD, Fink JC. Chronic kidney disease adversely influences patient 48 534 safety. Journal of the American Society of Nephrology. 2008;19(12):2414-9. 49 535 41. Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the 50 536 kidney disease: improving global outcomes 2012 clinical practice guideline. Annals of internal 51 537 medicine. 2013;158(11):825-30. 52 538 42. Tseng C-L, Lafrance J-P, Lu S-E, Soroka O, Miller DR, Maney M, et al. Variability in estimated 53 539 54 glomerular filtration rate values is a risk factor in chronic kidney disease progression among patients 55 540 with diabetes. BMC nephrology. 2015;16(1):34. 56 541 43. Kularatna S, Byrnes J, Chan YK, Ski CF, Carrington M, Thompson D, et al. Comparison of the 57 542 EQ-5D-3L and the SF-6D (SF-12) contemporaneous utility scores in patients with cardiovascular 58 543 disease. Quality of life research : an international journal of quality of life aspects of treatment, care 59 544 and rehabilitation. 2017;26(12):3399-408. 60 545 Cohen J. A power primer. Psychological bulletin. 1992;112(1):155. 44. 546 45. Litwin MS, Fink A. How to measure survey reliability and validity: Sage; 1995.

Sack TH, Barton GR, Jenkinson C, Doherty M, Avery AJ, Muir KR. Comparing cost-utility 46. estimates: does the choice of EQ-5D or SF-6D matter? Med Care. 2009:889-95.

Grieve R, Grishchenko M, Cairns J. SF-6D versus EQ-5D: reasons for differences in utility scores 47. and impact on reported cost-utility. The European journal of health economics. 2009;10(1):15-23.

Stewart ST, Cutler DM, Rosen AB. Comparison of Trends in US Health-Related Quality of Life 48. over the 2000's Using the SF-6D, HALex, EQ-5D, and EQ-5D Visual Analog Scale versus a Broader Set of Symptoms and Impairments. Medical care. 2014;52(12):1010.

Zhao Fl, Yue M, Yang H, Wang T, Wu Jh, Li SC. Validation and comparison of EuroQol and short 49. form 6D in chronic prostatitis patients. Value in Health. 2010;13(5):649-56.

Cunillera O, Tresserras R, Rajmil L, Vilagut G, Brugulat P, Herdman M, et al. Discriminative 50. capacity of the EQ-5D, SF-6D, and SF-12 as measures of health status in population health survey. Quality of Life Research. 2010;19(6):853-64.

- Bharmal M, Thomas J. Comparing the EQ-5D and the SF-6D descriptive systems to assess their 51. ceiling effects in the US general population. Value in Health. 2006;9(4):262-71.
- 52. Janssen M, Pickard AS, Golicki D, Gudex C, Niewada M, Scalone L, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. Quality of Life Research. 2013;22(7):1717-27.

53. Bharmal M, Thomas III J. Comparing the EQ-5D and the SF-6D descriptive systems to assess their ceiling effects in the US general population. Value Health. 2006;9(4):262-71.

de Boer IH, Olan GA, Patel UD. Screening for chronic kidney disease. Ann Intern Med. 54. 2013;158(5 Pt 1):362-3.

Hummel A. Chronic renal failure, a frequent and asymptomatic pathology. Soins; la revue de 55. reference infirmiere. 2010(745):24-6.

56. Jesky MD, Dutton M, Dasgupta I, Yadav P, Ng KP, Fenton A, et al. Health-related quality of life impacts mortality but not progression to end-stage renal disease in pre-dialysis chronic kidney disease: a prospective observational study. PloS one. 2016;11(11):e0165675. elez on

575 Tables

2 575 3 576

Table 1 : Demographic distribution of the sample by the EQ-5D-3L and the SF-6D utility scores

Variable	N (%)	EQ-5D-3L	Sf-6D utility	p value#
		utility mean	mean (SD)	
		(SD)		
All sample	1096	0.540 (0.35)	0.534 (0.09)	< 0.001*
Sex				
Male	686 (62.6)	0.561 (0.34)	0.532 (0.10)	< 0.001*
Female	410 (37.4)	0.505 (0.37)	0.539 (0.09)	0.342
Age (years)	~			
Less than 20	07 (0.6)	0.570 (0.44)	0.455 (0.09)	0.235
20-40	45 (4.1)	0.591 (0.34)	0.536 (0.09)	0.103
41-60	562 (51.3)	0.555 (0.35)	0.540 (0.10)	< 0.001*
More than 60	482 (44.0)	0.517 (0.35)	0.529 (0.08)	0.006*
Education status				
No formal education	81 (7.4)	0.448 (0.42)	0.508 (0.09)	0.441
5 Grade	413 (37.7)	0.529 (0.35)	0.536 (0.09)	0.001*
6-11 Grade	377 (34.4)	0.556 (0.34)	0.533 (0.10)	< 0.001*
GCE O/L passed	190 (17.3)	0.554 (0.34)	0.540 (0.09)	0.007*
GCE A/L passed	35 (3.2)	0.618 (0.34)	0.540 (0.09)	0.225
Employment status				
Employed	380 (34.7)	0.675 (0.25)	0.547 (0.10)	< 0.001*
Not employed	716 (65.3)	0.468 (0.37)	0.528 (0.09)	0.417
Comorbidities				
Present	778 (71.0)	0.505 (0.36)	0.532 (0.09)	0.037*
Absent	318 (29.0)	0.625 (0.29)	0.542 (0.10)	< 0.001*
CKD stage				
Early stage	254 (24.0)	0.588 (0.30)	0.551 (0.10)	< 0.001*
Stage IV	614 (58.1)	0.566 (0.42)	0.536 (0.09)	< 0.001*
Stage V	151 (14.3)	0.467 (0.42)	0.523 (0.08)	0.808
Dialysis	38 (3.6)	0.126 (0.39)	0.432 (0.07)	< 0.001*
		1	-	

[#] Wilcoxon signed-rank test ; *Significant at p<0.05

581 Table 2 : Distribution of the sample by the EQ-5D-3L dimensions

	Mobility	Self-care	Usual	Pain/	Anxiety/
	(%)	(%)	activities (%)	discomfort (%)	depression
					(%)
No problem	515	644			
	(47.0)	(58.8)	473 (43.2)	182 (16.6)	261 (23.8)
Some problem	559	421			
	(51.0)	(38.4)	587 (53.6)	739 (67.4)	680 (62.0)
Extreme					
problem	22 (2.0)	31 (2.8)	36 (3.3)	175 (16.0)	155 (14.1)

584 Table 3 : Distribution of the sample by the SF-6D dimensions

	Physical	Role	Social	Pain (%)	Mental	Vitality (%)
	functioning	limitation	functioning		health (%)	
	(%)	(%)	(%)			
1 ^a	8 (0.7)	173 (15.8)	17 (1.6)	7 (0.6)	6 (0.6)	2 (0.2)
2	22 (2.0)	5 (0.5)	60 (5.5)	5 (0.5)	130 (11.9)	194 (17.7)
3	304 (27.7)	135 (12.3)	482 (44.0)	59 (5.4)	582 (53.1)	498 (45.4)
4	356 (32.5)	783 (71.4)	481 (43.9)	452 (41.2)	364 (33.2)	287 (26.2)
5	87 (7.9)	NA	56(5.1)	333 (30.4)	14 (1.3)	115 (10.5)
6 ^b	319 (29.1	NA	NA	240 (21.9)	NA	NA

585 ^a No problems

^b Severe problems

43 587

		Mobili	ity S	elf-care	Usu	ıal	Pain/		Anxiety/	
					acti	vities	disco	mfort	depressio	n
Physica	1	0.381*	• 0	.326*	0.29	96*	0.382	*	0.381*	
function	ning									
Role lin	nitation	0.023	-(0.003	-0.1	.04	0.016		0.138*	
Social		0.517*	• 0	.424*	0.40	64*	0.566	*	0.528*	
function	ning									
Pain Mental		0.475*	• 0	.330*	0.35	55*	0.482	*	0.484*	
Mental	health	0.293*	• 0	.323*	0.29	95*	0.240)*	0.244*	
Vitality		0.322*	• 0	.148*	0.25	55*	0.475	*	0.453*	
Table 5 :	Discrimi	nation a	ucross clin	ical sever	rity grai	uns				
CKD	EQ-5D	9-3L				SF-6D				
stage	N	Mean	Median	Sig#	ES	N	Mean	Median	Sig [#]	Ι
		(SD)		C			(SD)			
		0.588	0.656		5	254	0.551	0.570		
Early	254	0.388					1	1	1	
Early stage	254 (24.0)	(0.30)				(24.0)	(0.10)			
Early stage IV	254 (24.0) 614	0.388 (0.30) 0.566	0.620		0.071	(24.0) 614	(0.10) 0.536	0.560	-	
Early stage IV	254 (24.0) 614 (58.1)	(0.30) (0.30) (0.566 (0.42)	0.620	<0.001	0.071	(24.0) 614 (58.1)	(0.10) 0.536 (0.09)	0.560	<0.001	

(14.3)

Kruskal–Wallis test

(3.6)

Dialysis

(0.42)

0.126

(0.39)

-0.016

(0.08)

0.432

(0.07)

0.410

1.098

(14.3)

(3.6)

0.807

Fig. 1. Distribution of EQ-5D (A) and SF-6D (B)

137x99mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
BMJ Open

60

Fig 4: The box-plots present the median, quartiles and extreme values for the EQ-5D and SF-6D utility scores for CKD stage

137x99mm (300 x 300 DPI)

	Item No	Recommendation	Line numbe
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the	1
The and abstract	1	(a) indicate the study's design with a commonly used term in the	1
			16
		(b) Provide in the abstract an informative and balanced summary	16
		of what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	67
		investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	115
Methods			
Study design	4	Present key elements of study design early in the paper	121
Setting	5	Describe the setting locations and relevant dates including	121-126
Setting	Ŭ	periods of recruitment exposure follow-up and data collection	121 120
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	120 134
		(a) Give the englotity criteria, and the sources and methods of	129-134
			157 100
Variables	7	Clearly define all outcomes, exposures, predictors, potential	157-190
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	157-190
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	123
Quantitative variables	11	Explain how quantitative variables were handled in the analyses.	157-190
		If applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to	193-207
		control for confounding	
		(b) Describe any methods used to examine subgroups and	NA
		interactions	
		(c) Explain how missing data were addressed	NA
		(d) If applicable describe analytical methods taking account of	NA
		campling strategy	1112
		(a) Describe any consistivity analyzes	NA
		(<u>e</u>) Describe any sensitivity analyses	INA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg	266-267
		numbers potentially eligible, examined for eligibility, confirmed	
		eligible, included in the study, completing follow-up, and	
		analysed	
		(b) Give reasons for non-participation at each stage	267
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic,	266 - 274
		clinical, social) and information on exposures and potential	
		confounders	
		(b) Indicate number of participants with missing data for each	NA
	1		

Outcome data	15*	Report numbers of outcome events or summary measures	NA
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-	NA
		adjusted estimates and their precision (eg, 95% confidence	
		interval). Make clear which confounders were adjusted for and	
		why they were included	
		(b) Report category boundaries when continuous variables were	Table 1
		categorized	
		(c) If relevant, consider translating estimates of relative risk into	NA
		absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and	NA
		interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	335 - 340
Limitations	19	Discuss limitations of the study, taking into account sources of	397
		potential bias or imprecision. Discuss both direction and	
		magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering	405 - 413
		objectives, limitations, multiplicity of analyses, results from	
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	410 - 413
Other information			
Funding	22	Give the source of funding and the role of the funders for the	425
		present study and, if applicable, for the original study on which	
		the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.